首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Danish Blattella germanica (L) populations carry the resistance-associated mutation A302S within the Resistance to dieldrin (Rdl) gene. The mutation has remained in field populations long after the discontinuation of dieldrin for cockroach control. The mutation has also persisted in our laboratory strains with high and intermediate frequencies for more than 8 years without selection. The toxicity of dieldrin was tested by topical application to male cockroaches in the susceptible strain DPIL-SUS and two field strains, Zo960302 and Su960304, which were 1270- and 15-fold resistant to dieldrin at LD50. We report the sequencing of exon 7 of the B. germanica Rdl gene and the finding of the putative resistance-associated A302S mutation. We have developed and implemented a PCR-based diagnostic method with the detection of a restriction endonuclease polymorphism, which allows for easy discrimination of susceptible, resistant and heterozygote genotypes. The frequency of the resistance-associate allele A302S was 0.97 and 0.38 in the Zo960302 and Su960304 populations, respectively. The cockroach Rdl A302S allele confers high dieldrin resistance in homozygotes and intermediate resistance in heterozygotes, and its presence is responsible for the persisting dieldrin resistance in Danish populations of B. germanica.  相似文献   

2.
We are interested in correlating the performance of fipronil in populations of cat fleas (Ctenocephalides felis) with potential cross-resistance conferred by point mutations in the Resistance to dieldrin gene, Rdl. Here we report the sequencing of exon 7 of the cat flea Rdl gene and the documentation of a putative resistance-associated mutation predicting the replacement of alanine302 with a serine. We describe two polymerase chain reaction (PCR) based diagnostics for the detection of this mutation. First, PCR mediated detection of a restriction endonuclease polymorphism (PCR REN) using a BsmAI site created by the resistance-associated mutation. Second, a TaqMan assay using allele specific fluorogenic probes and the TaqMan 5 specific nuclease. We describe how such diagnostics can be used in the diagnosis of resistance in the field and laboratory.  相似文献   

3.
Fipronil is a relatively new insecticide with great potential for insect control, however widespread use of cyclodiene insecticides has selected for an A302S mutation in the Rdl (GABA gated chloride channel) allele. This mutation gives resistance to cyclodienes and limited cross-resistance to fipronil. Given the concern over the possible reduction in efficacy and/or lifetime that fipronil might be used for pest control (given the extensive use of cyclodienes in the past), it is important to know the frequency of the A302S Rdl mutation in field populations. To ascertain the relative frequency of the A302S Rdl mutation in house fly populations we used three experimental approaches. First, we attempted to select for fipronil resistance by initially treating 33,100 field collected flies and selecting 14 additional generations. We were unable to produce a highly resistant strain. Second, we directly sequenced field collected flies. Third, we tested field collected house flies with a diagnostic dose of dieldrin and then genotyped the survivors. Out of the 4750 flies tested, there were no Rdl resistance alleles detected. We conclude that the resistant Rdl allele is rare in house flies in the US due to decades without cyclodiene use and a fitness disadvantage (in the absence of cyclodienes) of the 302S Rdl allele. The limited cross-resistance provided by the cyclodiene resistant Rdl allele, combined with the very low frequency of this allele in field populations, suggests that fipronil could be a promising insecticide for house fly control.  相似文献   

4.
Molecular mechanisms of monocrotophos resistance in the two-spotted spider mite (TSSM), Tetranychus urticae Koch, were investigated. A monocrotophos-resistant strain (AD) showed ca. 3568- and 47.6-fold resistance compared to a susceptible strain (UD) and a moderately resistant strain (PyriF), respectively. No significant differences in detoxification enzyme activities, except for the cytochrome P450 monooxygenase activity, were found among the three strains. The sensitivity of acetylcholinesterase (AChE) to monocrotophos, however, was 90.6- and 41.9-fold less in AD strain compared to the UD and PyriF strains, respectively, indicating that AChE insensitivity mechanism plays a major role in monocrotophos resistance. When AChE gene (Tuace) sequences were compared, three point mutations (G228S, A391T and F439W) were identified in Tuace from the AD strain that likely contribute to the AChE insensitivity as predicted by structure analysis. Frequencies of the three mutations in field populations were predicted by quantitative sequencing (QS). Correlation analysis between the mutation frequency and actual resistance levels (LC50) of nine field populations suggested that the G228S mutation plays a more crucial role in resistance (r2 = 0.712) compared to the F439W mutation (r2 = 0.419). When correlated together, however, the correlation coefficient was substantially enhanced (r2 = 0.865), indicating that both the F439W and G228S mutations may work synergistically. The A391T mutation was homogeneously present in all field populations examined, suggesting that it may confer a basal level of resistance.  相似文献   

5.
Despite a point mutation in the pore-forming segment of the Rdl GABA receptor subunit that is widespread and persistent in insect populations and confers high levels of resistance to dieldrin and other polychlorocycloalkane (PCCA) insecticides, the phenylpyrazole insecticide fipronil, which binds at same site, has proven to be effective in controlling many insects, including dieldrin-resistant populations. Fipronil and its major sulfone metabolite are unique among chloride channel blocking insecticides in that they also potently block GluCls. We present here a patch clamp study of the action of fipronil sulfone on native GABA receptors and GluCl receptors from susceptible and dieldrin-resistant German cockroaches, to provide a better understanding of the effect of the Rdl mutation on the function and insecticide sensitivity of these two targets, and its role in resistance. Dieldrin blocked GABA currents with an IC50 of 3 nM in wild-type cockroaches, and 383 nM in resistant insects, yielding a resistance ratio of 128. Fipronil sulfone blocked GABA currents with an IC50 of 0.8 nM in susceptible insects and 12.1 nM, or 15-fold higher, in resistant insects. While both GluClD (desensitizing) and GluClN (non-desensitizing) receptors were found in German cockroach neurons, GluClN receptors were rare and could not be included in this study. GluClD receptors from resistant insects had reduced sensitivity to glutamate and a lower rate of desensitization than those from susceptible insects, but their sensitivity to block by fipronil sulfone was not significantly changed, with an IC50 of 38.5 ± 2.4 nM (n = 8) in the susceptible strain and 40.3 ± 1.0 nM (n = 7) in the resistant strain. Fipronil sulfone also slowed the decay time course of GluClD currents. These results suggest that GluClD receptors contain the Rdl subunit, but their sensitivity to fipronil sulfone is not altered in resistant insects.  相似文献   

6.
Decreased acetylcholinesterase (AChE) sensitivity and metabolic detoxification mediated by glutathione S-transferases (GSTs) were examined for their involvement in resistance to acephate in the diamondback moth, Plutella xylostella. The resistant strain showed 47.5-fold higher acephate resistance than the susceptible strain had. However, the resistant strain was only 2.3-fold more resistant to prothiofos than the susceptible strain. The resistant strain included insects having the A298S and G324A mutations in AChE1, which are reportedly involved in prothiofos resistance in P. xylostella, showing reduced AChE sensitivity to inhibition by methamidophos, suggesting that decreased AChE1 sensitivity is one factor conferring acephate resistance. However, allele frequencies at both mutation sites in the resistant strain were low (only 26%). These results suggest that other factors such as GSTs are involved in acephate resistance. Expression of GST genes available in P. xylostella to date was examined using the resistant and susceptible strains, revealing no significant correlation between the expression and resistance levels.  相似文献   

7.
In addition to the allele frequencies of the L1014F and T929I mutations which are involved in nerve-insensitive resistance to a pyrethroid, those of the M918I mutation were examined using field strains obtained in China, Thailand, and Japan during 2009-2011. Results show that the resistance allele frequencies at the L1014F site were 89-100%, 97-100% and 65-85%, respectively, for strains in China, Thailand, and Japan. The respective allele frequencies at the T929I site were 86-100%, 70-97% and 58-84% for Chinese, Thai, and Japanese strains. With low frequencies up to 27%, M918I was found in Japan and China, but not in Thailand. The strain homozygous for the M918I and L1014F mutations was established and its resistance level to a pyrethroid was examined. The strain lacks a portion of the sodium channel gene corresponding to the 3′ portion of exon 18a, intron 18, and the 5′ portion of exon 18b. Nevertheless, the strain showed a similar level of resistance to that which was homozygous for the T929I and L1014F mutations.  相似文献   

8.
Cross-resistance potential of fipronil in Musca domestica   总被引:4,自引:0,他引:4  
The toxicity of fipronil to insecticide-susceptible houseflies and the cross-resistance potential of fipronil were determined for six insecticide-resistant laboratory housefly strains by topical application and feeding bioassay. The insecticide-resistant strains represented different levels and patterns of resistance to pyrethroids, organophosphates, carbamates and organochlorines. Five strains were almost susceptible to fipronil in feeding bioassay with resistance factors at LC50 between 0.36 and 3.0. Four of these strains were almost susceptible to topically applied fipronil (resistance factors at LD50 were 0.55, 0.83, 3.3 and 2.5, respectively), whereas one strain was 13-fold resistant to topically applied fipronil. A highly gamma-HCH-resistant strain, 17e, was 430-fold resistant to fipronil in topical application bioassay and 23-fold resistant in feeding bioassay at LD50/LC50. We also tested the toxicity of fipronil in a feeding bioassay and gamma-HCH in topical application bioassay on thirteen housefly field populations. Eleven of the field populations had resistance factors for fipronil ranging from 0.98 to 2.4 at LC50, whereas two populations were 4.0- and 4.6-fold resistant to fipronil. The resistance level to gamma-HCH at LD50 in the field populations ranged from 1.8- to 8.1-fold. The two strains showing fipronil resistance were 3.4- and 8.1-fold resistant to gamma-HCH. Fipronil and gamma-HCH toxicities were positively correlated in the field populations. Biochemical assays of esterase, glutathione S-transferase and cytochrome P450 monooxygenase indicated that the low fipronil resistance observed in laboratory and field strains could be caused by elevated detoxification or be due to a target-site resistance mechanism with cross-resistance to gamma-HCH.  相似文献   

9.
We found the A2′N mutation (index number for M2 membrane spanning region) in the GABA receptor subunit of fipronil-resistant Sogatella furcifera, by analyzing DNA sequences amplified from fipronil-resistant and -susceptible S. furcifera. In order to confirm the role of A2′N mutation in the fipronil resistance, we expressed the wild-type and A2′N mutant Drosophila GABA receptors in Drosophila Mel-2 cells stably. Amino acid sequences of three membrane spanning regions (M1-M3), which are important for binding of fipronil, are conserved between Drosophila and S. furcifera. So the results of A2′N mutant Drosophila GABA receptor suggest the role of A2′N mutation in fipronil-resistant S. furcifera. The membrane potential assay showed that the A2′N mutant Drosophila GABA receptor was not inhibited by fipronil at all, while the IC50 value of fipronil for wild-type Drosophila GABA receptor was 172 nM. These results suggest that A2′N mutation confers the resistance of fipronil in S. furcifera.  相似文献   

10.
Fipronil is a new insecticide which exerts its toxic action by interacting with the insect GABA-gated chloride channel. Previous studies have shown that cyclodiene-resistant insects have low to moderate levels of cross-resistance to fipronil, while other resistant strains are usually susceptible. In contrast, we recently found a strain (LPR) of house fly (Musca domestica L) with 15-fold cross-resistance to fipronil that was not associated with cyclodiene resistance. Fipronil cross-resistance in LPR was inherited as an intermediately dominant, autosomal, multigenic trait. [14C]Fipronil was observed to penetrate into LPR flies more slowly than into susceptible flies. S,S,S-tributylphosphorotrithioate and diethyl maleate pretreatment did not reduce the level of fipronil cross-resistance, while piperonyl butoxide resulted in a slight decrease. These results indicate that decreased penetration and monooxygenase-mediated detoxification may be mechanisms contributing to fipronil cross-resistance in the LPR strain. © 1999 Society of Chemical Industry  相似文献   

11.
HPLC was used to determine levels of the benzoylphenyl urea, CGA-184699, in cat blood, flea faeces and eggs. Rate constants were determined for the decline of CGA-184699 concentration in flea faeces of fleas that fed on both high (696 ng ml?1) and low (305 ng ml?1) host blood concentrations. There were strong correlations between the concentration of the drug in the host's blood and in flea eggs, between egg concentration and egg hatch and between the concentration of CGA-184699 in faeces and mortality to larvae feeding upon faeces.  相似文献   

12.
Populations of the codling moth, Cydia pomonella L (Lepidoptera, Tortricidae) have developed resistance to several classes of insecticide such as benzoylureas, juvenile hormone analogues, ecdysone agonists and pyrethroids, but the corresponding resistance mechanisms have not been extensively studied. Knockdown resistance (kdr) to pyrethroid insecticides has been associated with point mutations in the para sodium channel gene in a great variety of insect pest species. We have studied two susceptible strains (S and Sv) and two resistant strains (Rt and Rv) of C pomonella that exhibited 4- and 80-fold resistance ratios to deltamethrin, respectively. The region of the voltage-dependent sodium channel gene which includes the position where kdr and super-kdr mutations have been found in Musca domestica L was amplified. The kdr mutation, a leucine-to-phenylalanine replacement at position 1014, was found only in the Rv strain. In contrast, the super-kdr mutation, a methionine-to-threonine replacement at position 918, was not detected in any C pomonella strain. These data allowed us to develop a PCR-based diagnostic test (PASA) to monitor the frequency of the kdr mutation in natural populations of C pomonella in order to define appropriate insecticide treatments in orchards.  相似文献   

13.
Adult mosquitoes from two strains of Anopheles gambiae and from three strains of Anopheles stephensi were exposed to 0.25% fipronil‐treated papers in WHO test kits or to 500 mg fipronil m−2 impregnated mosquito netting in bioassay spheres. For comparison, tests were also carried out with the pyrethroid permethrin, using the same methods and doses, and on papers treated with 0.4 and 4% of the cyclodiene insecticide dieldrin. Compared with the same doses of permethrin, fipronil showed less and delayed activity. Two of the An stephensi strains were resistant to fipronil and dieldrin. To investigate whether this was due to a resistance mechanism in the An stephensi strains acting against both insecticides, the most fipronil‐ and dieldrin‐tolerant strain was further selected in two separate lines with one of the insecticides, followed by tests with the insecticide that the line had not been selected with. This indicated a concomitant rise of resistance to dieldrin in the fipronil‐selected line and vice versa. Repeated back‐crossing of the two lines with a susceptible strain and re‐selection with either dieldrin or fipronil gave evidence for the involvement of a single resistance mechanism to both insecticides. Permethrin resistance in both lines declined with selection for dieldrin or fipronil and confirms the absence of cross‐resistance between fipronil and pyrethroids. © 2001 Society of Chemical Industry  相似文献   

14.
为评估引起小麦茎基腐病的病原菌假禾谷镰孢Fusarium pseudograminearum对氰烯菌酯的抗性风险,对5株敏感菌株进行了室内药剂驯化,获得33株抗性突变体,突变频率为16.5%,其对氰烯菌酯的抗性水平范围为7.39~1 665.76倍,3株表现低抗,4株表现中抗,26株表现高抗;发现在myosin-5基因上存在11种抗性突变类型,其中217位的丝氨酸突变为亮氨酸(S217L)、420位的谷氨酸突变为赖氨酸(E420K)和135位的丙氨酸突变为苏氨酸(A135T)为主要突变类型,其比例分别为45.5%、15.2%和9.1%。S217L型抗性突变体的产孢量显著下降,菌丝生长速率和致病力与亲本菌株无显著差异。E420K型抗性突变体的菌丝生长速率和致病力显著下降,产孢量与亲本菌株无显著差异。A135T型抗性突变体的菌丝生长速率和产孢量与亲本菌株无显著差异。研究结果表明假禾谷镰孢在药剂选择压力下易形成氰烯菌酯的抗性群体,对氰烯菌酯存在中到高等的潜在抗性风险,其myosin-5的点突变与其对氰烯菌酯的抗性相关。  相似文献   

15.
ABSTRACT We identified the cytochrome P450 sterol 14alpha-demethylase (CYP51A1) gene from Venturia inaequalis and optional insertions located upstream from CYP51A1 and evaluated their potential role in conferring resistance to the sterol demethylation-inhibitor (DMI) fungicide my-clobutanil. The CYP51A1 gene was completely sequenced from one my-clobutanil sensitive (S) and two myclobutanil-resistant (R) strains. No nucleotide variation was found when the three sequences were aligned. Allele-specific polymerase chain reaction (PCR) analysis indicated that a previously described single base pair mutation that correlated with resistance to DMI fungicides in strains of other filamentous fungi was absent in 19 S and 32 R strains of V. inaequalis from Michigan and elsewhere. The sequencing results and PCR analyses suggest that resistance in these strains was not due to a mutation in the sterol demethylase target site for DMI fungicides. Expression of CYP51A1 was determined for strains from an orchard that had never been sprayed with DMI fungicides (baseline orchard), and the data provided a reference for evaluating the expression of strains collected from a research orchard and from three commercial Michigan apple orchards with a long history of DMI use and a high frequency of R strains. Overexpression of CYP51A1 was significantly higher in 9 of 11 R strains from the research orchard than in S strains from the baseline orchard. The high expression was correlated with the presence of a 553-bp insertion located upstream of CYP51A1. Overexpression of the CYP51A1 gene was also detected in eight of eight, five of nine, and nine of nine R strains from three commercial orchards, but the insertion was not detected in the majority of these strains. The results suggest that overexpression of the target-site CYP51A1 gene is an important mechanism of resistance in some field resistant strains of V. inaequalis, but other mechanisms of resistance also appear to exist.  相似文献   

16.
The frequency of resistance of eight strains of house flies, Musca domestica L., collected from caged‐layer poultry facilities across New York state, to nine insecticides (dimethoate, tetrachlorvinphos, permethrin, cyfluthrin, pyrethrins, methomyl, fipronil, spinosad and cyromazine) was measured relative to a laboratory susceptible strain. Percentage survival was evaluated at five diagnostic concentrations: susceptible strain LC99, 3 × LC99, 10 × LC99, 30 × LC99 and 100 × LC99. The highest levels of resistance were noted for tetrachlorvinphos, permethrin and cyfluthrin. There was substantial variation in the levels of resistance to the different insecticides from one facility to another, independent of their geographical location. There was very little cross‐resistance detected in these populations to either fipronil or spinosad. Overall, there was a good correlation between insecticide use histories and the levels of resistance. The apparent isolation of fly populations within poultry facilities suggests that there are good opportunities for the implementation of successful resistance management strategies at these facilities. Differences between these results and those of a resistance survey on New York dairy farms in 1987 are discussed. © 2000 Society of Chemical Industry  相似文献   

17.
Xu Q  Liu H  Zhang L  Liu N 《Pest management science》2005,61(11):1096-1102
Two mosquito strains of Culex quinquefasciatus (Say), MAmCq(G0) and HAmCq(G0), were collected from Mobile and Huntsville, Alabama, respectively. MAmCq(G0) and HAmCq(G0) were further selected in the laboratory with permethrin for one and three generations, respectively. The levels of resistance to permethrin in MAmCq(G1) (after one-generation selection) and HAmCq(G3) (after three-generation selection) increased rapidly. Resistance to permethrin in MAmCq(G1) and HAmCq(G3) was partially suppressed by piperonyl butoxide (PBO), S,S,S-tributylphosphorotrithioate (DEF) and diethyl maleate (DEM), inhibitors of cytochrome P450 monooxygenases, hydrolases and glutathione S-transferases (GST), respectively, suggesting these three enzyme families are important in conferring permethrin resistance in both strains. A substitution of leucine to phenylalanine (L to F) resulting from a single nucleotide polymorphism (SNP), termed the kdr mutation, in the para-homologous sodium channel gene has been reported as a very common mutation associated with pyrethroid resistance of insects. A 341-bp sodium channel gene fragment, where the kdr mutation resides, was generated by PCR from genomic DNAs of Cx. quinquefasciatus strains. We found that the kdr mutation was present in both permethrin-selected and unselected HAmCq and MAmCq mosquito populations, suggesting that the kdr mutation plays the role in permethrin resistance. There was no significant change in the frequency and heterozygosity of the A to T SNP for the kdr allele between permethrin-selected and unselected MAmCq and HAmCq mosquitoes, indicating that other mechanisms are involved in the evolution of resistance in mosquitoes selected by permethrin in the laboratory.  相似文献   

18.
Fipronil resistance mechanisms were studied between the laboratory susceptible strain and the selective field population of rice stem borer, Chilo suppressalis Walker in the laboratory. The borer population was collected from Wenzhou county, Zhejiang province. After five generations of selection, fipronil resistance ratio was 45.3-fold compared to the susceptible strain. Synergism experiments showed that the synergistic ratios of PBO, TPP and DEF on fipronil in susceptible and resistant strains of C. suppressalis were 7.55-, 1.93- and 2.91-fold, respectively, and DEM showed no obvious synergistic action on fipronil. Activities of carboxylesterase and microsomal-O-demethylase in the resistant strain were 1.89- and 1.36-fold higher that in susceptible strain, and no significant difference of glutathione-S-transferase activity was found between the resistant and susceptible strains. The Km and Vmax experiments also demonstrated that fipronil resistance of C. suppressalis was closely relative to the enhanced activities of carboxylesterase and microsomal-O-demethylase. Moreover, cross-resistance between fipronil and other conventional insecticides and the multiple resistant properties of the original Wenzhou’s population were also discussed.  相似文献   

19.
RNA-seq data analysis of cigarette beetle (Lasioderma serricorne) strains having different sensitivities to pyrethroids identified sodium channel mutations in strains showing pyrethroid resistance: the T929I and F1534S mutations. These results suggest that reduced sensitivity of the sodium channel confers the pyrethroid resistance of L. serricorne. Results also showed that the F1534S mutation mostly occurred concurrently with the T929I mutation. The functional relation between both mutations for pyrethroid resistance is discussed.  相似文献   

20.
Fipronil resistance mechanisms were studied between the laboratory susceptible strain and the selective field population of rice stem borer, Chilo suppressalis Walker in the laboratory. The borer population was collected from Wenzhou county, Zhejiang province. After five generations of selection, fipronil resistance ratio was 45.3-fold compared to the susceptible strain. Synergism experiments showed that the synergistic ratios of PBO, TPP and DEF on fipronil in susceptible and resistant strains of C. suppressalis were 7.55-, 1.93- and 2.91-fold, respectively, and DEM showed no obvious synergistic action on fipronil. Activities of carboxylesterase and microsomal-O-demethylase in the resistant strain were 1.89- and 1.36-fold higher that in susceptible strain, and no significant difference of glutathione-S-transferase activity was found between the resistant and susceptible strains. The Km and Vmax experiments also demonstrated that fipronil resistance of C. suppressalis was closely relative to the enhanced activities of carboxylesterase and microsomal-O-demethylase. Moreover, cross-resistance between fipronil and other conventional insecticides and the multiple resistant properties of the original Wenzhou’s population were also discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号