首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Seed dormancy and persistence in the soil seedbank play a key role in timing of germination and seedling emergence of weeds; thus, knowledge of these traits is required for effective weed management. We investigated seed dormancy and seed persistence on/in soil of Chenopodium hybridum, an annual invasive weed in north‐western China. Fresh seeds are physiologically dormant. Sulphuric acid scarification, mechanical scarification and cold stratification significantly increased germination percentages, whereas dry storage and treatments with plant growth regulators or nitrate had no effect. Dormancy was alleviated by piercing the seed coat but not the pericarp. Pre‐treatment of seeds collected in 2012 and 2013 with sulphuric acid for 30 min increased germination from 0% to 66% and 62% respectively. Effect of cold stratification on seed germination varied with soil moisture content (MC) and duration of treatment; seeds stratified in soil with 12% MC for 2 months germinated to 39%. Burial duration, burial depth and their interaction had significant effects on seed dormancy and seed viability. Dormancy in fresh seeds was released from October to February, and seeds re‐entered dormancy in April. Seed viability decreased with time for seeds on the soil surface and for those buried at a depth of 5 cm, and 39% and 10%, respectively, were viable after 22 months. Thus, C. hybridum can form at least a short‐lived persistent soil seedbank.  相似文献   

2.
NAVIE  PANETTA  MCFADYEN  & ADKINS 《Weed Research》1998,38(5):335-341
Parthenium hysterophorus L. seeds were buried at a depth of 5 cm for periods of 2–24 months to determine their longevity. The majority (73.7%) of these seeds were still viable after 24 months of burial. The remainder could not be recovered (18.0%) or were no longer viable (8.3%). There was a log-linear decline in persistence of germinable seeds over time, which indicated a constant rate of loss and a half-life of about 6 years. Seedling emergence from surface-sown seeds was also studied. Although there was considerable rainfall (31 mm), seedlings did not emerge during the first month of this experiment. In the succeeding 3 months, there was substantial seedling emergence after rainfall, and 51.4% of seeds had germinated by the end of the fourth month. After 5 months had passed, further seedling emergence was not detected, and intact seeds could not be located. These findings suggest that seed incorporation into the soil is important to the long-term persistence of P . hysterophorus seeds. In an initial test of germination, unburied seeds from the same seed lot exhibited a degree of innate dormancy, and this may explain the delayed germination observed in the surface-sown seeds. In the seed burial and recovery experiment, innate dormancy was lost after 2 months of burial in the field, although in situ germination of buried seed remained low for at least 24 months. Therefore, it appears that more than one dormancy mechanism may contribute to the persistence of P. hysterophorus seeds.  相似文献   

3.
Omami  Haigh  Medd  & Nicol 《Weed Research》1999,39(5):345-354
Changes in dormancy and viability of Amaranthus retroflexus seeds were examined after placement in pots that were buried in the field. Seeds were placed in woven nylon envelopes on the soil surface or buried at depths of 2.5, 5 or 10 cm. After 1, 3, 6, 9 and 12 months seeds were exhumed and their germinability was tested to assess changes in dormancy and viability. Depletion of seed stocks placed on the soil surface was partly because of in situ germination that did not exceed 21% and did not vary significantly over the 12-month study period. Less germination of buried seeds occurred in situ , and seeds that did not germinate appeared to acquire dormancy. Exhumed seeds germinated readily; germinability was linearly related to the depth of burial, with those retrieved from the surface germinating least. Cyclical changes in germinability occurred during the 12-month burial period, but this influence was identical for seeds buried at all depths. Germinability was greatest after periods with the lowest mean monthly temperatures and least during the hottest periods. The stimulation of remaining ungerminated seeds exhumed at each period, by the addition of ethephon to the germination medium, provided further evidence of a seasonal acquisition of dormancy, and it was concluded that other unknown factors besides cyclical changes in seasonal temperature were responsible. Irrespective of placement, all seeds lost viability at an exponential rate over time. However, the decline was most rapid for those placed on the surface, whereas the loss in viability became less with increased depth of burial. Possible explanations for this adaptation of enhanced survival when buried are discussed.  相似文献   

4.
Lithospermum arvense is an increasing annual weed in winter crops of the semiarid region of southern Argentina under low impact tillage systems, an agricultural practice that has become popular in recent years. Seed distribution in the soil profile under conventional tillage will change when reduced tillage is implemented, thus affecting the germination microenvironment. The effect of seed burial depth and soil water regime on field germination, enforced dormancy, innate dormancy and seed decay was studied in relation to burial time in a field experiment. In addition, the effect of burial depth on seed germination and seedling emergence was examined under laboratory controlled conditions. Field germination of buried seed ranged from 55% to 65% for shallow (2 cm) and from 5% to 30% for greater depths (20 cm). Enforced dormancy levels were significantly higher among deeper seeds. The amount of innate dormant seeds was reduced to <10% after a year of burial. Lithospermum arvense seedbanks can be classified as short-term persistent. Germination in the laboratory was unaffected by burial depth, while seedling emergence reduction was adequately described by a sigmoidal model. Results indicate that agricultural practices that accumulate L. arvense seeds near the soil surface enhance seedling recruitment.  相似文献   

5.
Seed germination and seedling establishment are critical stages in plant life history, and both processes may be affected when buried under soil. Our aim was to investigate the effects of soil burial on the germination and seedling establishment of invasive Prosopis juliflora (Fabaceae). We studied the effects of burial, from soil surface to 4?cm deep, under greenhouse conditions and the effects of seed-storing in burial conditions at two depths (5 and 20?cm) and two storing periods (during 6 and 12?months) in field conditions. Soil burial limited the germination and the establishment of P. juliflora, which did not germinate at soil depths deeper than 3?cm. Some seedlings coming from seeds germinated at 2?cm, and every seedling at the soil surface and at 3?cm deep died. In contrast, survivorship of emerged seedlings was close to 90% between 0.5 and 2?cm depth. Seedlings developed the longest shoots at 1?cm deep, indicating that P. juliflora was able to get advantage at a moderate soil depth. Un-embedded seeds survived buried in the soil for months; however, their germination and the emerged seedling survivorship decreased after burial for 12?months.  相似文献   

6.
Cyanus segetum is an iconic, colourful weed in arable fields that provides ecological and societal services. To understand better both the infestation dynamics of C. segetum as an abundant, harmful weed and maintain sustainable populations where it provides beneficial services, we compared information on seed dormancy, seed longevity and germination conditions in two populations. Persistence of seeds buried in the soil was low, with <10% viable after 3 years. Periodic dormancy cycling was observed over the 4 years in the soil, with a maximum of dormant seeds in the spring and a minimum in the autumn; however, 20% of the seeds were non‐dormant all the time. Seeds of C. segetum were positive photosensitive, but light requirement varied among populations. Base water potential for germination was ?1 MPa. Base temperature ranged from 1 to 2°C. Optimum temperature for germination was about 10 to 15°C, but the mean thermal time varied greatly between populations, from 80 to 134 day °C. Photoperiod and temperature combinations had no effect on germination percentage, but both reduced the germination rate. Burial deeper than 2 cm greatly reduced germination and seedling emergence strongly decreased at depths >0.5 cm. No seeds buried deeper than 8 cm emerged. Low seed longevity and a wide range of germination conditions could partly explain the rapid disappearance of C. segetum populations after herbicide application began in western Europe. However, yearly sowing in restoration areas does not seem to be essential.  相似文献   

7.
Trials were carried out to study the germination and dormancy of Cuscuta campestris Y. (dodder) seeds and factors influencing the success of early parasitisation of sugarbeet. Primary dormancy can be removed by seed scarification. Germination was negligible at 10°C and optimal at 30°C, while it was not influenced by light. Seed burial induced a cycle of induction and breaking of secondary dormancy. Seedling emergence was inversely proportional to the depth of seed burial and only seed buried within 5 cm of the soil surface emerged. Storage of C. campestris seeds in a laboratory for 12 years resulted in the loss of primary dormancy, enabling the germination of all viable seeds. Host infection (i.e. protrusion of parasite haustoria from host tissue) was heavily influenced by host growth stage. Tropism towards a host was due to the perception of light transmitted by green parts of sugarbeet plants. Insertion of a transparent glass sheet between host leaves and parasite seedlings did not modify this response. This phototropism permitted Cuscuta to identify host plants with high chlorophyll content as a function of the lower red/far red ratio of transmitted light.  相似文献   

8.
Creeping mannagrass is a perennial grass weed widely distributed in China and is becoming increasingly problematic in nurseries and landscapes in some regions. Understanding the germination ecology and response to commonly available POST herbicides of this weed is critical to determining its adaptive capabilities and potential for infestation, and assist in the development of effective control strategies. In the light/dark regime, creeping mannagrass germinated over a wide range of temperatures (15/5 to 30/20°C), with maximum germination at 20/10°C (95%). No seed germinated at 35/25 or 10/0°C. The time required for 50% of maximum germination increased as temperature decreased. Compared with the light/dark conditions, germination was slightly stimulated when seeds were placed in the dark. Creeping mannagrass is moderately tolerant to osmotic and salt stress, which had 53 and 50% germination rates at ?0.6 mPa osmotic potential and 200 mM NaCl concentration, respectively. Seedling emergence of the seeds buried at a depth of 0.5 cm (86%) was higher than those sowing on the soil surface (17%), but declined with burial depth increasing. There were no differences in the emergence rates from a burial depth 0.5–2 cm. Few seeds (4%) could emerge when seeds were sowed at a depth of 8 cm. POST application of haloxyfop‐R‐methyl, quizalofop‐p‐ethyl, sethoxydim, and pinoxaden provides 100% control of creeping mannagrass at the three‐leaf to five‐leaf stages. To achieve 80% control with clodinafop‐propargyl, mesosulfuron‐methyl, and fenoxaprop‐p‐ethyl, herbicides had to be applied at the three‐leaf stage.  相似文献   

9.
Common ragweed (Ambrosia artemisiifolia L.) is one of the annual plants that were described recently as invasive weeds in Europe. This species is described as an invasive plant that produces seeds that are highly variable. Its production of variably sized seeds is regarded as promoting its spread in different environments. Experiments were carried out to determine the influence of the seed weight and temperature on germination and the influence of the seed weight and burial depth on seedling emergence. The seeds were divided into a number of classes of weight and the seed weight effect on germination was evaluated by Petri dish assays. In another experiment, the seeds were buried at different depths in a clay soil/sand mix to estimate the burial effect on germination and seedling emergence. The germination level of A. artemisiifolia was high overall, between 76.8% and 94.2%. The seed germination was modified by temperature but it was not influenced by the seed weight. The amounts of germination and seedling emergence were greater for the seeds on the soil surface and decreased with an increasing burial depth, from 2 to 8 cm. No germination or emergence was observed for the seeds that were buried at 10 and 12 cm. The lightest seeds were more sensitive to burial. A greater level of seedling emergence for those seeds that were placed near the soil surface could explain the success of this species in open habitats, where the probability of deeper burial is low. After high seed production, the management of A. artemisiifolia in fields could be partly achieved through soil tillage, burying seeds below 10 cm, and not carrying out deep soil tillage the following year.  相似文献   

10.
Trials were carried out to investigate the effects of light and temperature on germination of Rumex obtusifolius L. After several months of storage, seeds gradually lost dormancy and became photosensitive. Thermal optima for germination were between 20 °C and 25 °C in light or in darkness. At lower temperatures there was a greater demand for light, so that the greatest differences in germination percentage (between low and high temperatures) were found within the 10–15 °C temperature range. The calculated thermal minima ( x -intercept method) in light and darkness were 8.3 °C and 6.1 °C respectively. Daily temperature fluctuation increased germination even after seed irradiation with far-red light, suggesting a lower demand for the far-red-absorbing form of phytochrome. Seed burial inhibited germination in proportion to depth; however, germination inhibition was independent of seed phytochrome photo-equilibrium, which had been diversified by seed pretreatment with light. Seedlings did not emerge when seeds were buried >8 cm deep. Recovery of ungerminated seeds showed that excessive burial did not impede seedling emergence but rather prevented seed germination. However, this induction of dormancy was lost once germination processes were activated (24–48 h at 20 °C) that made germination irreversible. Temperature was also involved in inhibition, and low temperature (<15 °C) induced the least inhibition. This is discussed in terms of processes of respiration and fermentation in buried seeds.  相似文献   

11.
Sonchus oleraceus (common sowthistle) is a dominant weed and has increased in prevalence in conservation cropping systems of the subtropical grain region of Australia. Four experiments were undertaken to define the environmental factors that favor its germination, emergence, and seed persistence. Seeds were germinated at constant temperatures between 5 and 35°C and water potentials between 0 and ?1.4 MPa. The maximum germination rate of 86–100% occurred at 0 and ?0.2 MPa, irrespective of the temperature when exposed to light (12 h photoperiod light/dark), but the germination rate was reduced by 72% without light. At water potentials of ?0.6 to ?0.8 MPa, the germination rate was reduced substantially by higher temperatures; no seed germinated at a water potential >?1.0 MPa. Emergence and seed persistence were measured over 30 months following seed burial at 0 (surface), 1, 2, 5, and 10 cm depths in large pots that were buried in a south‐eastern Queensland field. Seedlings emerged readily from the surface and 1 cm depth, with no emergence from below the 2 cm depth. The seedlings emerged during any season following rain but, predominantly, within 6 months of planting. Seed persistence was short‐term on the soil surface, with 2% of seeds remaining after 6 months, but it increased with the burial depth, with 12% remaining after 30 months at 10 cm. Thus, a minimal seed burial depth with reduced tillage and increased surface soil water with stubble retention has favored the proliferation of this weed in any season in a subtropical environment. However, diligent management without seed replenishment will greatly reduce this weed problem within a short period.  相似文献   

12.
Seeds of Setaria glauca (L.) Beauv. buried in soil and exposed to natural temperature cycles exhibited seasonal changes in temperature, but generally not light; dark requirements for germination. Seeds were dormant at maturity in late September and October (autumn), and during burial from October to January they entered conditional dormancy, germinating up to ≥60% in light and darkness at daily thermoperiods of 25/15,30/15 and 35/20^C by January. During burial from February to May or June, seeds became non-dormant and germinated up to 68–100% in light and darkness at 15/6,20/10,25/15,30/15 and 35/20^C in May or June. At maximum yearly temperatures in June or July–August, 65–89% of the seeds entered conditional dormancy (germinating at 30/15 and 35/20, but not at 15/6,20/10 and 25/15^C), and the others entered dormancy (not germinating at any thermoperiod). Thus, most buried seeds had an annual conditional dormancy/non-dormancy cycle, but some had an annual dormancy/non-dormancy cycle. Except for seeds buried in 1990 that lost the ability to germinate in darkness at all thermoperiods the first summer of burial, seeds incubated in light and in darkness exhibited the same patterns of seasonal changes in germination responses. Although conditionally dormant and non-dormant seeds germinated to high percentages in darkness in Petri dishes, seedlings were found only in bags of seeds exhumed in April and May 1983, indicating that some factor(s) associated with the burial environment other than darkness prevented germination of buried seeds.  相似文献   

13.
Summary Heteranthera limosa seeds were buried in flooded and in non-flooded soil and exposed to natural seasonal temperature changes in Lexington, Kentucky, USA. Seeds exhumed after various periods of burial ranging from 2 to 36 months were tested for germination under both flooded and non-flooded conditions. Seeds were dormant at maturity in September and became non-dormant during winter. Seeds buried in non-flooded soil during winter germinated to higher percentages and over a wider range of temperatures when tested under flooded conditions (in light) during spring and summer, than did those buried in flooded soil during winter. Thus, the water regime associated with rice culture (non-flooded in winter and flooded in summer) is optimal for dormancy-break and germination of H. limosa seeds. A portion of the buried seeds exhibited an annual dormancy/non-dormancy cycle, whereas others had a conditional dormancy/non-dormancy cycle. Regardless of the type of cycle, seeds buried in non-flooded soil retained the ability to germinate in light at high temperatures under flooded conditions throughout the summer. Thus, seeds potentially can germinate at any time during the growing season, whenever rice fields are flooded. Flooding fields during winter and/or sowing rice relatively early in the growing season may help in establishing rice before seeds of H. limosa germinate.  相似文献   

14.
Seeds of Viola arvensis collected in different years and in different months within those years were buried in soil under natural seasonal temperature cycles, and changes in their germination requirements monitored. Seeds were dormant at maturity in May or June, but nondormant by autumn. During winter, some seeds entered dormancy, while others entered conditional dormancy, i.e. retained the ability to germinate at 15/6 and 20/10oC but not at other thermoperiods. Dormant and conditionally dormant seeds became nondormant the following summer. Seeds collected in 1981 exhibited an annual dormancy:nondormancy cycle, while those collected in 1982 exhibited an annual conditional dormancy:nondormancy cycle. The type of dormancy cycle found in these seed lots during their first year of burial persisted in subsequent years. Thirty–five and 36% of seeds collected in May 1983 and 1986, respectively, were conditionally dormant the following May, while only 5 and 9% of those collected in the same field in June 1983 and 1986, respectively, were conditionally dormant. Dormant seeds collected in 1981,1982 and 1984 and buried at 5oC during summer germinated to 0, 33 and 0% respectively, at 15/6oC in autumn. After the 1982 seeds became nondormant during summer, only 25% entered conditional dormancy when buried at 5oC, but after the 1981 and 1984 seeds became nondormant, 100% entered conditional dormancy at 5oC. Thus, the persistent seed bank of V. arvensis at a population site may consist of seeds with an annual dormancy:mondormancy cycle and others with an annual conditional dormancy:nondormancy cycle. This is the first report of the two types of annual seed dormancy cycles in the same species.  相似文献   

15.
Seed dormancy is a common strategy of many plants to survive in natural and agricultural ecosystems. This study examined the effects of some chemical factors, including gibberellic acid and potassium nitrate, the prechilling temperature, duration and conditions and the light regimes on the seed dormancy‐breaking of Papaver rhoeas L. and Papaver dubium L. The results showed that all the tested seed dormancy‐breaking treatments significantly stimulated the germination of the two Papaver species. The seed germination was significantly influenced in relation to the seeds that were treated with 0–1250 p.p.m. of gibberellic acid. The maximum germination was observed in P. rhoeas L. at 750 p.p.m. and in Pa. dubium L. at 500 p.p.m. in the light/dark regime. There was a significant increase in the germination with an increase in the potassium nitrate concentration. The greatest germination was achieved at the lowest potassium nitrate concentration (0.5 g L?1) in the light/dark regime. The wet prechilling was more effective than the dry prechilling in the dormancy‐breaking of both P. rhoeas L. and Pa. dubium L. The highest germination percentage was found in the wet prechilling condition after 45 days' prechilling duration. The combination of gibberellic acid and potassium nitrate was more successful than their separate application in the stimulation of germination in both Papaver species. Among the combined treatments of prechilling and gibberellic acid, the highest germination of P. rhoeas L. was recorded in the seeds that were treated with wet prechilling for 45 days with 750 p.p.m. gibberellic acid, while in Pa. dubium L., the maximum germination was recorded with wet prechilling for 45 days with 500 p.p.m. of gibberellic acid.  相似文献   

16.
Seed populations of Avena sterilis ssp. ludoviciana (Durieu) Nyman were monitored in a naturally occurring infestation throughout its life cycle. Considering the large weed population present (298panicles m?2), total seed production was relatively low: 3838 seeds m?2. Only 68% of these seeds were recovered from the soil surface and a further 3% were removed with wheat grain and straw during harvest operations. The numbers of seeds from the stubble between mid-July and mid-September were relatively low (10%). Ploughing the stubble in October buried most of the recently produced seed rain and resulted in a relatively uniform vertical distribution of the seedbank. Maximum seed persistence in the soil ranged from 27 to 43 months (depending on the experimental technique used to do the study). Seed decline followed an exponential pattern on a yearly basis, with the greatest decline taking place between October and April (57–90% in year 1 and 10–40% in year 2), Between May and September the buried seed populations remained practically constant. Seedbank depletion was primarily due to seedling production (25%) and ‘lethal’ germination (24%). Although the depth of burial had very little effect on seed survival, the mode of seed disappearance was closely related to their depth in the soil. Seed depletion through ‘lethal’ germination increased with increasing depth in the soil, whereas depletion through seedling emergence decreased with increasing depth.  相似文献   

17.
Thermal requirements for the germination of Amaranthus quitensis, a common annual weed in Argentina, were studied. In addition, temporal changes in dormancy from seeds produced at different times during the growing season were examined. For this second objective, thermal and light requirements for germination were tested in seeds buried at different depths, with or without crop residues. Base and optimum temperatures for germination rates were 12.8°C and 37°C respectively. At dispersal time, maximum percentage germination was 60–70% and this was generally recorded at 35°C/25°C in a 14-h photoperiod. Seed germination tended to increase in later seed collection dates. Seeds of A. quitensis showed seasonal changes in germinability in the soil. In winter, germination of retrieved seeds increased to over 90% until summer, after which there was a decrease until the following winter when germination was close to 40%. There were no differences in germinability between burial depths and crop residue levels. Germination requirements for alternating temperatures and light tended to disappear after burial. Initial viability was 99% and declined slightly during burial. Soil temperature seems to play a crucial role not only by regulating seasonal changes in dormancy, but also by defining the percentage and the germination rate in non-dormant seeds.  相似文献   

18.
Fresh seeds of Lamium purpureum L. were dormant at maturity, and when buried and exposed to natural seasonal temperature changes they exhibited an annual dormancy/non-dormancy cycle. During burial in summer, fresh seeds and those that had been buried for 1 year afterripened and thus were non-dormant by September and October; light was required for germination. During autumn and winter seeds re-entered dormancy, and during the following summer they became non-dormant again. Dormant seeds afterripened when buried and stored over a range of temperatures, becoming conditionally dormant at low (5, 15/6°C) and non-dormant at high (20/10, 25/15, 30/15 and 35/20°C) temperatures. Conditionally dormant seeds germinated to high percentages at 5, 15/6 and 20/10°C, while non-dormant seeds germinated to high percentages additionally at 25/15, 30/15 and 35/20°C. Low temperatures caused non-dormant seeds to re-enter dormancy, while high temperatures caused a sharp decline in germination only at 30/15 and 5°C. The temperature responses of L. purpureum seeds are compared to those of L. amplexicaule L.  相似文献   

19.
Galinsoga quadriradiata (hairy galinsoga) and Galinsoga parviflora (smallflower galinsoga, gallant soldier) are very troublesome weeds in many vegetable row crops in Europe. To optimise management strategies for Galinsoga spp. control, an in‐depth study of germination biology was performed. Germination experiments were conducted to evaluate the impact of light and alternating temperatures on germination of a large set of Galinsoga populations. Seedling emergence was investigated by burying seeds at different depths in a sandy and sandy loam soil. Dormancy of fresh seeds harvested in autumn was evaluated by studying germination response in light at 25/20°C with and without nitrate addition. Seed longevity was investigated in an accelerated ageing experiment by exposing seeds to 45°C and 100% relative humidity. Galinsoga spp. seeds required light for germination; light dependency varied among populations. Seedling emergence decreased drastically with increasing burial depth. Maximum depth of emergence varied between 4 and 10 mm depending on soil type and population. In a sandy soil, emergence percentages were higher and seedlings were able to emerge from greater depths than in a sandy loam soil. Freshly produced G. parviflora seeds, harvested in autumn, showed a varying but high degree of primary dormancy and were less persistent than G. quadriradiata seeds that lack primary dormancy. Lack of primary dormancy of freshly harvested G. quadriradiata seeds and light dependency for germination may be used to optimise and develop Galinsoga management strategies.  相似文献   

20.
Leptochloa chinensis is a new weed that has been found with increasing frequency in Italian rice paddies. The germination ecology of L. chinensis seeds was studied in order to investigate the development mechanisms and survival strategy of this weed in rice paddies of northern Italy. Leptochloa chinensis seeds showed no dormancy and exhibited germination even in anoxic conditions. Germination was strongly influenced by temperature (minimum around 15°C; optimal 25–35°C) and light (phytochrome dependent). Temperature fluctuation caused an increase of seed germination in the dark. Seed burial also strongly inhibited germination and emergence of this species. At 5 cm seed burial only 5% of seedlings emerged in flooded conditions, while at the same depth, but with no flooding, no seedling emergence was observed. This phenomenon was not due to oxygen depletion, as germination was not inhibited by complete anoxia, as demonstrated by the fact that some seedlings did emerge in flooding conditions when water was no deeper than 6 cm. Seed burial and concomitant flooding induced an unusual germination: first coleoptile emergence and subsequently emergence of the radicle was observed. The possible exploitation of this knowledge for weed management is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号