首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Glutathione S-transferases (GST) detoxify many electrophilic xenobiotics, including several volatile organic compounds and pesticides. The GST activity for the conjugation of several xenobiotic substances was isolated from needles of Norway spruce (Picea abies L. Karst.) trees from a forest decline stand in the northern alps. Trees that exhibited different degrees of damage were selected from several stands in an altitude profile. The GST activity toward 1-chloro-2,4-dinitrobenzene (CDNB) in crude protein extracts of needles showed a seasonal pattern with highest activity during summer. The GST activity exhibited a strong dependence on the altitude of the stand showing highest activities in trees growing in the valley and lowest activities in trees growing in the summit regions of the mountain. When cytosolic GST from needles of healthy and damaged trees was purified, trees of healthy appearance exhibited three distinct GST isozymes with activities for the conjugation of CDNB and 1,2-dichloro-4-nitrobenzene (DCNB), whereas severely defoliated trees exhibited four GSTs with additional activity for the conjugation of ethacrynic acid. The main GST isozymes catalyzing the conjugation of CDNB differed in molecular weight, isoelectric point and catalytic properties between damaged and healthy trees.  相似文献   

2.
Increasing demand for production of bioenergy has led to an interest in forest management which uses logging residue from both clear-cuttings and thinning stands. The aim of this study was to investigate the effects of removal of logging residue in a thinning Norway spruce stand on (1) litter decomposition and (2) soil microbial processes in C and N cycling and the quality of soil organic matter. The study site was a 40-year-old Norway spruce stand growing on a relatively fertile site. During thinning, logging residue was either removed (whole-tree harvest) or left on the site (stem-only harvest). Different types of material in the logging residue, from main branches to needles, were weighed separately into mesh bags. The bags were placed above the moss layer in the whole-tree harvest treatment and in the logging residue layer in the stem-only harvest treatment, and decomposition was monitored for 5 years after treatment. From the humus layer, samples were taken 10 years after treatment. Harvest method affected the mass loss of the litter material very little but the C-to-N ratio of the remaining material was slightly higher in whole-tree harvest than in stem-only harvest, particularly in the needle material. In the humus layer samples, taken 10 years after treatment, the rate of C mineralization was lower in whole-tree harvest than in stem-only harvest; also the rate of net N mineralization and the amounts of C and N in the microbial biomass tended to be lower, although not statistically significantly. Removal of logging residue had no effect on pH (pHH2OpHH2O 3.9 in both treatments) or C-to-N ratio (28 in both treatments) in the humus layer. The concentrations of total water-soluble phenols and an important group of phenols, condensed tannins, were both lower in the humus layer of whole-tree harvest than in that of stem-only harvest. Concentrations of sesqui-, di- or triterpenes in the humus layer were similar in both treatments. In conclusion, 10 years after harvest, soil microbial activities and organic matter characteristics in whole-tree harvest differed from those in stem-only harvest.  相似文献   

3.
INTRODUCTIONThcstcmfonl1ofnaturalKorcanpincforcst.ot\ingtothcsupprcsscdandshadcd,isvcry'difTcrcntt`iththatofplantation.Itis\'cry't'aluabIctostud}'thcstcmfonnforn1orcac-knot`lcdgcabouttl1ctrccd)-nan1icsofnaturalKorcanpinc.n1crcl1asbccnconsidcrabIcrescarchontl1cstc111for111cquationsasatoolforforcstmanagcmcnt,butitalmostbasnorclationshipt`-iththcbiologicalgrowthproccss.soitisx'ery'dimcuIttouscthccquationtoanalxrsisthcd\'amicsofstclllform.Hcrcthcdct'clopmcntofstcmformt"ascxPCctcdfornotonI\…  相似文献   

4.
Larch (Larix spp.) is widely distributed in the boreal and temperate areas. Nitrogen (N) is considered as the major limiting element for these areas. Thinning is a common forest management practice. Thus, it is imperative to obtain a better understanding on how thinning could affect N status of larch plantations, and thus optimize the thinning intensity for sustainable forest management. In this study, we measured N concentrations and 15N natural abundance (δ15N) of needles and surface soil (0–10?cm) in a larch plantation with T0, T25 and T50 treatments (0%, 25% and 50% thinning intensities, respectively) in Northeast China. We found that needle and soil δ15N in T25 was the lowest, and the highest in T50. No significant differences were observed for needle and soil N concentrations among the thinning intensities. T25 exhibited the highest N resorption efficiency, indicating highest N use efficiency. Overall, N cycling in T25 was more closed than the control, and with lower soil N availability, while N cycling in T50 was more opened. Our study indicates that foliar 15N natural abundance is sensitive to thinning and can be potentially used to optimize thinning intensity from the perspective of N cycling.  相似文献   

5.
The species composition of wood-inhabiting fungi (polypores and corticoids) was investigated on 1138 spruce logs and 992 pine logs in 90 managed and 34 natural or near-natural spruce and pine forests in SE Norway.Altogether, the study included 290 species of wood-inhabiting fungi. Comparisons of logs with similar properties (standardized tree species, decay class, dimension class) in natural and managed forests showed a significant reduction in species number per log in managed spruce forests, but not in managed pine forests. The species number per log in managed spruce forests was 10-55% lower than on logs from natural spruce forests. The reduction was strongest on logs of large dimensions. A comparison of 200-400 spruce logs from natural and managed forests showed a 25% reduction in species richness corresponding to a conservative loss of ca. 40 species on a regional scale.A closer inspection revealed that species confined to medium and very decayed spruce logs were disfavored in managed forests, whereas species on early decay classes and decay generalists were unaffected. Similarly, species preferring large spruce logs were disfavored in managed forests. Forest management had strongest impact on low-frequent species in the spruce forests (more than 50% reduction), whereas common species were modestly affected. Corticoid fungi were more adversely affected than polypore fungi.These results indicate that wood-decaying fungi in pine forests are more adapted to forest disturbances than spruce-associated species. Management measures securing a continuous supply of dead wood are more important in spruce forests than in pine forests.  相似文献   

6.
Phillips N  Bergh J  Oren R  Linder S 《Tree physiology》2001,21(12-13):851-860
We investigated effects of nutrition and soil water availability on sap flux density, transpiration per unit leaf area (EL), and canopy stomatal conductance (GS) of Norway spruce (Picea abies L. (Karst.)) in northern Sweden during the 1996 growing season. Our objectives were to determine (1) if artificially imposed drought (65% rain diversion) reduces soil water sufficiently to cause physiological limitations to whole-tree and plot-scale water transport, and (2) whether increased capacity for water transport resulting from fertilization-induced increases in leaf (> 3-fold) and sapwood areas (> 2.3-fold) deplete soil water sufficiently to cause a negative feedback on GS and EL. We monitored soil water content (theta) and soil water potential (PsiS) in control (C), drought (D), fertilized (F) and irrigated + fertilized (IL) treatment plots, along with site meteorological conditions. Ten trees per plot were monitored for sap flow. Although there were significant treatment differences in mean daily EL (C > D > F; P < 0.01) and GS (C > D > F; P < 0.05), variation in absolute magnitudes was small. Therefore, transpiration differences on a unit ground area basis (EC) were nearly proportional to leaf area differences. Precipitation was well distributed throughout the study period and so PsiS remained high, except during short dry periods in Plot F when it declined rapidly. Thus, although soil water was not limiting to GS, EL or EC when precipitation was uniformly distributed throughout the growing season, we cannot conclude that water availability would not limit GS in fertilized stands if the seasonal distribution of precipitation were altered.  相似文献   

7.
《林业研究》2021,32(4)
Foliar C/N stoichiometry is an indicator of geochemical cycling in forest ecosystems,but the driving changes for its response to urbanization at the wide scale is not clear.In this study,data on tree-leaf C and N stoichiometry were collected in papers from across 105 tree species from 82 genera and 46 families.The foliar C/N of urban forest trees varied among different climate zones and tree taxonomic variation and tended to be higher in trees of urban forests near the equator and in eastern regions,mainly driven by lowered foliar N concentration.Neither the foliar C concentration nor foliar C/N for trees of urban forests was statistically higher than those of rural forests.For variation by taxonomic classification,C_4 species Amaranthus retroflexus and Chenopodium ambrosoides(Amaranthaceae) had lower foliar C/N than did other species and families.Myrsine guianensis(Primulaceae) and Myconia fallax(Asteraceae) had the highest foliar C/N.Therefore,urbanization has not caused a significant response in forest trees for foliar C/N.The change in foliar N concentration was globally the main force driving of the differences in foliar C/N for most tree species in urban forests.More work is needed on foliar C/N in trees at cities in polar regions and the Southern Hemisphere.  相似文献   

8.
Soil N transformation was investigated using15N dilution method along a slope on a conifer plantation forest. Although there was no significant difference in the net N mineralization rates by laboratory incubation, net nitrification rates increased downslope. Gross N transformation by15N dilution method showed a distinct difference not only on the rates, but also on the main process between the lower and the upper of the slope. Half of minelarized N was immobilized and the other half was left in NH 4 + pool at the upper part of the slope, while all of mineralized N was used for immobilization or nitrification and NH 4 + pool decreased at the lower of the slope. Soil N transformations were classified into two groups: one was shown below 773 m and the other was shown above 782 m. The incubation with nitrification inhibitor showed that nitrification was mainly conducted by autotrophs irrespective of the position of the slope. Microbial biomass and microbial C/N were similar among the sites. However, the gross mineralization rate was higher below 773 m than above 782 m under similar respiration rates. This suggests that the substrate quality may be one of the controlling factors for soil N transformation. Extractable organic C/N was similar to microbial C/N at the lower of the slope. It indicated that the substrate was more decomposable below 773 m. It is considered that soil N transformation is affected by topographical gradient of moisture and nutrient which makes plant growth and decomposition rate different.  相似文献   

9.
The fate of high and equally distributed ammonium and nitrate deposition was followed in a 72-year-old roofed Norway spruce forest at Solling in central Germany by separately adding 15NH4+ and 15NO3 to throughfall water since November 2001. The objective was to quantify the retention of atmospheric ammonium and nitrate in different ecosystem compartments as well as the leaching loss from the forest ecosystem. δ15N excess in tree tissues (needles, twigs, branches and bole woods) decreased with increased tissue age. Clear 15N signals in old tree tissues indicated that the added 15N was not only assimilated to newly produced tree tissues but also retranslocated to old ones. During a period of over 3-year 15N addition, 30% of 15NH4+ and 36% of 15NO3 were found in tree compartments. For both 15N tracers, 15% of added 15N was found in needles, followed by woody tissues (twigs, branches and boles, 7–13%) and live fine roots (7%). The recovery of 15NH4+ and 15NO3 in the live fine roots differed with soil depth. The recovery of 15NH4+ tended to be higher in the live fine roots in the organic layer than in the upper mineral soil. In the live fine roots in deeper soil, the recovery of 15NO3 tended to be higher than that of 15NH4+. Soil retained the largest proportion of 15N, accounting for 71% of 15NH4+ and 42% of 15NO3. Most of 15NH4+ was recovered in the organic layer (65%) and the recovery decreased with soil depth. Conversely, only 8% of 15NO3 was found in the organic layer and 34% of 15NO3 was evenly distributed throughout the mineral soil layers. Nitrate leaching accounted for 3% of 15NH4+ and 19% of 15NO3. Only less than 1% of the both added 15N was leached as DON. These results suggested that trees had a high contribution to the retention of atmospheric N and soil retention capacity determined the loss of atmospheric N by nitrate leaching.  相似文献   

10.
Distance-independent individual tree growth models based on about 30,000 observations from the National Forest Inventory and the Norwegian Forest Research Institute have been developed for the main tree species in Norway. The models predict 5-year basal area increment over bark for trees larger than 5 cm at breast height. Potential input variables were of four types: size of the tree, competition indices, site conditions, and stand variables including species, mixtures and layers. The squared correlation coefficient (R2) varied from 0.26 to 0.55. The accuracy of the models was tested by comparing the individual tree models with Norwegian diameter increment models. The accuracy is similar, but individual tree models forecast diameter distributions directly. The inclusion of species mixture and layer as variables increases the reliability of the models in mixed and in uneven-aged stands.  相似文献   

11.
  • ? Understanding tree mortality processes across time requires long term studies. Spatiotemporal patterns of mortality in a 200 years-old mono-layered Norway spruce stand were evaluated to determine what factors affected individual-tree mortality.
  • ? We performed an analysis on two surveys (1993 and 2005) in a 1-ha permanent plot in the Paneveggio forest (Eastern Italian Alps). Tree diameter and age distribution between surveys were compared. We examined spatial patterns of living and dead trees before 1993, in 1993 and in 2005 using univariate and bivariate Ripley’s K(d) function, and a kernel estimator of local crowding. A logistic model was used to assess the effects of diameter, age, recent growth and competitive pressure on tree mortality.
  • ? Spatial pattern analysis indicated mortality was associated to tree neighbourhood (neighbour effect at 2–5 m). An increment of regularization of tree spatial pattern occurred due to density-dependent mortality. Logistic regression showed tree diameter and recent growth were determinant on mortality risk during the monitoring period.
  • ? Even if the stand is relatively aged, mortality dynamics are those typical of stem exclusion stage. Mortality was related to competitive dynamics, and small suppressed trees with slow growth rate had higher probability to die.
  •   相似文献   

    12.
    为给库尔勒香梨园合理施肥及氮肥利用率的提高提供参考,以6年生库尔勒香梨为研究对象,采用15N同位素示踪技术,研究萌芽前期至果实成熟期库尔勒香梨树体生长和氮素吸收、分配动态。结果表明:库尔勒香梨树体基径随着生育期的推移逐渐增大,于果实成熟期达到最大(8.71cm);库尔勒香梨叶片的叶面积指数、叶绿素SPAD值和叶片光合速率均随着香梨年生育期的推进呈现先增大后减小的趋势,均在第2个快速膨大期达到最大,分别为2.40、42.03和12.50μmol/(m^2·s);在年生育末期,库尔勒香梨单株树体的生物量为19958g,氮素积累量为199.44g,各器官中以当年新生器官果实的生物量和氮素积累量为最高,分别占整株树体生物量和氮素积累量的33.33%和25.08%。不同生育期15N在树体内的运转随生长中心的变化而变化。盛花期15N在1年生枝中的分配势最强,新梢旺长期和第2个快速膨大期15N在叶片中的分配势最强,果实成熟期15N在果实中的分配势最强。在果实成熟期库尔勒香梨树体当季15N肥料利用率为17.35%。  相似文献   

    13.
    Pools of macro-nutrients in soil and vegetation were studied in an old fertilization experiment with a large previous input of N. Different doses of N, in the form of urea, had been added four times during a 20-year period. In total, between 480 and 2400 kg N ha−1 had been given. The experiment was established in a relatively productive Norway spruce stand and the expectation was that the large N input would cause an accelerated leaching of N, especially nitrate, accompanied by soil acidification and losses of several nutrients. The aim was to test for possible residual effects. Thirteen years after the last N addition, samples from the aboveground part of trees, field layer, S-layer, humus layer and mineral soil (0–10 cm) were analyzed for concentrations of most major nutrients. Nutrient pools were calculated. In the humus layer, the concentration of N increased and the C/N-ratio decreased with increasing N dose. The calculated recovery of added N in soil including ground vegetation was complete for the lowest N dose, while it was 25–50% for higher doses. The amount of N retained was unaffected by the N dose. The amount of extractable P in the upper part of the mineral soil was negatively correlated with N dose, as was also the concentration of total P in the S-layer. Neither soil pH, nor concentrations or amounts of Ca, Mg and K were affected by the previous fertilization. The calculated total soil-plant pool was only influenced by N dose in the case of P, which was 20% lower at the highest N dose compared with unfertilized conditions. Despite the large extra N input, the nutritional changes in plants and soil of the actual study site seemed surprisingly small.  相似文献   

    14.
    在我国南方,天然次生阔叶林转变为杉木人工林是一种常见的管理措施。为研究森林利用方式转变对土壤微生物量的影响,我们在中国科学院会同森林生态实验站比较了天然次生阔叶林、第一代和第二代杉木人工林土壤理化性质和微生物量。杉木人工林土壤有机碳、全氮、铵态氮和微生物量碳氮含量明显低于天然次生阔叶林。第一代、二代杉木人工林土壤微生物量碳仅为天然次生阔叶林的53%和46%,微生物氮为97%和79%。杉木人工林土壤微生物量碳占有机碳的比例也低于天然次生阔叶林土壤,但微生物量氮则相反,为杉木人工林高于天然次生阔叶林。因此可以得出,天然次生阔叶林转变为杉木人工林以及杉木林连栽引起了土壤生物学特性和土壤质量降低。图2表3参36。  相似文献   

    15.
    Conversion of natural secondary broad-leaved forest to Cunninghamia lanceolata plantation is a common management practice in subtropical China. In this study, we compared soil physico-chemical properties, microbial biomass in one natural secondary broad-leaved forest and two C. lanceolata plantation sites to estimate the effects of forest conversion on soil microbial biomass at the Huitong Experimental Station of Forestry Ecology, Chinese Academy of Sciences. Concentrations of soil organic carbon, total nitrogen, NH4^+-N and microbial biomass carbon and nitrogen were much lower under C. lanceolata plantations as compared to natural secondary broad-leaved forest. Soil microbial biomass C in the first and second rotation of C. lanceolata plantations was only 53%, 46% of that in natural secondary broad-leaved forest, and microbial biomass N was 97% and 79%, respectively. The contribution of microbial biomass C to soil organic C was also lower in the plantation sites. However, the contribution of microbial N to total nitrogen and NH4^+-N was greater in the C. lanceolata plantation sites. Therefore, conversion of natural secondary broad-leaved forest to C. lanceolata plantation and continuous planting of C. lanceolata led to the decline in soil microbial biomass and the degradation of forest soil in subtropical China.  相似文献   

    16.
    桉树人工林与天然林土壤养分的对比研究   总被引:8,自引:0,他引:8  
    在野外调查取样和室内实验分析的基础上,对人工林与天然林的土壤养分进行比较分析,结果表明人工林土壤表层的有机质、全氮、全磷、全钾含量都明显低于天然林,反映了人工林对养分的旺盛需求和消耗,并且人工林还会造成土壤阳离子交换量的降低和土壤容重的增大。提出变炼山全垦为块状整地、轮栽并适当休闲养地、提高人工林生物多样性、建立复杂的人工林群落等措施,以实现桉树人工林土壤养分平衡与生态系统的良性循环。  相似文献   

    17.
    [目的]以漳江口红树林为研究对象,利用泰森多边形和四株树法划分天然红树林林木平面空间分布结构,确定对象木的最邻近竞争木,计算林分空间结构指数,对比分析两种方法的异同,探讨泰森多边形法应用红树林林分空间结构量化的适用性.[方法]设置20 m×20 m样地,每木调查时用钢尺测量横纵坐标,在坐标纸上标记调查木的位置和编号,同...  相似文献   

    18.
    Temporal variation of leaf area index (LAI) in two young Norway spruce stands with different densities was monitored during eight consecutive growing seasons (1998–2005). We focused on: (1) LAI dynamics and above-ground mass production of both spruce stands and their comparison, (2) leaf area duration (LADU), crop production index (CPI) and leaf area efficiency (LAE) evaluation, and (3) thinning impact on the above-mentioned parameters. Also, we tried to deduce the most effective LAI value for the Norway spruce forest investigated. The LAI values of both spruce stands showed a typical seasonal course. To describe the LAI dynamics of the stand, we recommend taking LAI measurements within short time intervals at the time of budding and needle expansion growth (i.e., in early spring) and close to the LAI peak, when the twig growth has been completed. The reason was that after reaching the seasonal maximum, no significant differences between subsequently obtained values were found in the following 2 months. Therefore, we recommend this period for the estimation of seasonally representative LAI values, enabling the comparison of various spruce stands. The maximum hemi-surface LAI value reached 12.4. Based on our results, the most effective LAI values for maximum above-ground biomass production were within the range of 10–11. We found an LAI over these values to be less effective for additional production of above-ground biomass. In forest practice, thinning intensity is mostly described by percentage of stocking reduction. We want to show that not only thinning intensity, but also the type of thinning is important information. The type of thinning significantly affected the stand above-ground biomass increment, canopy openness, stand LAI and LAI efficiency. The stimulating effect of high-type thinning was observed; the LAE as well as the CPI increased. Low-type thinning had no such effects on LAE increments compared to the high-type thinning with similar intensity.
      相似文献   

    19.
    Mortality analysis of tree populations is widely applied to forest science studies. When mortality analysis is applied to forest inventories, the use of the variable of tree age is not common due to the difficulty of measuring age data censored in successive observations. The purpose of this study is to apply age-based mortality analysis, i.e., survival analysis, to the individual tree populations in a natural forest. The study site was the secondary natural stand of 0.26 ha dominated by fir (Abies firma), hemlock (Tsuga sieboldii), and oak (Quercus serrata) in the Boso peninsula, Japan. First, we measured the ages of the trees with diameter at breast height greater than or equal to 5 cm using a RESISTOGRAPH. Then, tree mortality probabilities of both non-parametric Kaplan–Meier estimates and parametric probability distributions of Gamma and Weibull were estimated by applying survival analysis techniques to the tree age data. The results implied that the survival analyses could be implemented not only by the non-parametric estimates in any cases but also by the common parametric distributions of Gamma and Weibull in cases in which the tree mortality probability distribution had a monotonously decreasing shape as observed in the immature natural stand in the study site.  相似文献   

    20.
    A substantial portion of the carbon (C) fixed by the trees is allocated belowground to ectomycorrhizal (EM) symbionts, but this fraction usually declines after fertilization. The aim of the present study was to estimate the effect of optimal fertilization (including all the necessary nutrients) on the growth of EM fungi in young Norway spruce forests over a three year period. In addition, the amount of carbon sequestered by EM mycelia was estimated using a method based on the difference in δ13C between C3 and C4 plants. Sand-filled ingrowth mesh bags were used to estimate EM growth, and similar bags amended with compost made from maize leaves (a C4 plant) were used to estimate C sequestration. Fertilizers had been applied either every year or every second year since 2002 and the estimates of EM growth started in 2007. The application of fertilizer reduced EM growth to between 0% and 40% of the growth in the control plots at one site (Ebbegärde), while no significant effect was found at the other three sites studied. The effect of the fertilizer was similar in sand-filled and maize-compost-amended mesh bags, but the total production of EM fungi was 3-4 times higher in maize-compost-amended mesh bags. The fertilizer tended to reduce EM growth more when applied every year than when applied every second year. The amount of C sequestered in maize-compost-amended mesh bags collected from unfertilized treatments was estimated to be between 0.2 and 0.7 mg C g sand−1 at Ebbegärde and between 0.2 and 0.5 mg C g sand−1 at Grängshammar. This corresponds to between 300 and 1100 kg C per ha, assuming a similar production in the soil as in the mesh bags. Fertilization at the Ebbegärde site reduced carbon sequestration, which confirmed the results based on estimates of fungal growth (ergosterol levels). A correlation was found between fungal biomass and δ13C in mesh bags amended with maize compost. Based on this, it was estimated that a fungal production of 1 μg ergosterol corresponded to 0.33 mg of sequestered carbon. In conclusion, the effect of the fertilizer on EM growth seemed to be dependent on the effect of the fertilizer on tree growth. Thus, at Ebbegärde, were tree growth was less stimulated by the fertilizer, EM growth was reduced upon fertilization. At other sites, where tree growth was more stimulated, the fertilizer did not influence EM growth. The large amounts of carbon sequestered during the experiment may be a result of fungal residues remaining in the soil after the death of the hyphae.  相似文献   

    设为首页 | 免责声明 | 关于勤云 | 加入收藏

    Copyright©北京勤云科技发展有限公司  京ICP备09084417号