首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 703 毫秒
1.
为探明沙门氏菌在冷冻猪肉中的存活特性,本实验用生理盐水作对比,将两种基质分别进行高浓度和低浓度初始人工污染后,存放于-20℃冷冻温度下。在不同的时间间隔,采用选择性培养基对两种基质中的沙门氏菌进行平板计数,记录具有活性的沙门氏菌数量,绘制存活曲线,并应用Origin 8.0软件对残存曲线进行Logistic模型拟合,并通过精确因子(Af)、偏差因子(B_f)、均方根误差(RMSE)和决定系数(R~2)4个参数对预测模型进行可靠性评价。结果显示,Logistic模型可以比较好地描述-20℃冷冻猪肉和生理盐水中沙门氏菌的失活动力学特征。猪肉中沙门氏菌经过冷冻保存80 d后,高浓度组和低浓度组的残存率分别为80.3%和74.7%;生理盐水中的沙门氏菌经过冷冻保存80 d后,高浓度污染的残存率仅为37.9%,低浓度污染的生理盐水中的沙门氏菌在第20 d时,就已经无法检测到具有活力的细胞。通过比较可以初步得知,-20℃冷冻猪肉中沙门氏菌的存活能力明显强于生理盐水中的沙门氏菌,不同初始污染浓度的沙门氏菌在-20℃下的存活能力也有所不同。  相似文献   

2.
为了探究红烧卤牛肉在不同温度下的货架期,本试验将加工好的红烧卤牛肉真空包装,进行二次沸水煮制杀菌(中间相隔48 h)。以菌落总数为指标建立货架期预测模型,将二次杀菌后的红烧卤牛肉产品分别贮藏在4、10、15、20、25℃的恒温培养箱中,测定贮藏期间菌落总数的变化。结果表明,随着贮藏温度的升高,微生物的最大生长比率增大,迟滞期和货架期缩短;建立一级模型(修正Gompertz模型)与二级模型(Belehradek模型),修正Gompertz模型除4℃下微生物生长曲线无法拟合之外,其余4个温度拟合效果良好(相关系数R2>0.9),并通过了模型验证(准确因子Af与偏差因子Bf的范围分别在1.1~1.9与0.75~1.25之间);结合一、二级模型建立红烧卤牛肉货架期预测模型,模型通过了验证(预测值与实测值相对误差在10%以内),预测得到的10、15、20、25℃贮藏的红烧卤牛肉货架期分别为185.76、64.05、31.00、15.08 d。本研究获得了红烧卤牛肉在10~25℃的货架期预测模型,为红烧卤牛肉在不同温度下的贮藏时间选择提供了理论依据。  相似文献   

3.
豆腐中库特氏菌生长动力学模型和货架期预测   总被引:3,自引:1,他引:2  
以引起豆腐腐败的特定腐败菌库特氏菌为研究对象,研究不同温度对其生长的影响,定量评价温度对豆腐货架期的影响,为货架期快速有效的估测提供有效的手段。将库特氏菌接种到豆腐表面,在4、12、20、30℃条件下贮藏,由此建立一级和二级生长动力学模型以及剩余货架期预测模型。结果表明,Gompertz函数能够很好的描述豆腐中的微生物生长动态,建立了4种温度下豆腐的微生物生长动力学模型。采用平方根模型(Belehradek)描述温度对最大比生长速率(μmax)和延滞时间(Lag)的影响,结果表明呈现良好的线性关系。用豆腐在8℃和25℃的库特氏菌实测值进行验证,偏差度(Bf)和准确度(Af)分别为1.04、1.02和1.20、1.18。获得的剩余货架期的预测模型为:SL=Lag-[(8.6-N0)/(μmax·2.718)]·{ln[-ln(7.14-N0)/(8.6–N0)]-1},用豆腐贮藏在8℃和25℃的货架期实测值验证建立的模型,预测值和实测值的相对误差分别为-3.47%和4.89%,说明建立的模型能够快速可靠的预测豆腐的微生物学品质和剩余货架期。  相似文献   

4.
为了预测和监控冷鲜猪肉储存过程中腐败细菌大肠杆菌的变化规律,评估产品货架期,建立微生物生长预测模型。该研究将绿色荧光蛋白质粒pGFP转入大肠杆菌DH5α,构建GFP的标记大肠杆菌。基于绿色荧光蛋白报告基因和氨苄青霉素抗性,采用稀释平板法定量追踪检测0~24℃条件下冷鲜猪肉中DH5α生长变化。采用Gompertz模型、平方根模型和响应面方程进行数据拟合,构建数学预测模型。结果表明Gompertz模型拟合效果良好,0~20℃条件下决定系数R2为0.96~0.99。温度与最大比生长速率平方根、延迟期倒数平方根模型R2分别为0.862、0.948。响应面模型揭示时间、温度对大肠杆菌的生长影响显著(P0.05),二者交互作用明显,响应面模型R2为0.815。模型能够有效拟合冷鲜猪肉中与温度、时间相关的大肠杆菌的生长变化规律,研究结果为产品储存过程中细菌变化预测提供理论依据。  相似文献   

5.
冷却猪肉不同贮藏温度的货架期预测模型   总被引:8,自引:2,他引:8  
为了建立冷却猪肉货架期的预测模型,把特定腐败菌接种到无污染的冷却猪肉表面,托盘包装分别置于0℃,4℃,7℃,10℃,14℃和20℃的温度下贮藏,分别测定不同贮藏时间的细菌总数,同时对4℃贮藏的不同企业冷却猪肉进行品质分析,确定腐败限控量.结果表明,冷却猪肉腐败限控量为7.23 lg(cfu/g).应用修正的Gompertz函数能很好的描述特定腐败菌在不同温度下的生长动态,建立了6种温度下其在猪肉中的生长模型.温度对最大比生长速率和延滞时间等动力学参数的影响,采用平方根模型呈现良好的线性关系,模型残差值的绝对值均小于0.1,上下浮动于零左右,表明该模型描述的温度与比生长速率和延滞时间是可信的,由此建立了0~20℃范围内冷却猪肉贮藏过程中货架期的预测模型.  相似文献   

6.
冷却肉中假单胞菌温度预测模型的建立与验证   总被引:8,自引:0,他引:8  
为了快速预测和监控引起冷却肉腐败变质的主要微生物--假单胞菌的生长,以从冷却猪肉中分离得到的假单胞菌P-1菌株作为受试菌,建立和验证0~10℃低温条件下假单胞菌的生长动力学模型.利用SAS程序拟合不同温度条件下的生长情况,经过比较发现,Gompcrtz模型比线性模型能更好地拟合假单胞菌的生长,从而得到假单胞菌生长的Gompcrtz模型参数;利用平方根模型对假单胞菌的最大比生长速率平方根一温度进行拟合,得到假单胞菌生长的二级模型:利用培养基数据、冷却肉产品数据和温度波动条件下的数据对所得到的二级模型进行验证,计算得到总的偏差因子和准确因子分别为0.944和1.256,结果表明建立的二级模型能真实快速有效地预测0~10℃下冷却肉中假单胞菌的生长.  相似文献   

7.
以采后瓢儿菜为试验对象,研究了不同贮藏温度下瓢儿菜的微生物生长趋势,建立了瓢儿菜微生物生长动力学模型和微生物货架期预测模型。结果表明:修正的Gompertz方程能够较好地拟合不同温度下瓢儿菜微生物生长的初级模型,其R~2均大于0.90;瓢儿菜的最大菌数Nmax随温度的变化波动不大,平均值为(6.85±0.1265)cfu/g;最大比生长速率μmax随温度的上升而增加,生长延滞时间λ随温度的上升而减小;二级模型为=0.040×[T-(-0.198)]及=0.260×[T-(-3.379)],其R2均大于0.90。通过初级模型和二级模型确立了瓢儿菜的微生物货架期预测模型。  相似文献   

8.
准确模拟日光温室内环境的变化过程是实现温室环境精准调控的前提。该研究以3个生长季的日光温室室内实时气象观测资料为基础,利用Elman神经网络建模的方法,对日光温室室内1.5 m气温、0.5 m气温和CO_2浓度进行逐时模拟,对日光温室室内平均湿度、平均温度、最高温度和最低温度进行逐日模拟,建立基于Elman神经网络的日光温室室内环境逐时及逐日模拟模型,利用独立的气象观测资料对模型进行验证,并基于逐步回归方法和BP神经网络方法结果进行对比分析。结果表明:1)基于Elman神经网络的日光温室室内环境(1.5m气温、0.5m气温和CO_2浓度)逐时模拟值与实测值的均方根误差(Root Mean Square Error,RMSE)分别为2.14℃、1.33℃和55.32μmol/mol,归一化均方根误差(Normalized Root Mean Square Error,NRMSE)分别为10.01%、5.87%和10.70%,基于Elman神经网络的日光温室室内环境逐时模拟效果和稳定性最优。2)基于Elman神经网络的日光温室室内环境(日均空气湿度、日均气温、日最高气温和日最低气温)逐日模拟值与实测值的RMSE分别为0.59%、0.88℃、2.02℃和0.98℃,NRMSE分别为0.79%、4.44%、7.02%和6.66%,基于Elman神经网络的日光温室室内环境逐日模拟效果和稳定性最优。研究结果可以准确模拟日光温室室内逐时及逐日环境,也可以为环境模型与作物模型相互耦合提供技术支撑。  相似文献   

9.
中国亚热带土壤可蚀性K值预测的不确定性研究   总被引:7,自引:0,他引:7  
土壤可蚀性K值是土壤侵蚀模型(如USLE和RUSLE)的必要参数,直接套用经验模型估算土壤可蚀性K值会给土壤侵蚀预报带来不可估计的误差。本文以我国亚热带7种典型土壤可蚀性K值的观测值为依据,选用平均绝对误差(MAE)、平均相对误差(MRE)、均方根误差(RMSE)和精度因子(Af)四种数学统计项为指标,评价了诺谟图模型、修正诺谟图模型、EPIC模型、几何平均粒径模型和Torri模型等5种土壤可蚀性K值预测模型的不确定性。结果表明,5种模型的不确定性从小到大的顺序为:Torri模型<修正诺谟图模型和诺谟图模型相似文献   

10.
日光温室芹菜外观形态及干物质积累分配模拟模型   总被引:3,自引:3,他引:0  
为实现日光温室芹菜外观形态与干物质积累分配预测。该研究依据芹菜(Apium graveolens L.)生长发育的光温反应特性,以‘尤文图斯’为试验品种,利用2年2茬分期播种试验观测数据,依据温室芹菜外观形态生长与关键气象因子(温度和辐射)的关系,以单株辐热积(Photo-ThermalIndex,PTI)为自变量构建了外观形态模拟模型;并建立了基于PTI的干物质分配模拟模型;结合叶面积指数模拟模块、光合作用和呼吸作用模拟模块,构建了干物质积累模拟模型;结合各器官各个发育阶段内的相对含水量,可计算鲜物质积累模拟模型。基于各子模块共同组成了日光温室芹菜外观形态及干物质积累分配模拟模型,确定了模型品种参数,利用独立试验数据对模型进行验证。结果表明,1)在外观形态模拟模型中,对根长、主茎茎粗、主茎茎长、株高、整枝和自然管理方式下叶面积指数(Leaf Area Index,LAI)形态指标均方根误差(Root Mean Square Error,RMSE)分别为2.46 cm、1.49 mm、6.72 cm、11.08 cm、0.74 m~2/m~2和0.77 m~2/m~2,归一化均方根误差(Normalized Root Mean Square Error,NRMSE)分别在16.63%~20.63%之间。2)在干物质分配模拟模型中,各器官的干物质分配指数NRMSE在8.24%~27.19%之间,RMSE在0.60%~7.01%之间。3)在干物质积累模拟模型中,不同器官(根、茎、叶、总茎、总叶、主茎、叶柄、整枝和自然管理方式下地上部)的干物质质量RMSE在3.85~85.80 g/m~2之间,NRMSE分别为14.21%~23.13%之间,说明干物质积累模拟模型对不同器官的干物质模拟均有较高的模拟效果。表明模型能够较准确模拟芹菜外观形态与干物质积累分配,系统化定量地表现出日光温室芹菜的生长动态过程。  相似文献   

11.
研究了高压脉冲电场(pulsed electric field, PEF)对接种于苹果汁中植物乳杆菌(Lactobacillu plantarum)的杀菌效果并应用三种模型进行了分析。结果表明,随电场强度和脉冲时间增加,PEF对植物乳杆菌的杀灭效果增强,34 kV/cm、1050 μs时植物乳杆菌最大降低了4.135个数量级。Hülsheger 模型、Weibull模型和Log-Logistic模型均能很好地拟合PEF处理植物乳杆菌的失活曲线,五个模型评价参数,精确因子(Af),偏差因子(Bf),根平方和(SS),根平方方差(RMSE)和决定系数(R2)分析表明三个模型中,Log-Logistic模型最好地拟合了PEF处理下植物乳杆菌失活动力学变化。  相似文献   

12.
参考作物蒸散量(ET_0)的准确估算是作物需水量及区域农业水分供需计算的关键,尽管已提出大量方法,但缺乏基于实测值的严格检验。本文利用北京小汤山2012年称重式蒸渗仪实测日值,检验16个ET_0模型,包括5个综合法、6个辐射法、5个温度法模型。依据均方根误差RMSE值,各模型估算效果的排序为FAO79 Penman=1963 Peman1996 Kimberly PenmanFAO24 PenmanFAO56 Penman-Monteith(PM)TurcFAO24 Blaney-Criddle(BC)DeBruin-KeijmanJensen-HaisePriestley-Taylor(PT)FAO24RadiationHargreavesMakkinkHamonMcloudBlaney-Criddle(BC)。总体而言,综合法表现最好,其RMSE在1.33~1.47mm·d~(-1),以FAO79 Penman和1963 Penman为最好;辐射法次之,其RMSE在1.48~1.77mm·d~(-1),以Turc最好;温度法检验效果最差,其RMSE在1.50~2.68mm·d~(-1),以FAO24 BC为最好。FAO79Penman和1963 Penman比最好的辐射法和温度法模型的精度分别高10%和13%。综合法、辐射法模型普适性好于温度法的原因在于其均含有影响ET_0的关键因子——辐射或饱和水汽压差VPD。所有模型均具有低蒸发条件下高估、高蒸发条件下低估的阈值特点,综合法及辐射法平均低估0.14mm·d~(-1)和0.33mm·d~(-1),而温度法平均高估0.52mm·d~(-1)。前两类方法 ET_0阈值相对较低,更适于低蒸发力条件,而温度法较适于高蒸发力条件。所有综合法、辐射法模型及温度法的Hargreaves和FAO24 BC法估算值与实测值变化趋势一致,说明模型结构合理,可通过参数校正提高精度;但对于与实测值趋势不吻合的温度法,模型结构尚需优化。VPD和最大湿度RHx是影响综合法、辐射法估算偏差的两大主要因子,其中VPD对低估类模型偏差影响最大,且偏差随着VPD增加而增大;而RHx对高估类综合法模型(1963 Penman、FAO79 Penman)偏差影响最大,且偏差随RHx增加而减小。校正后的PT(1.38)、Makkink(0.83)、Turc(0.014)及Hamon(1.248)系数大于原系数,而Hargreaves(0.0019)和BC(0.192)校正系数低于原系数。此外,PT与Hamon的系数利用最小相对湿度、Turc和Makkink系数利用VPD、Hargreaves和BC系数利用辐射或日照时数能得到最佳估算。FAO56 PM表现不佳(RMSE=1.47mm·d~(-1))的原因与站点气候干燥程度、较低的空气动力项权重有关。后人对原始Penman式的诸多修正并没有显著改善精度,因此建议在类似气候条件地区继续使用老版本Penman式。同时,对FAO56 PM的进一步检验将有助于回答"FAO56 PM是否真正比其它综合法具有优势,在何种气候下表现好,在高蒸发条件下低估是否为普遍现象"等科学问题。  相似文献   

13.
为研究接触辉光放电等离子体(CGDP)对茄病镰刀菌(Fusarium solani)的杀菌作用及机制,本试验以Fusarium solani为试材,考察CGDP处理过程中电压、处理时间、抗坏血酸浓度、孢子初始浓度等因素对杀菌效果的影响;并对Fusarium solani生长、孢子形态、细胞膜完整性及过程中所产生的活性粒子进行分析。通过Linear、Weibull和Log-Logistic 3种数学模型分析不同电压下CGDP杀菌动力学特性,以相关系数(R2)、精确因子(Af)、偏差因子(Bf)和均方根方差(RMSE)4个参数评价拟合效果。结果表明,CGDP对Fusarium solani孢子有着明显的杀菌效果;升高电压、延长处理时间、降低抗坏血酸浓度和孢子初始浓度均能有效抑制孢子生长,使杀菌效率提高(P<0.05);CGDP处理30 min,活性物质(·OH、H2O2、NO3-)浓度分别增加至1.57 mg·L-1、73.89 mmol·L-1和12.72 mg·L-1,pH值由7.07降至4.66;孢内核酸和蛋白质的渗漏量以及PI染色和扫描电镜结果表明,CGDP对Fusarium...  相似文献   

14.
黑土农田大豆产量形成过程的模拟验证   总被引:5,自引:1,他引:4  
以中国科学院海伦农业生态站长期定位水肥耦合试验数据为依据,模拟大豆产量形成过程。首先建立大豆品种遗传属性数据库和相应的模型参数,利用DSSAT模型系列中的CropGro-Soybean模型,对大豆品种遗传属性、作物产量和生长过程中土壤水分进行了模拟验证。模拟结果表明,CropGro-Soybean模型能够准确地模拟大豆生育期,相对误差在-2%~3%之间,均方根误差RMSE为2.3。对不同年际不同田间处理的大豆产量模拟结果分析的相对误差在-7%~9%之间,均方根误差RMSE为75.9,模型性能指数EF为0.8。模型对不同层次土壤水分变化的模拟效果也较好。  相似文献   

15.
为探明压砂地西瓜光合作用机理以及水氮条件对压砂地西瓜干物质积累和产量的影响,于2009年进行了桶栽对比试验,用高斯积分法计算冠层每日总光合同化量的方法建立压砂地西瓜光合作用干物质累积模型,并用试验实测值对模型进行验证。同时建立水氮耦合回归模型并进行验证。结果表明:1)光合作用干物质模型均方根误差(root mean square of error,RMSE)为22.5 kg/hm~2,相对均方根误差(normalized RMSE,n RMSE)为14.5%,相关系数(correlation coefficient,r)为0.89;2)当蒸发蒸腾量ET≥213~513.8 mm、可利用氮量N≥172.1~226.9 kg/hm~2时,水氮耦合压砂地西瓜干物质积累模型和产量模型的n RMSE均20%,R2约0.8,说明水氮耦合干物质和产量模型的可靠性。所建立的光合作用干物质累积模型和水氮耦合模型在一定条件下能够准确的预测压砂地西瓜干物质累积和经济产量,但光合作用模型更具有广泛的适用性。  相似文献   

16.
南方塑料大棚冬春季温湿度的神经网络模拟   总被引:8,自引:0,他引:8  
利用浙江省慈溪市草莓塑料大棚和南京信息工程大学农业气象试验站番茄塑料大棚的小气候观测数据及气象站资料,建立3个以棚外辐射、温度、相对湿度和风速为输入变量,棚内温度和相对湿度为输出变量的BP神经网络预测模型。结果表明,3个模型气温训练值与实测值的均方根误差(RMSE)都在2℃以内,相对误差都在4%左右;相对湿度训练值的RMSE都在7个百分点以内,相对误差不超过7%。利用此模型得到的气温预测值与实测值的RMSE都在2℃左右,冬季气温的相对误差较大,春季通风和不通风模型气温的相对误差不超过6%;相对湿度预测值的RMSE都在7个百分点以内,相对误差不超过9%。说明所建BP神经网络模型对于不同季节、不同通风条件、不同作物的大棚温湿度模拟都有较高的精度,能够满足棚内温湿度的预测要求,且对温度的模拟精度高于对相对湿度的模拟。  相似文献   

17.
为研究前表面荧光光谱法在水产品品质评价方面的应用,利用前表面荧光对不同冷藏时间的大黄鱼肌肉进行扫描,对色氨酸和烟酰胺腺嘌呤二核苷酸(NADH)的荧光光谱数据进行主成分分析(PCA)和Fisher线性判别分析(FLDA),并运用偏最小二乘回归(PLSR)建立了大黄鱼鱼肉荧光光谱数据和冷藏时间的预测模型。结果表明,用PCA方法提取色氨酸和NADH荧光光谱的有效信息,所建模型可区分不同冷藏时间(0~8 d)的大黄鱼样品,且色氨酸作为内源荧光探针的分析效果更好;用FLDA方法分析色氨酸和NADH荧光光谱,留一法(leave-one-out)交叉验证的判别正确率分别为100%和98%,对不同冷藏时间的大黄鱼区分效果优于PCA方法;PLSR模型中色氨酸和NADH荧光光谱的校正集和预测集的相关系数均大于0.9,交互验证均方根误差(RMSECV)分别约为1.13、0.41,校正集均方根误差(RMSEC)/预测集均方根误差(RMSEP)分别约为0.53、0.99,通过NADH荧光光谱建立的PLSR模型预测能力较好。前表面荧光光谱法结合化学计量学技术能够对不同冷藏时间的大黄鱼进行有效区分。本研究结果为前表面荧光光谱技术在大黄鱼冷藏保鲜中对冷藏时间的预测提供了一定的理论依据。  相似文献   

18.
周洋  赵小敏  郭熙 《土壤学报》2022,59(2):451-460
土壤全氮与土壤质量和肥力密切相关,准确掌握土壤全氮的空间分布特征对精准农业管理措施的实施具有重要意义。以寻乌县为研究区域,利用随机森林(RF)和随机森林残差克里格(RFRK)方法,结合地形因子、地理坐标、遥感因子、气候因子、距离因子和土壤理化因子等多源辅助变量,对寻乌县表层土壤全氮的空间分布进行预测和制图,并在迭代100次模型后对比了两种模型的预测精度。结果表明,在选择的4种模型精度指标中,RF模型的决定系数均值(R~2=0.629 1)和一致性相关系数均值(CCC=0.7613)均高于RFRK模型(R~2=0.5719,CCC=0.6881),而RF模型的平均相对误差均值(MAE=0.157 0 g·kg-1)和均方根误差均值(RMSE=0.210 8 g·kg-1)均小于RFRK模型(MAE=0.168 2 g·kg-1,RMSE=0.226 7 g·kg-1)。将残差作为误差项加入RF模型并未提高其预测精度,因此,RF模型可以作为土壤属性预测的一种有效方法,为农业管理措施的实施提供技术支撑。  相似文献   

19.
尝试引入高维Copula函数对影响参考作物蒸散量ET_0的气象因素进行联合分布构建,揭示不同变量间的相关结构,建立多元气象因素对ET_0的联合分布模型,对逐日ET_0及短期干旱等级进行预测,并将枯季1—4月份的多维Copula联合分布预测模型的系统性偏差构造成修正函数,代回ET_0预报模型以改善预报效果,利用洱海流域内大理站1954—2018年逐日气象观测数据,以FAO Penman-Monteith方程为标准值对比分析。结果表明:1)平均气温(T)和最高气温(T_(max))2个气象因子组合时,二维Normal Copula模型对逐日ET_0预测的精度最高,叠加上修正函数项之后,相对误差小于10%、15%、20%、25%的样本比例分别提高到71.6%、84.4%、91.4%、96.5%,全年符合指数IA变化范围为0.98~0.99,平均偏差ME为0.17~0.30,均方根误差RMSE为0.54~0.64,Nash-Sutcliffe效率系数为0.90~0.98;2)将逐日ET_0预测方法应用于逐日气象干旱预测评估(以逐日SPEI指数为例),逐日SPEI指数预测值与标准值的相关系数为0.95~0.99,平均偏差ME为-0.10~0.35,均方根误差RMSE为0.20~0.30,符合指数IA为0.97~0.98,Nash-Sutcliffe效率系数NSE为0.91~0.97,在降水量多的季节,Copula函数模型预测ET_0的精度更高一些,且逐日SPEI预测的误差参数都优于逐日ET_0的预测结果。  相似文献   

20.
光合作用模型在长江下游冬麦区的适用性研究   总被引:2,自引:0,他引:2  
以直角双曲线、非直角双曲线、渐进指数及修正直角双曲线等4种光响应模型为基础,结合CO2浓度和温度变化对冬小麦光合作用的影响,推导出4种植物叶片光合作用模型。分别利用长江下游冬麦区2个主栽冬小麦品种的田间试验资料,确定模型参数并对模型预测效果进行检验。结果表明,修正直角双曲线模型的预测效果最好,预测值与实测值相关系数(r)为0.925,均方根误差(RMSE)为1.666μmol.m-2.s-1。修正直角双曲线模型考虑了光抑制问题,从而能够更好地预测高光强情况下的冬小麦光合速率,因而最适于长江下游地区冬小麦光合作用的模拟。研究结果可为选择最佳的光合作用模型进行冬小麦生长模拟及产量预测提供参考。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号