首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Variations in tree ring growth of Quercus suber L. were analysed using dendrochronological techniques on cork oak discs from trees harvested in the cork producing region of Alentejo, Portugal. A tree-ring chronology containing a strong common signal and covering the period from 1970 to 1995 was build for ca. 30-year-old cork oaks never submitted to cork harvesting using 14 trees that crossdated satisfactorily out of 30 sampled trees. The tree ring indices correlated positively with September temperature (r = 0.48, P < 0.05) and very strongly with precipitation totals from previous October until current February (r = 0.82, P < 0.001) showing that the water stored in the soil during the autumn and winter months prior to the growing season has a primordial effect on the growth of the given season. The effects of cork harvesting were analysed by comparing mean ring width, mean annual vessel area, vessel density (n°vessels/mm2), and vessel coverage (percentage of transverse surface occupied by vessels) between three mature cork oak trees and three young trees, for the period from 1987 to 1996, corresponding to the growth between two consecutive cork removals in the case of mature trees. In 1988, 1989 and 1996 (corresponding to the first and second years after cork removal, and 1996 to a year of cork removal), the ratios between ring widths of young versus mature trees was twice that for the rest of the period. However, an effect of cork removal indicated by eventual alterations in vessel size and distribution in the wood rings corresponding to the years 1988, 1989 and 1996 in the mature cork oaks was not observed.  相似文献   

2.
Quercus suber L. is an important species producing cork whose wood characteristics have not been investigated a lot. Cork oak wood vessels are a striking feature and the most abundant wood tissue largely influencing density and permeability. Vessel size and distribution were studied in approximately 40 year-old and never debarked cork oaks by continuously measuring along the radial direction in the transverse section of wood discs taken at 1.3 m of height using image analysis techniques. The vessel size increases with age from 7660 ± 2286 to 21136 ± 6119 μm2, the conductive area from 5.4 ± 2.2 to 11.6 ± 3.9%, and the vessel density remains approximately constant between 5.2 ± 1.5 and 7.3 ± 3.5 vessels/mm2. In comparison with ring-porous and some evergreen oaks, cork oaks show a similar conductive area but smaller vessels. Vessel architecture is known to play an important role on oaks tolerance to hydric stress, and these cork oak trees were growing under very harsh edaphoclimatic conditions, not tolerated by other oaks. The well-developed and deep root system allowing access to constant water supply may contribute to the cork oak’s relatively high conductive area.  相似文献   

3.
The radial variation in wood density in Acacia melanoxylon R. Br. was studied using microdensitometry by sampling 20 trees with a 40-cm diameter class at four sites in Portugal. The measurements were taken from pith to bark at breast height. A. melanoxylon had an average ring density of 0.607 g cm?3, ranging from 0.556 to 0.630 g cm?3. The mean growth was 6.0 mm year?1. Latewood corresponded, on average, to 34 % of the ring width. Between-tree variability at each site was the main source of variation in the density components, representing between 30 and 54 % of the total variation. Between-sites variability represented from 0 to 21 % of the total variation in density components. The environmental effects (site related) were more pronounced on latewood, while the genetic effect (tree related) was more evident in earlywood. Ring width, latewood percentage and heterogeneity index were independent from site, trees in site and age effects. The values of wood density and radial growth revealed that A. melanoxylon can be important as a commercial timber species in Portugal.  相似文献   

4.
Summary The variation of six wood properties was studied within and between six trees ofPinus kesiya Royle ex Gordon (syn.P. khasya Royle;P. insularis Endlicher) grown in Zambia from seed of Assam provenance and exhibiting 24 annual rings at 5 ft. above ground. There were no important variations in latewood width (mean 0.8 mm) or grain angle (-1.7°). Total ring width (5.2 mm), latewood percentage (19.5%), tracheid length (4.8 mm) and density (0.50 g/cm3) exhibited systematic patterns of variation within trees that could be related to ring number and height by quadratic polynomials, which explained 70 to 90% of the variation. The most important source of random variation was the difference between individual trees and it is recommended that for plantation surveys many trees should be sampled by 3 to 4 annual rings on two radii at breast height.The wood samples were kindly supplied by the Zambia Forest Research Division. Laboratory work was undertaken at the Tree Improvement Research Centre, Agricultural Research Council of Zambia, P. O. Box 1210, Kitwe, Zambia. The authors wish to acknowledge the laboratory assistance of MissP. Waters, Mrs.G. A. R. Howell and Mr.J. F. Morgan. Data was processed on the IBM 360 computer of the Anglo-American Corporation, Kitwe, and on the KDF 9 computer of the Oxford University Computing Laboratory.  相似文献   

5.
Summary The variation of six wood properties was studied within and between eighteen trees of Pinus kesiya Royle ex Gordon (syn. P. khasya Royle; P. insularis Endlicher) grown in Zambia from seed of Burma provenance and exhibiting 16 annual rings at 5 ft. above ground. Three trees represented each of two size classes in each of three thinning treatments. Thinning effects were poorly estimated but heavy thinning increased ring width, decreased latewood percentage and caused marginal decreases in tracheid length and density. The two tree classes differed in ring width characteristics. Individual trees varied particularly in density; significant height effects were detected for tracheid length and density. Latewood width (mean 0.9 mm) and grain angle (-1.2°) varied little but total ring width (5.8 mm), latewood percentage (19.6%), tracheid length (4.6 mm) and density (0.46 g/cm3) exhibited systematic patterns of variation within trees; quadratic polynomials including ring number and height as independent variables explained 80 to 90% of the variation. Radial differences were often statistically significant but practically unimportant. For plantation surveys many trees should be sampled by 3–4 annual rings on two radii at breast height.Wood samples were supplied by the Zambian Forest Research Division. Laboratory work was undertaken at the Tree Improvement Research Centre, Agricultural Research Council of Zambia, P. O. Box 1210, Kitwe, Zambia. The author acknowledges the laboratory assistance of Miss P. Waters, Mr. J. Mweetwa, Mr. F. Mulimbwa and Mr. N. Phiri. Data were processed on the IBM 360 computer of the Anglo-American Corporation, Kitwe, and on the KDF 9 computer of the Oxford University Comuting Laboratory; Mr. I. A. andrew, Mr. P. G. Adlard and Mrs. T. Posner assisted at various stages.  相似文献   

6.
Genetic parameters for various wood density traits were estimated in 29-year-old trees of 18 full-sib families of hybrid larch (Larix gmelinii var. japonica × Larix kaempferi) F1. Intra-ring density variation (IDV) was also evaluated using a model that expresses the pattern curve from earlywood to latewood as a power function. A high IDV indicates an abrupt change in wood density from earlywood to latewood. The ring width and wood density traits of individual rings were determined by X-ray densitometry. Overall wood density (RD) was shown to increase with increasing ring number, ranging from 0.42–0.59 g/cm3, whereas IDV of individual rings decreased gradually from pith outwards. Estimates of individual tree narrow-sense heritability of RD and IDV were 0.66 and 0.67, respectively. IDV showed negative genetic and phenotypic correlations with RD (r g = −0.99, r p = −0.72). The predicted genetic gains in latewood proportion and IDV were higher than that of RD. These results suggest that the intra-ring density variation is under moderate genetic control equivalent to wood density. The trend of increasing wood density from earlywood to latewood was associated with changes in both tracheid diameter and cell wall thickness.  相似文献   

7.
To investigate the relations between growth and the wood properties of Japanese larch (Larix kaempferi), six sample trees of varied ages and radial growth were felled and the ring width, ring density, percentage of latewood, and some other factors were determined. There were significant differences in ring density and percentage of latewood between sample trees with vigorous growth and those with poor growth. In corewood the ring density decreased with increasing ring width for all sample trees, whereas in outerwood this trend did not appear. Moreover, the latewood width increased with the increment of ring width only in outerwood, whereas there was almost no change in the corewood. The variation in patterns of ring width, ring density, and percentage of latewood in the radial direction and the relation with height was also studied.Part of this report was presented at the 47th annual meeting of the Japan Wood Research Society, Kochi, April 1997  相似文献   

8.
Summary Based on 15-year-old black spruce (Picea mariana) trees from 40 half-sib families sampled from 9 blocks of a family test in New Brunswick, this study examined intertree and intratree variation in various wood density and ring width characteristics. Of various variance components of the intertree variation, a remarkable variance component due to family was found in wood density characteristics (viz. average wood density, average earlywood density and latewood density of the tree), and these characteristics are thus under strong genetic control (h i 2 ranging from 0.60 to 0.86, and h f 2 from 0.56 to 0.68). It, to a lesser extent, applies to ring width characteristics at the tree level (viz. average ring width, and average earlywood width, latewood width and latewood percent of the tree) that show a lower heritability (h? from 0.18 to 0.28, and h f 2 from 0.22 to 0.36). Both block and block × family interaction contribute little to the total intertree variation encountered in 40 families from 9 blocks, while tree-to-tree variation within the family accounts for most (over 3/4) of the total intertree variation.Compared to the intertree variation (tree-to-tree variation within the family), the intratree variation in various wood characteristics studied is considerably larger in this species. It appears that most intraring wood density characteristics show a relatively smaller intertree variation but a relatively larger intratree variation as compared to ring width characteristics (except latewood width and latewood percent). Latewood width and latewood percent show the smallest intertree variation and the largest intratree variation. Between the two sources of the radial intratree variation, cambial age explains much more variation in most intraring wood density characteristics, while ring width accounts for more variation in earlywood width, latewood width and intraring density variation. This indicates that wood density of growth rings in this species is dependent more on cambial age than ring width (growth rate). Among various wood density and ring width characteristics studies, maximum (latewood) density shows the strongest response to calendar year. This characteristics is thus a useful dendroclimatic parameter in this species.I would like to thank Dr. E.K. Morgenstern and Mr. D. Simpson for their involvement in the planning of this study. Thanks are also due to G. Chauret, T. Keenam, R. Ploure, V. Steel and C. Reitlingshoefer for their technical assistance  相似文献   

9.
  • ? Each annual ring in pines consists of earlywood and latewood with considerable difference in density and width. To get a better determination of the genetic regulation of total wood density in Scots pine (Pinus sylvestris L.), density and width of those ring sections were measured in annual ring numbers 12 to 21 of Scots pines in a full-sib progeny test. Tree height and stem diameter were also measured.
  • ? Heritabilities for the annual ring sections increased with age for earlywood density from 0.08 to approximately 0.25; latewood density showed similar reductions. Heritability over all 10 annual rings was 0.25 for earlywood density, 0.22 for latewood density, 0.29 for height and 0.10 for stem diameter. Genetic correlations between earlywood and latewood density and growth traits were negative, while they were strongly positive between densities of adjacent annual rings (0.70–1.0).
  • ? Despite the higher heritability of earlywood density, the strong positive genetic correlation between those traits indicates little benefit from focusing solely on earlywood density when selecting for wood density. Analysing earlywood and latewood separately does not benefit from including the width of the corresponding ring section as a covariate. Juvenile wood may possibly turn into mature wood 15–20 y from the pith.
  •   相似文献   

    10.
    The purpose of this study was to explore the ring characteristics of Japanese cedar (Cryptomeria japonica) tree growth with thinning and unthinning regimes. The trees grown with thinning regimes increased in average ring width (RW), earlywood width, latewood width, ring density (RD), earlywood density, latewood density, maximum ring density, and latewood percentage (LWP) for the entire period of 16 years after thinning, as compared to those grown with unthinning regimes. The RW and RD components showed different reactions lasting several years after thinning. Overall, thinning caused immediate production (first year) of higher RD, lasting for several years; however, wider RW was delayed up to several years after treatment. There was a weak relationship between RW (growth rate) and wood density; and there were significant positive relationships between the RD and LWP. The results suggest that the compression wood produced after thinning.  相似文献   

    11.
    Eucalyptus plantations have been considered for bioenergy production and hence their biological characteristics that make them amenable to intensive short-rotation forestry. Wood density is an important parameter that directly affects fuel production. This study focuses on the early assessment of density features for 19 Eucalyptus species using X-ray microdensitometry in a perspective of potential biomass production. Average ring density, earlywood density, latewood density, latewood percentage and the heterogeneity index were studied. E. polyanthemos registered the highest mean wood density value (0.84 g cm?3), and E. viminalis showed the lowest value (0.53 g cm?3). An indicator for the potential wood biomass (PWB) was calculated, with E. maculata displaying the highest biomass production index (13.4 kg). Comparison of radial growth of these species showed appreciable differences. The PWB indicator points to the prospective good aptitude for short-rotation cycle for biomass production of E. maculata, E. botryoides, E. globulus, E. nitens and E. sideroxylon.  相似文献   

    12.

    Pine plantations are an important wood source in Brazil, with Pinus taeda being most frequently planted. Most pinewood is directed to the paper and pulp industry, but there is an increasing demand for wood for solid end-uses, requiring large stems from longer rotations which can be obtained using P. taeda as the canopy in two-aged stands. We evaluated radial growth and wood density at different stem heights of P. taeda in the highlands of Southern Brazil over a production period of 36 years and subjected to shelterwood harvest. Cross-sectional disks were obtained from 15 trees in different stem heights; 10 were used for growth analyses and 5 for growth and density analyses. We used disk images and X-ray techniques for growth and density analyses, respectively. Samples were analyzed for ring (width and density), earlywood, and latewood (width, density, and proportion). Ring width varied between 0.4 and 1.7 cm, with the widest rings in the first years (3–5 years.) of growth. Ring density increased with age, with higher densities on the lower stem portions. Mature wood started to be formed from the 16th ring onwards. Shelterwood harvest affected both ring width and density, but the effects on ring width lasted for at least 5 years, while the effects on wood density were short-lasting. Mature P. taeda trees increased their size after the shelterwood harvest without compromising their wood density. Longer production periods of P. taeda as retained trees in the canopy of two-aged stands provide high-quality wood for structural purposes.

      相似文献   

    13.
    Pinus radiata D. Don trees from six clones, grown at initial spacings of 2500 stems ha−1 and 833 stems ha−1 were destructively harvested. For these trees wood properties were measured on radial slices sampled at a height of 1.4 m above the ground. Relative to wide spacing, close initial stand spacing significantly reduced microfibril angle (MFA) and ring width and significantly increased dynamic modulus of elasticity (MOE), fibre length, latewood percentage and cell wall thickness. Density and fibre width were not significantly different between spacing treatments. Examination of the influence of genetic population on wood properties indicated that genotype significantly influenced MFA, MOE and ring width. The key wood properties MFA, MOE and fibre length were regressed against tree diameter, height and stem slenderness. All three wood properties were most strongly correlated with stem slenderness. Multiple regression models developed for MFA, MOE and ring width accounted for respectively 62%, 81% and 58% of the variation in these variables. The following changes occurred in sampled properties with increasing ring number: MFA and ring width declined markedly; MOE and fibre length increased markedly; latewood percentage and cell wall thickness increased slightly; and density and fibre width did not show any radial trend.  相似文献   

    14.
    Impacts of elevated temperature and carbon dioxide concentration ([CO2]) on wood properties of 15-year-old Scots pines (Pinus sylvestris L.) grown under conditions of low nitrogen supply were investigated in open-top chambers. The treatments consisted of (i) ambient temperature and ambient [CO2] (AT+AC), (ii) ambient temperature and elevated [CO2] (AT+EC), (iii) elevated temperature and ambient [CO2] (ET+AC) and (iv) elevated temperature and elevated [CO2] (ET+EC). Wood properties analyzed for the years 1992-1994 included ring width, early- and latewood width and their proportions, intra-ring wood density (minimum, maximum and mean, as well as early- and latewood densities), mean fiber length and chemical composition of the wood (cellulose, hemicellulose, lignin and acetone extractive concentration). Absolute radial growth over the 3-year period was 54% greater in AT+EC trees and 30 and 25% greater in ET+AC and ET+EC trees, respectively, than in AT+AC trees. Neither elevated temperature nor elevated [CO2] had a statistically significant effect on ring width, early- and latewood widths or their proportions. Both latewood density and maximum intra-ring density were increased by elevated [CO2], whereas fiber length was increased by elevated temperature. Hemicellulose concentration decreased and lignin concentration increased significantly in response to elevated temperature. There were no statistically significant interaction effects of elevated temperature and elevated [CO2] on the wood properties, except on earlywood density.  相似文献   

    15.
    The relationships between bending properties, compressive strength, tracheid length, microfibril angle, and ring characteristics of 20-year-old Taiwania (Taiwania cryptomerioides Hay.) trees were examined. The trees came from different thinning and pruning treatments, but the practices showed no significant effect on the investigated properties. The results showed that based on comparison with the literature, plantation-grown immature Taiwania have noticeably lower average strength properties than mature trees of the same species. Wood density and bending and compressive strengths were not related to either tracheid length or microfibril angle in young Taiwania. There were positive relationships between bending strength and compressive strength. The wood density, ring width, earlywood width, earlywood density, and latewood percentage were the most important predictors of strength by simple linear regressions. The wood density and ring width/earlywood width may be considered as indicators for assessing the bending strength, while wood density and latewood percentage were the best predictors of compressive strength by multiple linear regressions.  相似文献   

    16.
    This study aimed to evaluate radial and among-family variations of wood properties in Picea jezoensis. A total of 174 trees were randomly selected from 10 open-pollinated families in a progeny trial for measuring stem diameter, dynamic Young’s modulus of log (DMOElog), annual ring width (ARW), air-dry density (AD), modulus of elasticity (MOE), and modulus of rupture (MOR). Mean values of DMOElog, AD, MOE, and MOR were 9.60 GPa, 0.41 g/cm3, 9.44 GPa, and 76.6 MPa, respectively. Significant differences among families were observed in all properties. F values obtained by analyzing variance in wood properties were higher than those generally observed in growth traits. In addition, F values in wood properties remained relatively higher from the 1st to 25th annual ring from the pith, although F value in ARW rapidly decreased with each increase in annual ring number. These results indicate that genetic factors largely contributed to the variance in wood properties compared with the growth traits.  相似文献   

    17.
    The ring characteristics and screw withdrawal resistance (SWR) of naturally regenerated Taiwan yellow cypress (Chamaecyparis obtusa var. formosana) trees were explored. Significant differences in average ring width (RW), earlywood width, latewood width, ring density (RD), earlywood density (ED), latewood density (LD), highest density (Dmax), lowest density (Dmin), latewood percentage (LWP), and SWR were observed between trees, rings (SWR excluded), and tree height positions. The RW components in the radial direction increased from the pith outward to about the 3rd to 5th ring and then decreased to about the 25th ring; it was almost constantly sustained toward the bark side. The RD in the radial direction slowly decreased from the pith outward to the bark side. Average ring width and ring density were significantly affected by the various tree growth rates, radial ring numbers, and tree height positions. ED, LD, Dmax, Dmin, and LWP were the most important factors determining the overall RD. RW did not correlate with tree RD. SWR is correlated with ED, RD, Dmin, LWP, and intra-ring density variation (IDV). Thus, the SWR can be used to predict wood density and in nondestructive evaluation of a living tree.  相似文献   

    18.
    Recently, breeding programs have attempted to produce high growth rates for shorter rotation cycles in plantation trees. In these trees, the ratio of juvenile wood increases; thus, the juvenile wood properties should be improved for structural use. To this end, it is important to understand the influences on juvenile wood properties precisely. In this study, we report on the indole acetic acid (IAA) amounts of juvenile sugi (Cryptomeria japonica) trees in September and compare the IAA amounts to those in mature trees. The IAA amounts at the lower trunks in juvenile trees were significantly larger than those in mature trees and the IAA amounts decreased with tree height. In each stand, except a mature tree stand, there is no significant effect of IAA amounts on latewood width and MFA. However, put together all samples, the latewood width and MFA increased with IAA amounts in samples with IAA <200 ng/cm2. The samples at lower trunk in juvenile trees had significantly larger IAA amounts, larger MFA and larger latewood width than the samples in mature trees (p < 0.01). The very large IAA amounts may have a certain relation with juvenile wood properties.  相似文献   

    19.
    The basic density of pulp wood can be used to convert green volume to dry weight, and as an indicator of the fibre quality. Because the methods for measuring basic density are cumbersome, a practical, on‐line method for sorting Norway spruce pulp wood with respect to basic density was developed. The relationship between mean annual ring width and basic density was used to sort the pulp wood. Brief visual inspection could separate piles of logs with different mean annual ring widths from each other with an acceptable precision. The resulting classes had significantly different mean basic densities (380, 400 and 434 kg m?3). Means of other properties, such as juvenile wood content, heartwood content, and dry matter content, also differed among classes.  相似文献   

    20.
    山杨材性群体变异趋势及个体遗传差异的研究*   总被引:3,自引:1,他引:3       下载免费PDF全文
    在山杨主要分布区随机抽取6个天然群体,每群体随机抽样15株采集木芯,分析结果表明:群体间及个体间的木材密度和纤维长度差异都极显著。群体平均密度0.432lg/cm3,极差0.0662g/cm3;平均纤维长度1.0775mm,极差0.2650mm。东北、华北群体的密度呈梯度变异,纤维长度的梯度变异不明显。木材密度群体重复率0.541,个体重复率0.471;纤维长度重复率分别是0.471与0.412。不同群体、不同年轮组的密度与纤维长度的个体重复率有所不同。密度、纤维长度等与生长性状呈微弱遗传相关,可以进行材性与生长的同步遗传改良。  相似文献   

    设为首页 | 免责声明 | 关于勤云 | 加入收藏

    Copyright©北京勤云科技发展有限公司  京ICP备09084417号