首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Soil column studies were conducted with two soils to assess the effects of irrigation with wastewater on soil and groundwater quality. Upon the application of wastewater, exchange occurred between solution sodium (Na+) and exchangeable cations (Ca2+, Mg2+, K+), whereby these cations were released into solution. The average exchangeable sodium percentage (ESP) of the soils increased during leaching from 9 to 21 and 28.8 to 29.7 after applying 5.0 and 3.5 l (about 7 and 6 pore volumes) of wastewater to the soils columns, respectively. Adverse effect of high Na+ concentration in the wastewater on raising ESP was less pronounced in the soil having initial high ESP than in the soil with low initial ESP. Salinity of the soils was also increased with the application of wastewater and Mg2+ and K+ were leached from the soils. These losses would be more severe on soils having a low cation exchange capacity and if, uncorrected could lead eventually to their deficiencies for plant growth. When the soil columns were leached with distilled water the flow rate of one soil decreased to zero after 2.2 pore volume indicating damage to soil structure. Irrigation with wastewater, which is generally more sodic and saline than regional groundwater, increases the rate of soil sodification of shallow groundwater. A relatively simple chromatographic model was used to estimate final ESP profiles in the soils assuming the condition of local equilibrium. This approach had a limited success for one of the soil. Since the final leached concentrations are in good agreement with those of wastewater, we attribute these differences to non-uniform flow through the column. In terms of practical soil and water management, our study reveals that relatively simple means can be useful to predict the water quality in soils, their discharge to ground water, and the hazard of soil structure deterioration.  相似文献   

2.
The use of treated sewage effluent in agriculture has been a current practice in several countries. However, in Brazil, there are few studies about this subject. This research work aimed at evaluating the potential utilization of secondary-treated sewage effluent (STSE) as an alternative source of water and nitrogen (N) for Tifton 85 bermudagrass pasture. A field experiment was carried out at Lins, State of São Paulo, Brazil, for 2 years, using a randomized complete block design, with four replications and five treatments, as follows: (i) T1 (control) – irrigation with potable water and addition of mineral-N fertilizer (MNF) – 520 kg N ha−1 year−1; (ii) T2–T5 – irrigation with STSE (31.9 mg total-N L−1) and addition of MNF – 0, 171.6, 343.2 and 520 kg N ha−1 year−1, respectively. Potable water and STSE characteristics were monitored monthly; above ground grass dry matter yield (DM) and crude protein content (CP) were determined bimonthly. Increases in DM and CP were observed for the high MNF rates associated with irrigation with STSE. STSE irrigation can efficiently substitute potable water for irrigation of Tifton 85 bermudagrass pasture and, simultaneously, save 32.2–81.0% of the recommended N rate without loss of grass DM and CP yield.  相似文献   

3.
4.
The scarcity of freshwater resources is a critical problem in semi-arid zones and marginal quality water is increasingly being used in agriculture. This paper aimed at evaluating the physico-chemical and biological risks on irrigated soils and fruits of macrophyte treated wastewater (TWW), the nutrients supply, and the effect on tomato and eggplant production in semi-arid Burkina Faso. During three years of experiments, treated wastewater was used, with fresh water as control, in combination with or without mineral fertilizer application at recommended rate (140 kg N/ha + 180 kg P2O5/ha + 180 kg K2O/ha). The study revealed that the treated wastewater provided variable nutrients supply depending on year and element. The treated wastewater without mineral fertilizer improved eggplant yield (40% in average) compared to the freshwater. Both crops responded better to mineral fertilizer (52% for tomato and 82% for eggplant) and the effects of the treated wastewater and fertilizer were additive. As the N supply of TWW was very unsteady (8-227% of crop need), and P2O5 supply did not satisfy in whole crop need (3-58%) during any of the three years of experiment, we recommended that moderate N and P2O5 fertilizers be applied when irrigating with TWW in semi-arid West-Africa. On the contrary, the K2O supply was more steady and close to crop requirement (78-126%) over the three years of experiment and no addition of K fertilizer may be needed when irrigated with TWW. Faecal coliforms and helminth eggs were observed in treated wastewater and irrigated soils at rate over the FAO and WHO recommended limits for vegetable to be eaten uncooked. Tomato fruits were observed to be faecal coliform contaminated with the direct on-foliage irrigation with treated wastewater. Our results indicate that treated wastewater can effectively be used as both nutrients source and crop water supply in market gardening in the semi-arid Sub-Saharan West Africa (SSWA) where freshwater and farm income are limiting. Yet consumers should properly cook or disinfect treated-wastewater irrigated vegetables before eating, and market gardeners should also be careful manipulating treated wastewater to avoid direct health contamination in this environment.  相似文献   

5.
Clean water has become one of the main limiting factors in agricultural food production in Europe, especially for countries around the Mediterranean, who now face more severe and frequent seasonal water shortages. In order to overcome water shortages the European Water Framework Directive encourages and promotes the use of treated urban wastewater in agriculture. However, the use of poor quality water in agriculture poses potential health risks. The application of wastewater through subsurface drip irrigation lines could possibly overcome public health concerns by minimizing contact with wastewater by farmers, farm workers but it is uncertain if the risk for consumers of wastewater irrigated produces would be acceptable. The objective of the current study was therefore to assess whether subsurface irrigation of potatoes with low quality water was associated with higher food safety and reduced human health risks as compared with surface irrigation. The microbial quality of soil and potatoes irrigated by sprinkler, furrow and subsurface drip irrigation, using treated urban wastewater, canal water and tap water were compared at experimental sites near Belgrade, Serbia and in Bologna, Italy. Water, soil and potato samples were collected from March 2007 to September 2008 and their faecal contamination estimated by enumeration of the faecal indicator Escherichia coli. In addition, water and potatoes in Italy were analysed for the presence of helminth eggs, another important indicator of faecal pollution. A quantitative microbial risk assessment (QMRA) model combined with Monte Carlo simulations was used to assess whether the different irrigation practices and associated health risks complied with guidelines set by the World Health Organization (WHO). The study found low levels of E. coli in irrigation water (Italy mean value: 1.7 colony forming units (cfu)/ml and Serbia 11 cfu/ml), as well as in soil (Italy mean: 1.0 cfu/g and Serbia 1.1 cfu/g). Similar low concentrations of E. coli were found on potatoes (Italy mean: 1.0 cfu/g and Serbia 0.0 cfu/g). The vast majority (442/516) of the collected different samples were free of E. coli. No helminth eggs were found in any types of irrigation water or on the surface of potatoes. The risk assessment models found the use of treated wastewater to exceed the levels of risks for gastro-intestinal disease (1.0 × 10−3 disease risk) as recommended by the World Health Organization (WHO) for the accidental ingestion of soil by farmers (Serbia: 0.22 and Italy: 5.7 × 10−2). However, samples that exceeded disease risks set by the WHO were collected before initiation of wastewater irrigation and were limited to a few numbers of samples, which would indicate environmental contamination not linked to irrigation practice. Disease risk from consumption of potatoes in Italy and in Serbia was found to be within acceptable levels. No relationship was found between E. coli concentrations in irrigation water, soil and produce. Similar lack of association was found for E. coli findings in sprinkler, furrow or subsurface drip irrigated soils and produce. This indicates that subsurface drip irrigation can be practiced while ensuring food safety and protecting the health of consumers and farmers.  相似文献   

6.
Irrigation with saline water: benefits and environmental impact   总被引:24,自引:0,他引:24  
The shortage of water resources of good quality is becoming an important issue in the arid and semi-arid zones. For this reason the availability of water resources of marginal quality such as drainage water, saline groundwater and treated wastewater has become an important consideration. Nevertheless, the use of these waters in irrigated lands requires the control of soil salinity by means of leaching and drainage of excess water and salt. However, the leaching of salts, soil microelements and agro-chemicals can lower the quality of the drainage water in the irrigation scheme. The irrigation return flows with water or poor quality are a source of pollution of the surface water bodies situated downstream of the drainage outlet. Deep percolation could also contaminate the groundwater. Therefore, irrigation with saline water requires a comprehensive analysis even beyond the area where water is applied. The problem should be treated beyond the scope of the irrigation scheme, taking into consideration the groundwater and downstream surface water resources of the river basin. Consequently, the sustainable use of saline water in irrigated agriculture requires the control of soil salinity at the field level, a decrease in the amount of drainage water, and the disposal of the irrigation return flows in such a way that minimizes the side effects on the quality of downstream water resources. This paper describes the guidelines for a preliminary evaluation of the suitability of water for irrigation and the key factors for salinity control in lands irrigated with saline water. Options to improve the quality of the drainage water, strategies for the reuse of this water and alternatives for disposal of the outflow are also analysed. The final goal is to obtain sustainable agriculture and maintain the quality of the water resources in the river basin.  相似文献   

7.
In arid and semi-arid regions, salinity is a serious and chronic problem for agriculture. A 3-year field experiment in the arid environment of Xinjiang, northwest China, was conducted to study the salinity change in soil resulting from deficit irrigation of cotton with non-saline, moderate saline and high saline water. The salinity profile distribution was also evaluated by an integrated water, salinity, and nitrogen model, ENVIRO-GRO. The simulated and observed salinity distributions matched well. Results indicated that after 3 years of cotton production, the average salinity in the 1.0-m soil profile was 336% and 547% of the original soil profile, respectively, for moderate saline and high saline water irrigation. If the practices continued, the average soil salinity (ECe) in the 1.0-m soil profile would approach a steady level of 1.7, 10.8, and 14.7 dS m−1, respectively, for the treatments receiving irrigation waters of 0.33, 3.62, and 6.71 dS m−1. It was concluded that deficit irrigation of saline water in this region was not sustainable. Model simulation showed that a big flood irrigation after harvest can significantly reduce the salt accumulation in the soil profile, and that this practice was much more efficient for salinity control than applying the same extra amount of water during the growing season.  相似文献   

8.
The authors of the recently completed Comprehensive Assessment of Water Management in Agriculture (CA) concluded that there are sufficient water resources to produce food for a growing population but that trends in consumption, production and environmental patterns, if continued, will lead to water crises in many parts of the world. Only if we act to improve water use will we meet the acute fresh water challenge. Recent spikes in food prices, partially caused by the increasing demand for agricultural products in non-food uses, underline the urgent need to invest in agricultural production, of which water management is a crucial part. The world experienced similar pressure on per capita food supplies and food prices in the 1960s and 1970s, but the challenges now are different than those we experienced 50 years ago. The world's population is substantially larger, there are many more people living in poverty, and the costs of many agricultural inputs are much higher. The current situation and the long-term outlook require a fresh look at approaches that combine different elements such as the importance of access to water for the poor, providing multiple ecosystem services, rainwater management, adapting irrigation to new needs, enhancing water productivity, and promoting the use of low-quality water in agriculture. This special issue highlights the analysis behind a number of policy options identified by the CA, a five-year multi-disciplinary research program involving 700 scientists. This introductory article sets the background and context of this special issue, introduces the key recommendations from the CA and summarizes the papers in this issue.  相似文献   

9.
This study evaluated the performance of three soil water content sensors (CS616/625, Campbell Scientific, Inc., Logan, UT; TDT, Acclima, Inc., Meridian, ID; 5TE, Decagon Devices, Inc., Pullman, WA) and a soil water potential sensor (Watermark 200SS, Irrometer Company, Inc., Riverside, CA) in laboratory and field conditions. Soil water content/potential values measured by the sensors were compared with corresponding volumetric water content (θv, m3 m−3) values derived from gravimetric samples, ranging approximately from the permanent wilting point (PWP) to field capacity (FC) volumetric water contents. Under laboratory and field conditions, the factory-based calibrations of θv did not consistently achieve the required accuracy for any sensor in the sandy clay loam, loamy sand, and clay loam soils of eastern Colorado. Salt (calcium chloride dihydrate) added to the soils in the laboratory caused the CS616, TDT, and 5TE sensors to experience errors in their volumetric water content readings with increased bulk soil electrical conductivity (EC; dS m−1). Results from field tests in sandy clay loam and loamy sand soils indicated that a linear calibration (equations provided) for the TDT, CS616 and 5TE sensors (and a logarithmic calibration for the Watermark sensors) could reduce the errors of the factory calibration of θv to less than 0.02 ± 0.035 m3 m−3. Furthermore, the performance evaluation tests confirmed that each individual sensor needed a unique calibration equation for every soil type and location in the field. In addition, the calibrated van Genuchten (1980) equation was as accurate as the calibrated logarithmic equation and can be used to convert soil water potential (kPa) to volumetric soil water content (m3 m−3). Finally, analysis of the θv field data indicated that the CS616, 5TE and Watermark sensor readings were influenced by diurnal fluctuations in soil temperature, while the TDT was not influenced. Therefore, it is recommended that the soil temperature be considered in the calibration process of the CS616, 5TE, and Watermark sensors. Further research will be aimed towards determining the need of sensor calibration for every agricultural season.  相似文献   

10.
在介绍不同灌溉模式与农田覆盖措施重要性的基础上,根据近年来国内外关于不同灌溉模式与新型地膜覆盖对农田土壤环境影响的研究成果,概要描述了灌溉模式和新型覆盖材料对农田土壤物理环境和土壤酶活性的影响,在此基础上分析了新型覆盖材料与灌溉模式存在的些许问题及其解决措施,最后对未来农田灌溉与覆盖研究方向进行展望,旨在为农田灌溉模式与覆盖技术耦合的研究提供参考和依据。   相似文献   

11.
Adoption of more uniform sprinkler systems involves a trade off between increased capital expenditure on equipment and the benefits associated with reduced water application when application is uniform. An empirical analysis of the economics of lettuce production, grown using sprinkler systems under the windy conditions of the Swan Coastal plain in Western Australia is presented, where the yield response to water exhibits eventual declining marginal productivity. A range of sprinkler designs that have been field-tested for performance were examined. The optimal per-crop water application for the least efficient system was up to double the application rate of the most efficient system. However, the economic analysis demonstrates that there are clear incentives for adopting more water-efficient systems despite the higher capital cost, because of the yield depressing effect of over-watering. Sensitivity analysis demonstrates substantially poorer incentives for improving irrigation efficiency when yield relationships follow a Mitscherlich functional form.
Donna BrennanEmail:
  相似文献   

12.
加气灌溉对大棚甜瓜土壤酶活性与微生物数量的影响   总被引:10,自引:0,他引:10  
利用空气压缩机为大棚甜瓜根系供气,采用正交试验设计,研究滴灌带埋深(10、25、40 cm)、加气频率(每天加气1次、每2 d加气1次、每4 d加气1次、不加气)、灌水上限(灌水至田间持水量的70%、80%、90%)对大棚甜瓜种植下土壤酶活性及微生物数量的影响。研究结果表明:1加气灌溉对土壤酶活性、土壤微生物数量均有显著影响。其中对细菌、放线菌数量影响由大到小依次为加气频率、滴灌带埋深和灌水上限;对过氧化氢酶和脲酶活性、真菌数量影响由大到小依次为滴灌带埋深、加气频率和灌水上限。2最适宜的滴灌带埋深为25 cm。3每天加气1次土壤脲酶活性最高,细菌数量也最多;每2 d加气1次土壤过氧化氢酶活性最高,真菌数量最多。4灌水至田间持水量的80%过氧化氢酶活性最高,放线菌数量最多,灌水至田间持水量的90%脲酶活性最高,细菌及真菌数量最多。  相似文献   

13.
WinSRFR is an integrated software package for analyzing surface irrigation systems. Software functionalities and technical features are described in a companion article. This article documents an example application. The analyzed field is a graded basin (close-ended border) irrigation system. The event analysis tools of WinSRFR are used first to evaluate performance of the irrigation system and estimate its infiltration and hydraulic roughness properties. Performance contours in the Operations Analysis World are then used to optimize irrigation system inflow rate and cutoff time. The adequacy of the existing design is examined with the performance contours provided in the Physical Design World. Hydraulic and practical constraints are considered in finding an optimal operation or design solution. Finally, sensitivity analyses are used to demonstrate the robustness of the solutions.  相似文献   

14.
A great challenge for the agricultural sector is to produce more food from less water, particularly in arid and semi-arid regions which suffer from water scarcity. A study was conducted to evaluate the effect of three irrigation methods, using effluent versus fresh water, on water savings, yields and irrigation water use efficiency (IWUE). The irrigation scheduling was based on soil moisture and rooting depth monitoring. The experimental design was a split plot with three main treatments, namely subsurface drip (SSD), surface drip (SD) and furrow irrigation (FI) and two sub-treatments effluent and fresh water, which were applied with three replications. The experiment was conducted at the Marvdasht city (Southern Iran) wastewater treatment plant during 2005 and 2006. The experimental results indicated that the average water applied in the irrigation treatments with monitoring was much less than that using the conventional irrigation method (using furrows but based on a constant irrigation interval, without moisture monitoring). The maximum water saving was obtained using SSD with 5907 m3 ha−1 water applied, and the minimum water saving was obtained using FI with 6822 m3 ha−1. The predicted irrigation water requirements using the Penman-Monteith equation (considering 85% irrigation efficiency for the FI method) was 10,743 m3 ha−1. The pressure irrigation systems (SSD and SD) led to a greater yield compared to the surface method (FI). The highest yield (12.11 × 103 kg ha−1) was obtained with SSD and the lowest was obtained with the FI method (9.75 × 103 kg ha−1). The irrigation methods indicated a highly significant difference in irrigation water use efficiency. The maximum IWUE was obtained with the SSD (2.12 kg m−3) and the minimum was obtained with the FI method (1.43 kg m−3). Irrigation with effluent led to a greater IWUE compared to fresh water, but the difference was not statistically significant.  相似文献   

15.
本文介绍了中日双方专家团在海子水库灌区现场调查中,实测土壤水分特征值的方法,土壤水分曲线的制定和应用,负压计观测值的应用,计算节水型灌溉用水量和灌水间隔日数的方法,并用节水型频繁灌溉法制定了各作物的节水型灌溉制度,用这种方法制定的节水型灌溉制度要比我国过去用的常规法节水40%以上。  相似文献   

16.
The use of wastewater for irrigation is increasingly being considered as a technical solution to minimize soil degradation and to restore nutrient content of soils. The aims of this study were to test if wastewater irrigation could improve soil fertility without affecting the quality of soils and plants. A field experiment was conducted in 2006 to investigate the effects of irrigation with untreated, and preliminary and primary treated wastewater on macro- and micronutrient distribution within the soil profile, yield and mineral content of cauliflower and red cabbage plants grown on a calcareous Aridisol in eastern Anatolia, Erzurum province, Turkey. Wastewater irrigation affected significantly soil chemical properties in the 0–30 cm soil layer and plant nutrient content after harvest. Application of wastewater increased soil salinity, organic matter, exchangeable Na, K, Ca, Mg, plant available phosphorus and microelements, and decreased soil pH. Wastewater irrigation treatments also increased the yield as well as N, P, K, Ca, Mg, Na, Fe, Mn, Zn, Cu, Pb, Ni and Cd contents of cauliflower and red cabbage plants. The highest yield, macro- and micronutrient uptake of cauliflower and red cabbage plants were obtained with the untreated wastewater. Undesirable side effects such as heavy metal contamination in soil and plant, and salinity were not observed with the application of wastewater. It can be concluded that untreated wastewater can be used confidently, in the short term, in agricultural land, while primary treated wastewater can be used in sustainable agriculture in the long term.  相似文献   

17.
Available water holding capacity (AWC) and field capacity (FC) maps have been produced using regression models of high resolution apparent electrical conductivity (ECa) data against AWC (adj. R2 = 0.76) and FC (adj. R2 = 0.77). A daily time step has been added to field capacity maps to spatially predict soil water status on any day using data obtained from a wireless soil moisture sensing network which transmitted hourly logged data from embedded time domain transmission (TDT) sensors in ECa-defined management zones. In addition, regular time domain reflectometry (TDR) monitoring of 50 positions in the study area was used to assess spatial variability within each zone and overall temporal stability of soil moisture patterns. Spatial variability of soil moisture within each zone at any one time was significant (coefficient of variation [% CV] of volumetric soil moisture content (θ) = 3-16%), while temporal stability of this pattern was moderate to strong (bivariate correlation, R = 0.52-0.95), suggesting an intrinsic soil and topographic control. Therefore, predictive ability of this method for spatial characterisation of soil water status, at this site, was limited by the ability of the sensor network to account for the spatial variability of the soil moisture pattern within each zone. Significant variability of soil moisture within each ECa-defined zone is thought to be due to the variable nature of the young alluvial soils at this site, as well as micro-topographic effects on water movement, such as low-lying ponding areas. In summary, this paper develops a method for predicting daily soil water status in ECa-defined zones; digital information available for uploading to a software-controlled automated variable rate irrigation system with the aim of improved water use efficiency. Accuracy of prediction is determined by the extent to which spatial variability is predicted within as well as between ECa-defined zones.  相似文献   

18.
Irrigated agriculture notably increases crop productivity, but consumes high volumes of water and may induce off-site pollution of receiving water bodies. The objectives of this paper were to diagnose the quality of irrigation and to prescribe recommendations aimed at improving irrigation management and reducing the off-site pollution from a 15,500 ha irrigation district located in the Ebro River Basin (Spain). Three hydrological basins were selected within the district where the main inputs (irrigation, precipitation, and groundwater inflows) and outputs (actual crop's evapotranspiration, surface drainage outflows, and groundwater outflows) of water were measured or estimated during a hydrological year. The highest volume of water (I = 1400 mm/year) was applied in the basin with highly permeable, low water retention, flood irrigated soils where 81% of the total surface was planted with alfalfa and corn. This basin had the lowest consumptive water use efficiency (CWUE = 45%), the highest water deficit (WD = 5%) and the highest drainage fraction (DF = 57%). In contrast, the lowest I (950 mm/year), the highest CWUE (62%), and the lowest WD (2%) and DF (37%) were obtained in the basin with 60% of the surface covered with deep, high water retention, alluvial valley soils, where 39% of the cultivated surface is sprinkler irrigated and with only 48% of the surface planted with alfalfa and corn. We concluded that the three most important variables determining the quality of irrigation and the volume of irrigation return flows in the studied basins were (i) soil characteristics, (ii) irrigation management and irrigation system, and (iii) crop water requirements. Therefore, the critical recommendations for improving the quality of irrigation are to (i) increase the efficiency of flood-irrigation, (ii) change to pressurized systems in the shallow and highly permeable soils, and (iii) reuse of drainage water for irrigation within the district. These management strategies will conserve water of high quality in the main reservoir and will decrease the crop water deficits and the volume of irrigation return flows, therefore, minimizing the off-site pollution from this irrigation district.  相似文献   

19.
季节性冻融期灌水对土壤温度与冻融特性的影响   总被引:3,自引:0,他引:3  
通过季节性冻融期裸地、地膜覆膜地和秸秆覆盖地的田间系列灌水试验,研究了冻融期不同阶段灌水对土壤温度及冻融特性的影响.试验表明:不论何种地表条件,入冬后冻结期较早的灌水地块耕作层土壤温度在整个冻融期处于较低值.消融期,灌水对裸地和地膜覆盖地耕作层土壤温度的影响较小,灌水加速了地表冻层的融化;秸秆覆盖地灌水后土壤温度较低且变幅较小,秸秆覆盖不利于土壤的消融解冻.5 cm土壤累积负温快速增加阶段灌水对于降低土壤最大冻结深度影响非常明显.  相似文献   

20.
Drip irrigation systems and irrigation strategies like deficit irrigation (DI) and partial root drying (PRD) are potential water saving irrigation systems and strategies. This paper analyses the Serbian farmer's economic incentive to use these water saving systems and strategies instead of the present sprinkler irrigation. The analysis is a partial budgeting analysis, based on irrigation application efficiency from the literature, standard figures for power requirements, pumping efficiency and friction losses for various sources of water and pressure requirements, yields and water use from recent Serbian field experiments, as well as prices and cost structures for potatoes collected in the Belgrade region. The analysis shows that changing the present system and strategy can save a significant amount of water (almost 50%). At the same time, however, irrigation costs are also significantly increased (more than doubled), and the total production costs are increased by 10% (deficit drip irrigation) and 23% (PRD). Increased taxes on water, investment subsidies, increased energy prices, and an increased yield or yield quality may provide incentives for farmers to change to new systems and strategies. The analysis indicates that a 0.80 to 1.97 € m−3 water tax is needed to make deficit drip irrigation and PRD profitable. The socioeconomic cost of providing water for irrigation and the alternative value of saved water are probably not that high. Thus, water taxation may not be a socioeconomic efficient means to improve the irrigation water productivity of Serbian potato production. Drip irrigation and PRD may, however, also increase the yield quality, and a 10-23% quality premium (price increase) is needed to make deficit drip irrigation and PRD profitable.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号