首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Fusarium toxins, Alternaria toxins, and ergot alkaloids represent common groups of mycotoxins that can be found in cereals grown under temperate climatic conditions. Because most of them are chemically and thermally stable, these toxic fungal secondary metabolites might be transferred from grains into the final products. To get information on the commensurate contamination of various cereal-based products collected from the Czech retail market in 2010, the occurrence of "traditional" mycotoxins such as groups of A and B trichothecenes and zearalenone, less routinely determined Alternaria toxins (alternariol, alternariol monomethyl ether and altenuene), ergot alkaloids (ergosine, ergocryptine, ergocristine, and ergocornine) and "emerging" mycotoxins (enniatins A, A1, B, and B1 and beauvericin) were monitored. In a total 116 samples derived from white flour and mixed flour, breakfast cereals, snacks, and flour, only trichothecenes A and B and enniatins were found. Deoxynivalenol was detected in 75% of samples with concentrations ranging from 13 to 594 μg/kg, but its masked form, deoxynivalenol-3-β-d-glucoside, has an even higher incidence of 80% of samples, and concentrations ranging between 5 and 72 μg/kg were detected. Nivalenol was found only in three samples at levels of 30 μg/kg. For enniatins, all of the samples investigated were contaminated with at least one of four target enniatins. Enniatin A was detected in 97% of samples (concentration range of 20-2532 μg/kg) followed by enniatin B with an incidence in 91% of the samples (concentration range of 13-941 μg/kg) and enniatin B1 with an incidence of 80% in the samples tested (concentration range of 8-785 μg/kg). Enniatin A1 was found only in 44% of samples at levels ranging between 8 and 851 μg/kg.  相似文献   

2.
A rapid method is described for determining zearalenone in corn, sorghum, and wheat. The mycotoxin is extracted with a mixture of acetonitrile and 4% KCl in HCl. The extract is cleaned up with isooctane, evaporated, and redissolved in chloroform. Zearalenone is separated by thin layer chromatography; identity is confirmed with various developing solvents and spray reagents. Zearalenone is then quantitated by the limit detection method. The minimum detectable concentration is 140-160 micrograms/kg when aluminum chloride solution is used as spray reagent, and 85-110 micrograms/kg when Fast Violet B salt is used as spray reagent.  相似文献   

3.
A screening method has been developed for simultaneous determination of aflatoxin B1 and ochratoxin A in black olives. The technique includes extraction of both mycotoxins with aqueous methanol, cleanup using lead acetate, defatting with hexane, partitioning in chloroform, and thin layer chromatography. Detection limits are 5-7 micrograms aflatoxin B1 and 20 micrograms ochratoxin A/kg.  相似文献   

4.
A simple, systematic analytical method for multiple mycotoxins was developed for detecting 14 mycotoxins; aflatoxins B1, B2, G1, and G2, sterigmatocystin, T-2 toxin, diacetoxyscirpenol, neosolaniol, fusarenon X, zearalenone, ochratoxin A, citrinin, luteoskyrin, and rugulosin. These mycotoxins were extracted with 20% H2SO4-4% KCl-acetonitrile (2 + 20 + 178), defatted with isooctane, and transferred to chloroform. The chloroform extract was cleaned up by silica gel column chromatography; the first 10 toxins were eluted with chloroform-methanol (97 + 3) and the remaining 4 toxins with benzene-acetone-acetic acid (75 + 20 + 5). Each fraction was analyzed by thin layer chromatography for the final determination. The method has been applied to polished rice, rough rice, corn, wheat, and peanuts as an analytical screening procedure. The detection limits in these commodities ranged from 10.00 to 800.0 microgram/kg, depending on the mycotoxin, but all limits were superior to those obtained for the individual mycotoxins by using other methods.  相似文献   

5.
In recent years the consumption of tea and herbal infusions has increased. These hot drinks are consumed as daily drinks as well as for medicinal purposes. All tea varieties (white, yellow, green, oolong, black and puerh) originate from the leaves of the tea plant, Camellia sinensis. All extracts made of plant or herbal materials which do not contain Camellia sinensis are referred as herbal infusions or tisanes. During processing and manufacturing fungal contamination of the plant materials is possible, enabling contamination of these products with mycotoxins. In this study a multimycotoxin UPLC-MS/MS method was developed and validated for the analysis of the raw tea and herbal infusion materials as well as for their drinkable products. The samples were analyzed by ultra-high-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS), with a mobile phase consisting of variable mixtures of water and methanol with 0.3% formic acid. The limits of detection for the different mycotoxins varied between 2.1 μg/kg and 121 μg/kg for raw materials and between 0.4 μg/L and 46 μg/L for drinkable products. Afterward 91 different tea and herbal infusion samples were analyzed. Only in one sample, Ceylon melange, 76 μg/kg fumonisin B(1) was detected. No mycotoxins were detected in the drinkable products.  相似文献   

6.
To answer the need for simple, economical, rapid methods for mycotoxins, a procedure for screening and quantitation of ochratoxin A was developed. A methanol-aqueous KCl extraction is used, followed by cleanup with clarifying agents and partition into chloroform. Part of the chloroform extract is used for screening and the other part for quantitation by thin layer chromatography (TLC). The screening procedure takes 40 min, using a silica gel/aluminum oxide minicolumn developed for this purpose. The limits of detection are 80 and 10 micrograms/kg, respectively, for minicolumn screening and TLC quantitation. Ammonium sulfate is efficient in cleaning samples of corn and cassava; cupric sulfate is better with peanuts, beans, and rice. Tests were conducted on triplicate spiked samples of yellow corn meal, raw peanuts, dried black beans, polished rice, and cassava flour at different levels (400, 200, 80, 40, and 10 micrograms/kg). Recoveries ranged from 86 to 160% and the coefficients of variation ranged from 0 to 26%.  相似文献   

7.
A high pressure liquid chromatographic (HPLC) method has been developed for determining ochratoxin A and zearalenone in cereals. The sample is extracted with phosphoric acid and chloroform. The extract is cleaned by washing on a silica gel column with cyclohexane-ethylene dichloride-ethyl ether. After eluting zearalenone with chloroform, ochratoxin A is eluted with chloroform-formic acid. Zearalenone is extracted into alkaline solution, washed with chloroform, the pH is adjusted, and the zearalenone is extracted back into chloroform. Ochratoxin A is purified by chromatography on aqueous sodium biarbonate-Celite. The mycotoxins are determined by using a liquid chromatograph with 2 columns in series packed with Spherisorb ODS 10 micrometer and 5 micrometers, respectively. Ochratoxin A is detected with a speftrophotofluorometer, coupled in series with an ultra-violet detector for estimation of zearalenone. Detection limits are 1-5 micrograms/kg for ochratoxin A and 2 micrograms/kg for zearalenone.  相似文献   

8.
A previously published method for ochratoxin A was evaluated and proved appropriate for simultaneous determination of aflatoxins, ochratoxin A, sterigmatocystin, and zearalenone, with considerable savings in time and reagent costs. The detection limits were 2, 5, 15, and 55 micrograms/kg, respectively. The recoveries and coefficients of variation obtained with artificially contaminated samples were 91-101% and 0-16% for aflatoxin B1, 98-117% and 0-17% for sterigmatocystin, and 96-107% and 0-17% for zearalenone, respectively. The coefficients of variation for naturally contaminated samples (aflatoxins in rice and ochratoxin A in beans) ranged from 0 to 8%. The method was used to survey 296 samples that included 10 cultivars of dried beans, 8 types of corn products, 3 types of cassava flour, and both polished and parboiled rice between May 1985 and June 1986 in Campinas, Brazil. Only aflatoxin B1 (9 samples, 20-52 micrograms/kg), aflatoxin G1 (4 samples, 18-31 micrograms/kg), and ochratoxin A (5 samples, 32-160 micrograms/kg) were found. The average contamination percentage was 4.7%; beans showed the highest (6.6%) and rice showed the lowest (3.3%) incidence rates. Zearalenone and sterigmatocystin were not detected. Positive samples were confirmed by chemical derivatization, corroborated by development in 3 solvent systems.  相似文献   

9.
This study was designed to develop a sensitive liquid chromatography tandem mass spectrometry (LC-MS/MS) method for the simultaneous detection and quantification of 25 mycotoxins in cassava flour, peanut cake and maize samples with particular focus on the optimization of the sample preparation protocol and method validation. All 25 mycotoxins were extracted in a single step with a mixture of methanol/ethyl acetate/water (70:20:10, v/v/v). The method limits of quantification (LOQ) varied from 0.3 μg/kg to 106 μg/kg. Good precision and linearity were observed for most of the mycotoxins. The method was applied for the analysis of naturally contaminated peanut cake, cassava flour and maize samples from the Republic of Benin. All samples analyzed (fifteen peanut cakes, four maize flour and four cassava flour samples) tested positive for one or more mycotoxins. Aflatoxins (total aflatoxins; 10-346 μg/kg) and ochratoxin A (相似文献   

10.
A sensitive, reliable, and economical method for the determination of 6 mycotoxins in mixed feeds is described. The feed is extracted with chloroform-water and the extract is cleaned up by using a disposable Sep-Pak silica cartridge. The procedure requires less time (15 min from sample extraction to extract preparation) and less solvent (approximately one-tenth) compared with conventional methods and is suitable for a fast, economical screen. Additional cleanup procedures, involving dialysis or extraction into base, are described for samples containing high levels of interfering compounds. Thin layer chromatography (TLC) and high performance liquid chromatography (HPLC) with fluorescence detection are described for identification and estimation of mycotoxins. The method has been applied to a wide range of mixed feeds, including laboratory animal diets, and raw materials. The limit of detection is 1 microgram/kg for all mycotoxins measured by HPLC.  相似文献   

11.
Deoxynivalenol and zearalenone are among the most prevalent toxins produced by Fusarium spp. They have been investigated in food and feed products for decades but rarely in the environment. We therefore established solid-phase extraction and liquid chromatography-mass spectrometry (LC-MS) methods to quantify these mycotoxins at trace concentrations in aqueous natural samples. In a model emission study, we inoculated a winter wheat field with Fusarium graminearum and subsequently monitored deoxynivalenol and zearalenone in its drainage water. Before during and after harvest in June and July 2007, these toxins were emitted in concentrations from 23 ng/L to 4.9 microg/L for deoxynivalenol and from not detected to 35 ng/L for zearalenone. Simultaneously, in July and August 2007, deoxynivalenol was also detected in a number of Swiss rivers in concentrations up to 22 ng/L and zearalenone was present in several river samples below the method quantification limit. Other mycotoxins might be emitted from Fusarium-infected fields as well, because some of them are produced in similar amounts as deoxynivalenol and zearalenone and exhibit similar or even higher water solubility than deoxynivalenol. The ecotoxicological consequences of the presence of mycotoxins in surface waters remain to be elucidated.  相似文献   

12.
During the period 1982-1983, just under 800 samples of agricultural commodities, comprising cereals, compound feeds, hay, and silage, were examined for molds and mycotoxins. Aflatoxin B1 showed the highest incidence rate; it occurred in over 27% of all samples analyzed, the highest levels being found in peanut meal at 1500 ppb. Other mycotoxins detected were patulin and a number of trichothecene toxins at incidence rates in all commodities of 5.6 and 3.1%, respectively. The commodities at highest risk were oil seeds, excluding soya bean; the latter was found to be fairly free from contamination with mycotoxins. The most prevalent fungi were Aspergillus flavus and parasiticus, which were found in over 22% of all samples, whereas Penicillium spp. showed the lowest incidence of genera, specifically identified in 8.3% of all samples examined. This latter finding explains in part the low incidence of Penicillium mycotoxins.  相似文献   

13.
A liquid chromatographic method for the determination of ochratoxin A in coffee beans (green and roast), instant coffee, and coffee drink is described. The sample is subjected to extraction with methanol-1% aqueous sodium bicarbonate (1 + 1) and C18 cartridge cleanup. The extract is chromatographed on a Nucleosil 5C18 column with a mobile solvent of acetonitrile-water-0.2M phosphate buffer pH 7.5 (50 + 47 + 3) containing 3 mM cetyltrimethylammonium bromide as an ion-pair reagent. Ochratoxin A is detected with a fluorometer (excitation 365 nm, emission 450 nm). The sensitivity was increased 20-fold by using ion-pair resolution. The detection limits corresponded to 2 micrograms/kg for coffee beans, 5 micrograms/kg for instant coffee, and 0.2 microgram/kg for coffee drink. The recoveries from coffee products were generally better than 80.7% and the relative standard deviations were 3.43-5.93%. The peak coinciding with ochratoxin A can be confirmed by treatment using alcohol (methanol, ethanol, or n-propanol) and H2SO4.  相似文献   

14.
Fusarium head blight (FHB) is one of the major diseases of wheat (both common and durum wheat) caused by various fungi including Microdochium nivale and different Fusarium species. Most of the Fusarium species associated with FHB (mainly F. graminearum, F. culmorum and F. sporotrichioides), under favourable environmental conditions, can produce various toxic secondary metabolites (mycotoxins) that can contaminate grains. The major Fusarium mycotoxins that can occur in wheat and derived products are deoxynivalenol, nivalenol, T‐2 and HT‐2 toxins, and zearalenone. Processing has generally significant effects on the levels of mycotoxins in the final products. Deoxynivalenol is typically concentrated in the bran coat which is removed in the production of semolina; consequently, a consistent reduction of deoxynivalenol levels has been observed during each of the processing steps, from raw durum wheat to pasta production. To allow monitoring programs and protect consumers' health, several analytical methods have been developed for Fusarium mycotoxins, based on chromatographic or immunometric techniques. The European Union has established maximum permitted levels for some Fusarium mycotoxins in cereals and cereal‐based products (including unprocessed durum wheat, bran, wheat flour, and pasta). Recommendations for the prevention and reduction of Fusarium mycotoxins contamination in cereals based on identification of critical risk factors and crop management strategies have been published by the Codex Alimentarius and the European Commission.  相似文献   

15.
A liquid chromatographic method for quantitating paralytic shellfish poison toxins in shellfish has been developed in which the toxins are converted to fluorescent purines by prechromatographic oxidation under mildly basic conditions with hydrogen peroxide or periodate. The addition of ammonium formate to the periodate oxidation reaction greatly improved the yield of fluorescent derivatives for neosaxitoxin, gonyautoxin-1, B-2, and C-3 compared to the same reaction without ammonium formate. As little as 3-6 ng of each of the nonhydroxylated toxins and 7-12 ng of the hydroxylated compounds per gram of shellfish could be detected. Reversed-phase chromatography using ammonium formate in the mobile phase improved the chromatography of neosaxitoxin and B-2 compared to results obtained earlier. Because the oxidation products of neosaxitoxin and B-2 could not be separated, parent compounds were separated before oxidation by using an SPE-COOH ion exchange cartridge. The repeatability coefficient of variation for the oxidation reactions ranged from 3 to 8% for the peroxide reaction, and from 4 to 11% for the periodate reaction, depending upon the individual toxin determined and its concentration in the extract (0.04-0.55 micrograms/g). The method was compared to the mouse bioassay and the postcolumn oxidation method. In most cases, results were comparable.  相似文献   

16.
Fumonisins are mycotoxins produced by Fusarium verticillioides (=F. moniliforme) and other Fusarium species. They are found in corn and corn-based foods. Cooking decreases fumonisin concentrations in food products under some conditions; however, little is known about how cooking effects biological activity. Baked cornbread, pan-fried corncakes, and deep-fried fritters were made from cornmeal that was spiked with 5% w/w F. verticillioides culture material (CM). The cooked materials and the uncooked CM-spiked cornmeal were fed to male rats (n = 5/group) for 2 weeks at high (20% w/w spiked cornmeal equivalents) or low (2% w/w spiked cornmeal equivalents) doses. A control group was fed a diet containing 20% w/w unspiked cornmeal. Toxic response to the uncooked CM-spiked cornmeal and the cooked products included decreased body weight gain (high-dose only), decreased kidney weight, and microscopic kidney and liver lesions of the type caused by fumonisins. Fumonisin concentration, as determined by HPLC analysis, in the 20% w/w pan-fried corncake diet [92.2 ppm of fumonisin B(1) (FB(1))] was slightly, but not statistically significantly, lower than those of the 20% w/w baked cornbread (132.2 ppm of FB(1)), deep-fried fritter (120.2 ppm of FB(1)) and CM-spiked cornmeal (130.5 of ppm FB(1)) diets. Therefore, baking and frying had no significant effect on the biological activity or concentration of fumonisins in these corn-based products, and the results provided no evidence for the formation of novel toxins or "hidden" fumonisins during cooking.  相似文献   

17.
A fast and sensitive bioassay with hamster (BHK-21 C13) fibroblasts for the detection of toxic trichothecenes in maize is described. Cells are exposed to pure toxins or crude maize extracts for 30 min. The mixture is then incubated with [1-14C]-leucine for an additional 60 min and the radioactivity incorporated into the protein of the washed cells is determined. The sensitivity of the assay was in the range 1-10 ng/mL (or 50 ppb in maize) for T-2, HT-2, and diacetoxyscirpenol. At least 1000-fold higher concentrations of non-trichothecene mycotoxins and plant toxins were necessary to cause an inhibition of protein synthesis in the cells. Of 24 maize samples tested, 14 gave a positive response in this assay and the presence of trichothecenes could be confirmed chemically in 11 samples. Therefore, the described bioassay is proposed as a useful screening method for cytotoxic trichothecenes in maize.  相似文献   

18.
A collaborative study of a method for the determination of copper, iron, and nickel in edible oils and fats by direct graphite furnace atomic absorption spectrometry was recently conducted by the International Union of Pure and Applied Chemistry. The quantitation limits of the method are 5 micrograms/kg for copper and 10 micrograms/kg for iron and nickel. The method has been adopted official first action as an IUPAC-AOAC method.  相似文献   

19.
A liquid chromatographic (LC) method was compared with the AOAC mouse bioassay method (18.086-18.092) for determination of paralytic shellfish toxins in shellfish tissues. Shellfish samples were collected from Massachusetts coastal waters as part of a state surveillance program, and extracts of shellfish meat were analyzed for toxins by using both analytical methods. Overall correlation of the LC and bioassay methods is good (r = 0.943), but for samples with toxicities less than 100 micrograms saxitoxin/100 g shellfish meat, the correlation is significantly less (r = 0.531). Limits of detection are 10 micrograms saxitoxin/100 g shellfish meat and 40 micrograms saxitoxin/100 g shellfish meat for the LC and bioassay methods, respectively. Analytical capacity of the LC method is limited to 12 samples/person-day compared with 30 samples/person-day for the bioassay. Sampling capacity of the LC method could be increased by using a fluorescence detector with a wider response range, which would eliminate the need for dilution of concentrated samples.  相似文献   

20.
The method described will detect total aflatoxins (B1, B2, G1, and G2) in mixed feeds, grains nuts, and fruit products in samples containing as little as 5-15 mug/kg. In addition, the presence of aflatoxins in the positive samples can be confirmed and the toxins can be quantitatively measured, using the same extract as that used for the screening method. In the screening method, aflatoxins are extracted with acetone-water (85+15), and interferences are removed by adding cupric carbonate and ferric chloride gel. The aflatoxins are extracted from the aqueous phase with chloroform and the chloroform extract is washed with a basic aqueous solution. A Velasco-type minicolumn is used to further purify the extract and capture the aflatoxins in a tight band. The screening method has been successfully applied to 24 different agricultural commodities. Quantitative thin layer chromatography was also performed with extracts of each of these commodities. An average recovery of 94% B1, 108% B2, 130% G1, and 103% G2 was obtained compared to the official final action AOAC method for cottonseed products, 26.048-26.056. Within-laboratory coefficients of variation of 10-15% were obtained for each of the aflatoxins and total aflatoxins in a sample of peanut meal naturally contaminated with 11 mug B1+3 mug B2+11 mug G1+5 mug G2/kg.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号