首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
《林业研究》2020,31(4)
Graveyards or sacred groves are often places of natural vegetation protected by spiritual believers because of their sacred beliefs and indigenous culture.A study of graveyards was conducted to determine their role in species conservation,community formation,and associated indicators and species composition using multivariate statistical approaches.It was hypothesized that variations in the age of graveyards would give rise to diverse plant communities under the impact of various edaphic and climatic factors.Quantitative ecological techniques were applied to determine various phytosociological attributes.All the data were put in MS Excel for analysis in PCORD and CANOCO softwares for cluster analysis(CA),two-way cluster analysis(TWCA),indicator species analysis and canonical correspondence analysis.CA and TWCA through Sorenson distance measurements identified five major graveyard plant communities:(1) FicusBougainvillea-Chenopodium;(2) Acacia-Datura-Convolvulus;(3) Ziziphus-Vitex-Abutilon;(4) Acacia-Lantana-Salsola;and(5) Melia-Rhazya-Peganum.Species such as Capparis decidua,Herniaria hirsuta,Salvadora oliedes and Populus euphratica were only present inside graveyards rather than outside and advocate the role of graveyards in species conservation.The impact of different environmental and climatic variables plus the age of the graveyards were also assessed for comparison of plant communities and their respective indicator species.The results indicate that higher chlorine concentration,age of graveyards,low soil electrical conductivity,lower anthropogenic activities,higher nitrogen,calcium and magnesium concentrations in the soil,and sandy soils were the strong environmental variables playing a significant role in the formation of graveyard plant communities,their associated indicators and species distribution patterns.These results could further be utilized to evaluate the role of edaphic and climatic factors,indicator species and conservation management practices at a greater scale.  相似文献   

2.
Soil fauna can sensitively respond to alterations in soil environment induced by land-use changes.However,little is known about the impact of urban land-use changes on earthworm communities.In this study,three land-use types(i.e.,forest,nursery and abandoned lands)were chosen to identify differences in diversity,abundance and biomass of earthworm community in Kunming City.Urban land-use had a pronounced difference in species composition,evenness and diversity of earthworm communities.Forest land had the highest density,biomass and diversity of the earthworm communities.Total abundance was dominated by endogeic species in nursery land(70%)and abandoned land(80%),whereas in the forest land,the earthworm community comprised epigeic,endogeic and anecic species.Temporal changes in earthworm density and biomass were also significantly affected by land-use change.Total density and biomass of earthworms in the forest and nursery lands were highest in September,but highest in the abandoned land in October.The influence of soil physicochemical properties on the earthworm density and biomass also varied with land-use types.Soil temperature significantly affected earthworm density and biomass in the three land-use types.Soil pH was positively correlated with earthworm biomass in the forest land,but negatively associated with earthworm density in the abandoned land.Soil organic matter was positively correlated only with density and biomass of earthworms in the nursery and abandoned lands.Our results suggest that the species composition,abundance and biomass of earthworm communities can be determined by the modification of soil properties associated with urban land-use type.  相似文献   

3.
Both climate and land-use changes, including the introduction and spread of allochthonous species, are forecast to affect forest ecosystems. Accordingly, forests will be affected in terms of species composition as well as their soil chemical and biological characteristics. The possible changes in both tree cover and soil system might impact the amount of carbon that is stored in living plants and dead biomass and within the soil itself. Additionally, such alterations can have a strong impact on ...  相似文献   

4.
The aim of this study was to assess the effect of different slash management practices on understory biodiversity and biomass in Eucalyptus globulus coppices in Central Portugal. The experiment consisted of four treatments: (a) removal of slash (R), (b) broadcast over the soil (S), (c) as in S but concentrating woody residues between tree rows (W) and (d) incorporation of slash into soil by harrowing (I). Understory vegetation was surveyed during 1–6, 9, and 10 years, the proportion of soil cover by plant species estimated, and diversity and equitability indexes determined. Above ground understory biomass was sampled in years 2–6, 9, and 10. The highest number of species in most years occurred in plots where slash was removed. Differences between treatments in the proportion of plant soil cover were never significant, whereas differences in diversity index were only occasionally significant and apparently related to the number of species. Thus, differences in the equitability index were not significant. Understory biomass did not decrease during the rotation period, and was usually highest in R and I, and lowest in S, but not significantly different. At the end of the rotation period, understory biodiversity indices and biomass were apparently independent of slash treatment.  相似文献   

5.
《林业研究》2021,32(5)
In tropical montane forests,compositional and structural changes are commonly driven by broad-scale altitudinal variation.Here,given the lack of knowledge on small-scale vegetation changes and temporal dynamics,we address the effects of small-scale variations in soil and altitude on tree community structure,temporal dynamics and phylogenetic diversity in a semi-deciduous tropical forest of the Atlantic Forest Domain,southeastern Brazil.In 2010 and 2015 we sampled thirty plots of 400 m~2,set up along an altitudinal gradient between 1000 and 1500 m a.s.I..In each plot,we collected soil samples for chemical and textural analyses.We fitted linear models to test the effects of altitude and soil on community dynamics and phylogenetic parameters.Altitude and soil explained the spatial variation in number of individuals and phylogenetic diversity metrics.From lower to higher altitudes,we found decreasing fertility,increasing tree density and decreasing phylogenetic diversity.Altitude significantly influenced the increases in total biomass(from 240.9 to 255.4 t ha~(-1)) and individual biomass(from 0.15 to 0.17 t) recorded in the interval.And while community temporal dynamics had rates of 1.96% for mortality,1.02% for recruitment,1.61% for biomass loss and 2.81% for biomass gain,none of them were explained by altitude or soil.Temporal species substitution averaged0.1 in the interval.Altogether,these results suggest that the small-scale variations in altitude and soil likely determine the conditions and resources that drive community assembly and structure,which are expressed by spatial variations along the altitudinal gradient.At the same time,temporal patterns were not influenced by altitude-related environmental variation,resulting in a similar dynamic behaviour across the gradient,suggesting that broad-scale factors may play a more important role than local ones.  相似文献   

6.
【目的】为了解土地利用方式对西洞庭湖洲滩湿地生态系统服务功能的影响,探索土壤含水率和物种丰富度在湿地恢复过程中所起的作用,进而为今后西洞庭湖湿地恢复工程提供指导。【方法】于2015年冬季通过收割法和生物量模型对杨树种植区域、退林还湿区域、天然洲滩这3个区域间的土壤含水率、物种丰富度和植物地上生物量差异及土壤含水率和物种丰富度与地上生物量相关性进行了初步探究。【结果】1)不同土地利用方式下洲滩土壤含水率与物种丰富度差异显著;天然洲滩土壤含水率最高,退林还湿区最低,杨树种植区和退林还湿区物种丰富度高于天然洲滩。2)不同土地利用方式下洲滩植被地上生物量差异显著;杨树林种植区的植物地上生物量高于天然洲滩,而退林还湿区与天然洲滩无差异;草本植物地上生物量呈现出天然洲滩区最高、杨树林种植区最低的规律。3)不同土地利用方式下土壤含水率与草本植物地上生物量呈正相关,物种丰富度与草本植物地上生物量呈负相关。【结论】利用和恢复工程对洲滩湿地土壤含水率和物种丰富度存在影响;土地利用方式对洲滩湿地生态系统功能存在影响;土壤含水率和物种丰富度对于修复退化湿地及生态系统功能具有重要意义。后续退林还湿工程开展可考虑人为增加土壤含水率以及移植苔草等优势物种等人工辅助措施,以促进退林还湿区域向天然洲滩湿地的演替。  相似文献   

7.
To reveal the relationship between species diversity and biomass in a eucalyptus (Eucalyptus urophylla × E. grandis) plantation located in the Dongmen State Forestry Farm of Guangxi, south China, 18 sample plots were established and the total biomass, arbor layer biomass and undergrowth biomass of communities were subsequently harvested. The results were as follows: 1) Species richness in eucalypt plantation had remarkable positive correlation with biomass of arbor layer, undergrowth and community (α = 0.001), its correlation coefficients were 0.6935, 0.7028 and 0.7106 respectively. 2) Leaf area index (LAI) had remarkable positive correlation with species richness and undergrowth biomass (α = 0.001). Its correlation coefficients were 0.7310 and 0.6856, respectively. 3) Arbor layer biomass had remarkable correlation with soil organic matter and hydrolysable N, its correlation coefficients was 0.6416 and 0.6203 respectively. Species richness had remarkable correlation with soil organic matter and correlation coefficient was 0.6359. Among them, the correlation was significant at the 0.1 level. Undergrowth biomass had little correlation with nine soil nutrients and correlation coefficients were under 0.4. To sum up, species diversity was advantageous to the promotion of the biomass of the eucalyptus plantation, and the variation of LAI and soil nutrient in small-scales could result in the difference of species diversity and biomass in different sample plots. Translater from Scientia Silvae Sinicae, 2008, 44(4): 14–19 [译自: 林业科学]  相似文献   

8.
With the aid of canonical correlation analysis, the relations among soil nutrients, soil microorganisms, and soil enzyme activities were studied in vegetation restoration areas of degraded and eroded soils in the Nverzhai watershed in northwestern Hunan. The main results were as follows: the key factors in soil nutrients, microorganisms, and enzyme activities were N and P elements, number of bacteria, carbon and nitrogen in soil microbial biomass and the activities of urease, polyphenol oxidase, phosphatase, and invertase. The activities of urease and polyphenol oxidase are related to the inversion of N and P elements that had important impact on the accumulation of carbon and nitrogen in soil microbial biomass. Moreover, the activities of urease, polyphenol oxidase, and phosphatase could promote carbon accumulation in microbial biomass; however, invertase activities inhibited the accumulation of microbial biomass nitrogen. On the other hand, urease activities were beneficial to the N element content in soils but unfavorable for P elements. There is a negative relation between polyphenol oxidase activity and N element content. For every canonical variable group, the tendencies of soil nutrients, microorganisms, and enzyme activities to accumulate in different soil layers in different vegetation restoration communities could offer some scientific basis for the diagnosis of the health of the soil and the site type division in the process of vegetation restoration.  相似文献   

9.
Much research effort is being devoted to developing forest management practices with limited impacts on biodiversity. While the impact of poplar Populus sp. plantations on biodiversity is relatively well-known at the landscape scale, the impact of alternative management practices at the plantation scale has received much less attention. Yet biodiversity is likely to be impacted by the choice of the poplar clone, stem density at plantation, type and duration of the understory control, and age at which the poplars are harvested. In this study, we investigated the impact of these factors on herbaceous plant communities with data from plant surveys conducted in 85 young (2–5 years) and 96 mature (11–17 years) hybrid poplar high-forest plantations in northern France. On average, ruderal or generalist plants contributed to 40.5% of the plot species richness; tall herbs (60.2%), forest (26%) and meadow plants (13.8%) contributed to the remaining 59.5% more specialised species. Soil moisture and soil nitrogen were major determinants of plant communities: wet soils were favourable to tall herbs, while meadow and forest species preferred moist soils; a significantly lower diversity of the three species groups was reported in the nutrient richer soils (in mature plantations only for forest plants). Mean species richness decreased with plantation age except for forest species. Plant communities in young plantations showed little differences in composition according to the type of understory control (chemical, mechanical or both). The development of a shrubby layer in mature plantations was restricted to the drier soils and was detrimental to both meadow plants and tall herb species. Effects of previous land use on forest and tall herb species were found only in young plantations, suggesting a rapid reset of plant communities for these two groups. This may not be the case for meadow species as the influence of previous land use was significant in mature plantations only. Finally, clone type and stem density at plantation had no significant impact on plant communities. Adjusting age at which the poplars are harvested seems the only effective way to drive plant communities in high-forest poplar plantations: delaying poplar harvest (probably beyond 15–20 years) would benefit forest plants, while advancing poplar harvest (about 10 years) would benefit tall herbs, especially in wet soil conditions.  相似文献   

10.
Types and structure of plant communities in the Yellow River Delta were investigated by using detrended canonical correspondence analyses (DCCAs) and a two-way indicator species analysis (TWINSPAN). The distribution pattern and influential factors of the plant communities were also analyzed by testing elevation, slope, soil characteristics, longitude and latitude of 134 vegetation samples collected by representative plot sampling methods. Results showed that all the 134 vegetation samples could be divided into seven vegetation groups, separately dominated by Robinia pseucdoacacia, Imperata cylindrical, Miscanthus saccharifleus, Suaeda salsa, Aeluropus sinensis, Phragmites australis and Tamarix chinensis. The vegetation distribution pattern was mainly related to elevation, ground water depth and soil characteristics such as salinity and soluble potassium. Among the factors affecting distribution pattern of the plant communities, the species matrix explained by non-spatial environmental variation accounts for 45.2% of total variation. Spatial variation and spatial-structured environmental variation explain 11.8%, and 2.2%, respectively. Remained 40.8% of undetermined variation is attributed to biological and stochastic factors.  相似文献   

11.
在野外样方调查和主要环境因子测定的基础上,利用聚类分析和DCCA排序技术对新疆阿尔泰山小东沟林区的森林植被进行类型划分,并定量分析植被与环境因子的关系。结果表明:利用聚类分析可将阿尔泰小东沟林区的木本植物群落划分为6个类型(灌丛、欧洲山杨林、苦杨林、疣枝桦林、新疆落叶松林和新疆落叶松与新疆冷杉、新疆云杉的针叶混交林)。DCCA排序分析表明,海拔和坡向等地形因子以及土壤类型、土壤全氮、土壤全磷、土壤水分含量和大石砾含量等土壤因子是影响阿尔泰林区植物分布的主要因子,林区不同群落类型的分布格局主要是由地形和土壤因子的共同作用所控制的。  相似文献   

12.
We assessed the composition of understory vascular plant communities in relation to the mosaic of canopy patch types, and their associated structure and environment, within unmanaged, mature boreal mixedwood forests in western Canada. Within a 30 km2 area, we sampled patches of four different canopy types: conifer-dominated, broadleaf-dominated, mixed conifer-broadleaf, and canopy gaps (total n = 98). There were significant differences in understory composition among the four patch types (based on multi-response permutation procedure (MRPP)) and these were mainly due to differences in relative abundances of understory species. The understory communities of conifer patches were characterized by low abundances of shade intolerant species while shade-tolerant and evergreen species were indicators (based on an indicator species analysis (ISA)). Understory communities under gap and broadleaf patches were characterized by higher abundances of grasses and shade intolerant species. Gap, broadleaf, and mixed patches had higher abundances of certain shrub species than did conifer patches. The patch types also differed in terms of their environmental conditions. Conifer patches had drier, cooler soils and the lowest understory light. Broadleaf patches had the warmest soils while understory light during the leaf-off period was similar to that of canopy gaps. Gap patches had the lowest litter cover and PO4 availability and the highest light. Seven environmental variables (soil moisture, soil temperature, total light during the leaf-off period, cover of coarse and fine downed woody material, and availability of NH4+ and Ca2+) were significantly related to understory species composition (in a constrained ordination by means of a distance-based redundancy analysis (db-RDA); 16.5% of variation in understory community data explained). Even within a single patch type, there was substantial environmental variation that was related to understory species composition. Our study suggests that the mosaic of canopy patches within mixedwood forests supports coexistence of both early and late successional understory plant species in mixedwood stands. Maintaining the mixture of canopy patch types within mixedwood stands will be important for conserving the natural patterns of understory plant composition in boreal mixedwood forests.  相似文献   

13.
Tree plantations are increasingly common in tropical landscapes due to their multiple uses. Plantations vary in structure and composition, and these variations may alter soil fauna communities. Recent studies have demonstrated the important role of soil fauna in the regulation of plant litter decomposition in the tropics. However, little is known about how plantation species affect soil fauna populations, which may in turn affect the biogeochemistry of the plantation system. We measured soil macroinvertebrate abundance and biomass in 9-year-old N2-fixing Leucaena leucocephala, Casuarina equisetifolia, and non-N2-fixing Eucalyptus robusta plantations on a degraded site in Puerto Rico. Nutrient concentrations and standing stocks of forest floor litter were also determined to examine the relationship between litter chemistry and soil macroinvertebrates. Leucaena plantations had significantly higher abundances and biomass of millipede species than Casuarina and Eucalyptus. Earthworm biomass did not differ among plantation treatments. Nitrogen, P, and K concentrations were generally higher in Leucaena litter, which resulted in higher standing stocks of these nutrients in fragmented, moderately decomposed litter (Oe horizon). Millipede biomass was highly correlated to N concentration and C/N ratio in the Oi litter horizon. These results suggest that plantation species differ in their influence on soil fauna, and the biomass and abundance of soil fauna can be regulated through careful selection of plantation species in degraded tropical lands.  相似文献   

14.
Forested riparian buffers in California historically supported high levels of biodiversity, but human activities have degraded these ecosystems over much of their former range. This study examined plant communities, belowground biodiversity and indicators of multiple ecosystem functions of riparian areas across an agricultural landscape in the Sacramento Valley of California, USA. Plant, nematode and soil microbial communities and soil physical and chemical properties were studied along 50-m transects at 20 sites that represented the different land use, soil and vegetation types in the landscape. Riparian zones supported greater plant diversity and nearly twice as much total carbon (C) per hectare compared to adjacent land managed for agricultural uses, but had generally lower soil microbial and nematode diversity and abundance. When woody plant communities were present in the riparian zone, plant diversity and species richness were higher, and soil nitrate and plant-available phosphorus levels were lower. Belowground diversity and community structure, however, appeared to depend more on plant productivity (as inferred by vegetation cover) than plant diversity or species richness. Greater plant species richness, nematode food web structure, total microbial biomass, woody C storage and lower soil nitrate and phosphorus loading were correlated with higher visual riparian health assessment scores, offering the possibility of managing these riparian habitats to provide multiple ecosystem functions.  相似文献   

15.
【目的】研究寒温带森林根际土壤微生物量碳氮含量的动态变化,为揭示森林土壤碳氮养分利用机制和碳氮循环提供参考,为研究区森林保护与合理经营提供科学依据。【方法】以我国寒温带针阔混交林为研究对象,选择主要组成树种樟子松、兴安落叶松、白桦和山杨,采用抖落法采集根际和非根际土壤样品,对土壤微生物量碳氮含量动态特征进行研究,探讨不同树种根际土壤微生物量碳氮的富集程度、差异性和生长季变化以及其对土壤营养库的贡献率。【结果】不同树种根际土壤微生物量碳氮含量月际变化差异显著,根际土壤微生物量碳含量波动范围为114.14~451.05 mg ·kg -1 ,氮含量波动范围为40.38~185.00 mg ·kg -1 。根际土壤微生物量碳富集率依次为樟子松(87.99%)>白桦(78.22%)>兴安落叶松(73.14%)>山杨(56.96%),微生物量氮富集率依次为山杨(81.50%)>白桦(77.63%)>樟子松(76.42%)>兴安落叶松(51.40%)。土壤微生物量碳氮比为1.42~5.24,樟子松、兴安落叶松、白桦、山杨根际和非根际土壤微生物量碳氮比生长季变幅分别为1.42~5.24、1.57~3.79、1.67~4.55、1.55~2.59和1.79~3.53,其均值分别为2.64、2.63、2.81、2.11和2.36。根际微生物量碳对土壤有机碳库的贡献率为0.83%~0.95%,微生物量氮对土壤有机氮库的贡献率为3.63%~5.08%。【结论】寒温带针阔混交林主要树种生长季根际土壤微生物量碳氮含量均显著高于非根际,根际效应显著;在生长季末期,针叶树种根际效应相比阔叶树种更为强烈;针叶树种根际土壤微生物量对土壤结构和功能的影响高于阔叶树种。  相似文献   

16.
We investigated central Mediterranean Pinus halepensis plantations under semi-arid climate in order to evaluate the combined effect of soil treatment and afforestation practices on spontaneous plant species composition,richness and evenness,and on the trend and speed of vegetation dynamics.Phytosociological relevés of three different plot typologies,i.e.(1) soil-treatment and plantation,(2) only soil-treatment,(3) no soil-treatment and no plantation,were compared by(a) multivariate analysis and(b) with reference to species richness and evenness.Moreover,in order to compare vegetation dynamics within the plantations with those ones ongoing in semi-natural garrigue communities,we compared life form and syntaxonomic spectra between phytosociological relevés taken at 8 years of distance.DCA showed that floristic species composition and similarity are influenced by the canopy cover of Pine trees as well as by soil-treatment practices.Although species richness and evenness are not clearly related to neither soil treatment nor Pine afforestation,canopy cover clearly plays a major role:in fact,the highest Ph cover rates correspond to the lowest values of understory species richness.This is true also if only species of biogeographical/conservation interest are considered.Regarding vegetation dynamics,sites with dense Pine canopy cover evolve much slower than the adjacent garrigue communities.The same factors invoqued to explain the patterns of floristic composition and similarity(i.e.allelopathy and competition for light,water and nutrients) may also explain the lowering of diversity of therophytes and the strong decline of the cover perfomed by both therophytes and hemicryptophytes underneath the canopy of dense Ph plantations.Thus,in sites where Ph cover exceeds about 80%,thinning is recommended not only in order to accelerate succession,but also to give a natural ’shape’ to afforestations.  相似文献   

17.
A study was carried out in southern Indiana, USA with the objective of comparing soil core sampling and the minirhizotron technique in quantifying fine root biomass and root distribution patterns in an alley cropping system with black walnut (Juglans nigra L.), northern red oak (Quercus rubra L.) and maize (Zea mays L.). Spatial variation in tree rooting pattern was investigated prior to planting maize. Tree fine root biomass was quantified at distances of 0, 1.1, 2.3, 3.5, and 4.3 m where 0 m represents the tree row and 4.3 m represents the middle of the alley. Root samples were collected to a depth of 90 cm using a hydraulic auger. Maize rooting pattern was determined 65 days after planting to the same depth. Using plexiglass access tubes installed near the actual soil core locations and a minirhizotron camera root images were recorded on a VHS tape. These images were later analyzed using a raster based GIS software (ERDAS-IMAGINE). Regression analysis revealed significant relationships between root surface area measurements from minirhizotron observations and fine root biomass data from soil coring for all species. Predicted fine root biomass data were also in close agreement with actual fine root biomass for all species examined. Maize root biomass was slightly, but not significantly, underestimated by the minirhizotron technique in the top 30 cm soil layer. No significant underestimation or overestimation of root biomass in surface or deeper soil layers was observed for the tree species. The results indicate that minirhizotron can be used in quantifying fine root biomass if site and species specific predictive models can be developed. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

18.
Several management practices that are employed in Montados are known to affect the establishment and maintenance of Basidiomycota communities immediately after disturbances have occurred, contributing to their development or, conversely, decreasing their diversity. In this study we aim to evaluate the effects of the most common understory and soil-management practices on the diversity of the epigeous Basidiomycota a long time after disturbances have taken place. The study was conducted in a Montado (cork and holm-oak ecosystem) area in Southern Portugal (Alentejo). In 1998, four experimental treatments—control (C), mulching (Mu), mowing (Mo) and ploughing (P)—with three replicates each were carried out: C—untreated/untouched; Mu—cutting of shrubs followed by deposition of plant residues on soil surfaces; Mo—cutting of shrubs followed by biomass removal and soil tilling; P—cutting of shrubs followed by the incorporation of plant biomass into the soil through tillage. Macrofungal surveys were conducted fortnightly in the experimental plots between Autumn 2007 and Spring 2012. Significant differences in total and mycorrhizal richness were found between plots, with higher values being found for non-tilled plots and lower values for tilled plots. No significant differences were found in saprotrophic richness between treatments. Regarding the composition of taxa, Boletus and Russula were the main taxonomic groups affected by experimental treatments. Our results showed that soil tillage can result in a decrease in mycorrhizal taxa even a long time after disturbances have taken place.  相似文献   

19.
调查了天津滨海新区湿地野生植物群落,计算出各群落中优势种的重要值,并应用典范对应分析法对湿地植被群落类型及其分布与主要环境因子之间的关系进行了研究。结果表明:1)土壤含盐量、土壤pH值以及滨水距离的差异是形成滨海新区湿地植物分布格局的三个主要环境因素。2)三个主要环境因素之间存在相关关系,滨水距离能够对土壤理化因子的数量和强度进行再分配,间接影响了物种生存状态。三个主要环境因素不仅决定了群落在排序空间中的位置,也决定了群落物种组成。3)优势种的分布与样方的分布格局极其相似,优势种的分布格局在一定程度上决定了群落类型的分布格局。  相似文献   

20.
We analyzed the relationship between species richness and biomass in natural forest communities at two similar sites on Mt. Xiaolongshan, northwest China. At both sites, a wide range of tree layer biomass levels was available by local biomass estimation models. In order to identify underlying mechanism of the species richness-biomass relationship, we included different water resource levels and number of individuals in each plot in our analysis. We sampled 15 and 20 plots (20 m ×20 m), respectively, at both two sites. These plots were sampled equally on the sunny slope and the shady slope. Species richness, number of individuals of each species and diameter at breast height (DBH) as a substitute of biomass of tree layer were recorded in each sample. At one site, the relationship between species richness and biomass was significant on the sunny slope, and this relationship disappeared on the shady slope due to more environmental factors. The relations between species richness and number of individuals and between number of individuals and biomass paralleled the species richness-biomass relation on both slopes. The difference in number of individuals-biomass relationships on the sunny slope and the shady slope revealed "interspecific competitive exclusion" even though the species richness-biomass relationships were not hump-shaped. At the other site, species richness was not related to biomass or to number of individuals. Our study demonstrated the importance of environmental stress and succession of community in the understanding of species diversity-productivity patterns.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号