首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
SBP (SQUAMOSA promoter binding proteins)家族是植物特有的一类转录因子家族,广泛存在于绿色植物中,调控植物生长发育、信号转导及响应非生物胁迫等多种生理过程。已有多种植物SBP-box基因相继被报道。为探究SBP-box基因在甘薯中的分布情况及对甘薯生长发育的影响,本研究从甘薯全基因组鉴定出30个SBP-box基因,依次命名为IbSPL1~IbSPL30,并分析了其基因结构、蛋白质结构和理化性质、系统进化关系、串联重复、启动子顺式作用元件分布和组织特异表达情况等。结果表明大部分甘薯SBP-box蛋白理化性质、结构有一定分化,甘薯SBP-box蛋白与拟南芥同源进化关系较近,不同亚家族间具有不同数量和类型的motif分布;甘薯SBP-box基因在染色体上分布较为均匀,除3条染色体外,其余12条染色体均有1~4个SBP-box基因分布,共线性分析发现甘薯SBP-box基因可能来源于多次片段重复事件;通过启动子区域顺式作用元件分析和不同组织、不同处理下的差异表达分析,发现16个基因与甘薯地上部分的生长发育相关,7个基因与干旱胁迫响应相关。本研究从各个角度分析...  相似文献   

2.
MAPK在植物的生长发育调节、生物和非生物胁迫反应、激素信号转导中具有重要作用。系统分析谷子SiMPKs基因家族成员全基因组分布、结构、进化及其响应不同胁迫的表达特性,对于阐明其生物学功能具有重要意义。本研究利用谷子和水稻MAPK蛋白保守结构域及特异TXY基序的氨基酸序列在全基因组水平鉴定了谷子SiMPKs家族成员,分析其蛋白质理化性质、系统进化、染色体定位、基因结构、蛋白质保守基序、启动子顺式作用元件及共线性等。利用荧光定量PCR技术,分析了谷子SiMPKs在不同组织部位和谷锈菌、玉米螟病虫害生物胁迫以及不同激素处理下的表达模式。结果显示,共鉴定到15个谷子SiMPK成员,其编码的蛋白质含有220~611个氨基酸,相对分子量范围25.77~69.63 kD,等电点范围5.46~9.34。系统进化分析表明, SiMPK基因分为4组, A、B、C组包含TEY基序,D组包含TDY基序。SiMPK基因分布在1号、3号、4号、5号、8号和9号染色体上,含有3~11个外显子,所有SiMPK蛋白均含有motif1与motif2。上游2000bp启动子区域预测到多个与胁迫、激素和植物生长发育等相关的...  相似文献   

3.
本研究旨在鉴定甘草ARF基因家族并分析其在非生物胁迫下的表达模式。以乌拉尔甘草(Glycyrrhiza uralensis Fisch.)为研究对象,利用生物信息学方法对ARF基因家族进行鉴定,并对其蛋白质理化性质、保守结构域、基因结构、进化关系、顺式作用元件和表达模式分析。鉴定得到10个甘草ARF基因。其蛋白氨基酸序列长度在301~945 aa之间,分子量约为33.07~104.37kDa,等电点为5.93~8.50。亚细胞定位分析显示甘草ARF蛋白均位于细胞核。保守结构域分析显示GuARF蛋白大多包含B3、Auxin_resp和Aux/IAA结构域。基因结构发现外显子数量从6个到22个不等。在甘草ARF基因启动子区还存在5类不同的顺式调控元件。系统进化分析表明甘草ARF蛋白分为3类。转录组数据分析显示,10个GuARF基因在非生物胁迫下具有一定表达特异性。上述结果显示甘草ARF基因家族可能参与多种生物过程,这为进一步研究植物对非生物胁迫的生理和分子反应提供了有价值的信息。  相似文献   

4.
microRNA(miRNA)是一类内源性小分子非编码RNA,它通过引导mRNA的裂解或抑制翻译调控靶基因在植物种子发育和响应非生物胁迫过程中起着关键作用。为了进一步鉴定和明确与种子发育及响应非生物胁迫相关的miRNAs功能和调控机制,归纳了植物中参与种子胚和胚乳发育调控及响应低温、盐、干旱等非生物胁迫的miRNAs类型、靶基因及功能。miRNA在进化上高度保守,其表达在生物发育过程中具有明显的组织特异性和时间特异性,但在不同植物之间又有着相似性。然而,目前miRNAs生物发生和功能的调控因子是如何在转录或转录后被调控的以及miRNAs是如何利用转录裂解和翻译抑制机制来调控其靶点的还有待进一步阐明。未来对这些问题的研究不仅能为植物种子发育和植物响应非生物胁迫机制提供新的见解,而且能为基因的转录后调控研究提供更多的思路。  相似文献   

5.
AP2基因家族是与植物有关的转录因子家族,它广泛地参与到植物的多个生物学过程中,同时调控生物和非生物胁迫反应以及植物次生代谢产物合成。为了揭示甘薯AP2基因家族的生物学信息,利用生物信息学的方法鉴定了甘薯AP2基因家族的成员,并从理化性质、亚细胞定位、跨膜结构、二级结构、三级结构等九个方面对甘薯AP2基因家族成员进行了预测和分析。这些研究结果为进一步研究甘薯AP2基因家族成员的功能提供了参考依据,同时在生产实践中也具有一定的应用价值。  相似文献   

6.
甜菜组学技术研究进展   总被引:2,自引:2,他引:0  
转录组学、蛋白组学、基因组学和代谢组学等组学技术具有高通量、高灵敏度和系统性等优点,已成为在分子水平上研究植物应对生物胁迫和非生物胁迫的强有力工具。本研究综述了近年来国内外在甜菜组学技术方面的相关研究,包括甜菜在生物和非生物胁迫下的抗逆分子机理研究、细胞质雄性不育(CMS)结构基因和基因辅助甜菜育种功能研究,这些研究对于培育优良甜菜品种具有重要的理论价值。下一步应加强多种组学结合的研究策略,并结合基因功能鉴定发掘更多的甜菜优质基因资源。  相似文献   

7.
果糖1,6-二磷酸醛缩酶(FBA)是植物体内的一种参与糖酵解、糖异生和卡尔文循环的关键酶。FBA基因已被证实在植物生长发育及多种生物和非生物胁迫响应过程中发挥重要的作用,但目前对西瓜中FBA基因的研究却几乎空白。本研究采用生物信息学手段在西瓜基因组中共鉴定到5个Cl FBA基因,并对它们的保守结构域、基因结构、染色体位置、进化关系、亚细胞定位、基因复制事件、启动子顺式作用元件等进行预测和分析。根据进化和亚细胞定位分析,西瓜FBA蛋白主要分为两类,分别主要定位在叶绿体和细胞质中。此外,我们还利用荧光定量PCR对Cl FBA基因的时空表达模式进行分析,发现大部分西瓜Cl FBA基因在茎和果实中优势表达。同时对西瓜Cl FBA基因在不同生物和非生物逆境处理后的响应模式进行分析,鉴定到一批不同胁迫响应的Cl FBA基因,为西瓜的抗病和抗逆育种提供了重要的分子基础。  相似文献   

8.
棉花GR基因家族的全基因组鉴定及分析   总被引:1,自引:1,他引:0  
【目的】谷胱甘肽还原酶基因(Glutathione reductase gene,GR)家族参与植物生长发育和非生物胁迫响应等生物进程,但其在棉花中的特性及功能尚不清楚。本研究通过在异源四倍体陆地棉(Gossypium hirsutum)、海岛棉(G. barbadense)及其可能的二倍体祖先种亚洲棉(G. arboreum)和雷蒙德氏棉(G. raimondii)中对GR基因家族全基因组鉴定与特性分析,分析棉种分化及异源四倍体棉花形成过程中GR基因的进化历程,探讨其在非生物胁迫响应中的作用,为后续相关研究提供理论基础。【方法】利用生物信息学方法鉴定陆地棉、海岛棉、雷蒙德氏棉、亚洲棉的GR基因家族成员;解析GR基因家族成员的理化性质、序列特征、染色体位置、系统发育及表达模式。【结果】共鉴定到18个GR基因家族成员,陆地棉、海岛棉、雷蒙德氏棉和亚洲棉中GR基因数目分别为6、6、3和3个。系统发育分析发现GR基因分为2个亚组,同一亚组基因具有相似的外显子数目和基因结构。对同源基因的非同义突变率(Ka)及同义突变率(Ks)分析发现Ka/Ks值均小于1,表明在进化过程中GR基因经历了较强的纯化选择作用。陆地棉GR基因的表达模式分析表明,所有的GR基因均积极响应胁迫环境,但在不同的非生物胁迫下,基因的表达模式有明显差别。【结论】本研究探讨了GR基因家族在亚洲棉、雷蒙德氏棉、海岛棉和陆地棉基因组中的进化及功能,可为棉花GR基因后续研究提供理论基础。  相似文献   

9.
ERF(Ethylene-responsive element binding factors)是调控植物生长发育和响应胁迫的重要转录因子,在植物应对生物及非生物胁迫反应、调控胁迫相关功能基因的表达、提高植物的抗逆性中起着重要的作用。分析甜菜ERF转录因子基因在非生物胁迫下的表达规律,旨在为深入研究ERF转录因子在甜菜逆境胁迫应答中的作用机制提供理论依据。本研究以高糖型甜菜品系‘BS02’为试材,利用RT-PCR方法克隆得到Bv_ammr基因,并对其进行生物信息学分析。该基因CDS区长906 bp,编码301个氨基酸。蛋白质分子量为33.19 kD,理论等电点为8.61,其二级结构以无规则卷曲和α-螺旋为主,具有一个AP2保守结构域;氨基酸序列的同源性和进化树分析显示其编码蛋白与马兜铃菌毛所编码的蛋白亲缘关系较近。采用实时荧光定量PCR方法观测非生物胁迫下该基因表达模式,结果表明,Bv_ammr基因对低温、高温、干旱、盐、ABA等非生物胁迫有不同程度响应。  相似文献   

10.
《分子植物育种》2021,19(8):2500-2511
海藻糖磷酸合成酶(TPS)在植物响应多种非生物胁迫及生物胁迫时起着重要的作用,但目前对甘蓝型油菜中TPS基因的了解甚少。本研究运用生物信息学方法在甘蓝型油菜基因组中筛选甘蓝型油菜TPS家族基因,对鉴定出的31个BnTPSs基因进行分子特征、蛋白特性、蛋白结构域、保守基序、顺式作用元件、KaKs、染色体定位、系统进化树构建等研究。系统发育分析表明,BnTPS家族分为Ⅰ和Ⅱ类,家族成员数明显比甘蓝、白菜和拟南芥中的TPS基因数多,不规则分布于染色体上。多数蛋白呈酸性,分别在N端和C端具有TPS和TPP结构域。顺式作用元件分析表明,TPS家族与植株抗逆境胁迫有关。KaKs分析表明,大多BnTPSs家族成员有多拷贝基因,基因在纯化选择压力下进化。本研究结果为进一步研究甘蓝型油菜TPS家族基因生物学功能尤其在响应逆境中的功能奠定理论基础。  相似文献   

11.
亲环蛋白(CYP)基因家族是一类含有CLD保守结构域的蛋白质,参与多种生物过程,在蛋白质运输、受体信号转导、mRNA剪接、细胞凋亡及生物与非生物胁迫的应激反应中发挥重要作用。目前,已在多种植物中对亲环蛋白基因家族进行了鉴定和分析,但未见柑橘CYP基因家族筛选和鉴定的报道。本研究从美国柑橘和中国甜橙中分别筛选出30个和32个亲环蛋白基因家族成员,根据结构域的不同,将62个成员分成7个亚家族。进化分析结果表明,具有相似结构域的基因聚在一起,表明亲环蛋白基因家族可能在物种分化前已经分化。在美国柑橘和中国甜橙CYP中均含有2个基因簇并筛选出26对同源基因。这些CYP基因在不同的组织中表达谱不同,7种组织中表达量最高的基因可能与免疫抑制、蛋白质运输、根系的生长及光调控功能相关,表明这些亲环蛋白可能在生物过程中起重要作用,本研究结果为进一步研究柑橘基因功能和进化提供科学依据。  相似文献   

12.
13.
MYB是植物中数量众多且功能重要的转录因子家族.本研究通过生物信息学方法从未经注释的甘薯全基因组序列中筛选鉴定出MYB家族基因,分析了R2R3-MYB类基因的结构与功能.结果 发现,甘薯基因组中含有R2R3-MYB转录因子基因88个,均含有完整的R2、R3保守结构域,且R2、R3保守结构域中分别含有8个和9个高度保守的碱性氨基酸.MEME分析结果表明,甘薯R2R3-MYB蛋白序列中含有10个保守基序,其中80%以上的R2R3-MYB序列中含有motif 1、motif2、motif3、motif4、motif5以及motif7;利用circos软件定位R2R3-MYB序列在染色体上的分布情况,发现甘薯88个R2R3-MYB基因不均匀分布在15条染色体上,其中5号染色体上数量最多,达15个,4号和13号数量最少,仅2个,经序列比对分析,发现它们在染色体内和染色体间均存在复制关系,其中存在于染色体间潜在复制关系的基因有6对,染色体内有20对,且这20个基因对中有19对在染色体上成簇状分布.经序列功能预测与归类,有44个R2R3-MYB转录因子基因可归入拟南芥R2R3-MYB基因分类的13个亚组中,分别参与响应生物与非生物胁迫、花青素合成、花药发育等途径.进一步分析发现,甘薯中有36个R2R3-MYB转录因子基因可能在响应生物和非生物胁迫上发挥重要功能,其中9个基因在尖孢镰刀菌(Fusarium oxysporum f.sp.batatas,Fob)胁迫下表达量出现明显上调/下调变化,27个在低温胁迫下表达量出现明显上调/下调变化.甘薯R2R3-MYB转录因子结构域高度保守,R2和R3结构域中均含有较高的保守基序;进化树及转录组测序分析显示部分基因可能参与植物生长发育、代谢调控以及生物与非生物胁迫等途径,可为甘薯抗性育种提供参考.  相似文献   

14.
卵形蛋白家族(OFPs)是一类含有保守OVATE结构域的蛋白质,最早在番茄中发现,被证明与果实形状有关。作为植物特有的新型转录因子,卵形蛋白在植物的生长发育、生物和非生物胁迫过程中发挥着重要的调控作用。水稻基因组中含有33个OFPs编码基因(OsOFPs),广泛参与调节次生细胞壁形成、维管束和胚囊发育以及非生物胁迫应答,且通过参与植物激素介导的信号途径调节水稻粒型和株型发育等过程。本研究结合拟南芥和番茄等植物中的相关研究,系统地总结了OsOFPs的基因功能及其参与调节水稻生长发育和胁迫响应的相关机制,并对OsOFPs家族的研究方向进行了展望,以期为今后OsOFPs的功能探究提供新的研究思路和理论参考。  相似文献   

15.
Prohibitins(PHBs,抗增殖蛋白基因),又称抑制素基因。为了了解植物PHBs基因分类、结构与定位,从而进一步了解PHBs基因的功能。本研究从PHBs基因的分类与结构,PHB蛋白的结构与大小,亚细胞定位,以及从PHB蛋白控制植物的生长发育、与线粒体形成相关的功能,PHB蛋白与逆境相关的功能研究方面,对植物PHB,基因的研究进展进行简单的总结。从而得出植物PHBs基因不仅控制植物的生长发育,还是一类参与各种胁迫响应的重要基因。尽管国内外学者对PHB蛋白能提高生物对逆境的抗性等方面做了一些的工作,为抗性育种奠定了基础,但仍然有大量工作需要进一步开展。  相似文献   

16.
谷胱甘肽S-转移酶是一种多功能蛋白酶,在植物体内参与干旱、盐、低温、重金属等多种非生物胁迫的调节;山羊草是普通小麦D染色体组的供体物种,深入挖掘山羊草中GST基因,对进一步分析六倍体小麦GST基因的功能具有重要意义。本研究利用信息生物学手段,在山羊草中共发现114条GST基因序列,分属于6个亚族;基因复制分析发现共4对基因发生了基因复制,且均为纯化选择;采用荧光定量PCR对部分GST基因在非生物胁迫下的表达分析发现,8个GST基因在响应干旱和盐胁迫时,主要在根部显著上调表达,3个GST基因在响应低温胁迫时,在根和叶中均显著上调表达,说明山羊草中的GST基因在应答非生物胁迫时,在不同组织中的表达存在着差异。  相似文献   

17.
李莹  柳参奎 《中国农学通报》2014,30(30):246-254
在植物整个生长发育过程中时刻受到外界环境信号调控,遭遇各种逆境胁迫。在研究植物对逆境胁迫响应中,很多胁迫响应蛋白被发现。植物类萌发素蛋白(Germin-like proteins,GLPs)是其中一类重要的胁迫响应蛋白。它是一类与小麦萌发素(Germin)序列高度同源的、位于胞外基质的可溶性糖蛋白,几乎在所有生物中均发现有该类蛋白的存在。它具有多种生物学功能,在植物的生长发育阶段、生物和非生物逆境胁迫应答中起重要的作用。从植物GLPs 的分类、结构等方面全面介绍了植物GLP蛋白的主要特点,同时归纳它在抵御生物胁迫及非生物胁迫等方面的研究进展,为今后的进一步研究提供参考。  相似文献   

18.
ADH转录因子在植物的生长发育和非生物胁迫响应中起重要的调控作用。本研究基于全基因组数据,从茶树基因组中鉴定到51个ADH基因,对其基因结构、进化关系、保守域、染色体定位进行分析,同时分析它们在PEG诱导的干旱胁迫、盐胁迫和冷处理中的转录组数据。结果表明:51个茶树CSADH基因在茶树染色体上分布不均;根据进化关系将茶树ADH基因分为Ⅱ类;基因结构和保守基序分析发现相同亚家族的基因结构和保守结构域基本一致;基因表达分析显示,CSADH基因在花和果实组织中具有较高的表达水平,部分基因随着叶片成熟度的增加,表达水平升高;不同的CSADH基因在PEG诱导的干旱胁迫和冷处理下存在差异表达,说明CSADH基因广泛参与茶树生长发育和响应非生物胁迫中发挥重要作用。茶树ADH基因家族的鉴定与表达分析,为深入解析ADH基因响应茶树生长发育和非生物胁迫中的功能及分子机制提供理论依据,进一步为茶树抗逆育种提供更多基因资源。  相似文献   

19.
《分子植物育种》2021,19(7):2089-2096
干扰素相关发育调节因子(interferon-related developmental regulator factor, IFRD)在动物中有较深入研究,参与动物细胞发育和分化及多种疾病的发生,但是在植物中研究较少。为了挖掘植物IFRD基因的功能,本研究对禾本科模式作物水稻IFRD基因家族成员进行了系统的生物信息学分析。本研究鉴定得到5个水稻IFRD基因家族成员,分布在4条染色体上,根据进化树把它们分为2个亚家族,不同亚家族成员具有不同的基因组结构、蛋白质保守基序和表达模式。高温、盐胁迫处理后的转录组测序分析结果显示,该基因家族成员(OsIFRD3, OsIFRD4)对逆境的响应变化差异显著;蛋白质相互作用分析结果显示水稻IFRDs可能与mRNA可变剪接因子、甲硫氨酰t RNA合成酶、rRNA加工蛋白相互作用;启动子分析显示水稻IFRD启动子具有非生物胁迫和植物激素响应元件。综上表明水稻IFRD基因家族可能通过调控m RNA可变剪接和蛋白质的合成参与高温、盐胁迫逆境响应途径。本研究为深入解析水稻IFRD基因功能提供了重要信息。  相似文献   

20.
转录因子(TF)对于调节植物靶基因的表达起到关键作用。脱水响应元件结合因子(DREB)是植物特异性转录因子家族,其成员参与调控植物对各种非生物胁迫的反应。然而,DREB家族尚未在油料树种文冠果(Xanthoceras sorbifolium Bunge)中得以鉴定,文冠果是中国北方最重要的耐逆树种之一。因此,本研究旨在以文冠果全基因组测序数据为基础,系统鉴定并表征文冠果中的DREB家族成员,利用转录组测序的方法分析XsDREB基因对于非生物胁迫的特异性响应。在本研究共获得54个文冠果DREB家族成员,它们均编码AP2结构域且大多数成员基因中缺乏内含子,可根据系统发育情况分为6个亚组。此外,RNA-seq结果显示14个XsDREB基因在冷胁迫下上调或下调,8个基因被发现参与盐胁迫响应。本研究结果为进一步研究文冠果DREB基因的功能奠定了基础,并将有利于文冠果的遗传改良。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号