首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 953 毫秒
1.
Single plant traits such as green biomass, spike dry weight, biomass, and nitrogen (N) transfer to grains are important traits for final grain yield. However, methods to assess these traits are laborious and expensive. Spectral reflectance measurements allow researchers to assess cultivar differences of yield‐related plant traits and translocation parameters that are affected by varying amounts of available N. In a field experiment, six high‐yielding wheat cultivars were grown with N supplies of 0, 100, 160, and 220 kg N ha–1. Wheat canopies were observed spectrally throughout the grain‐filling period, and three spectral parameters were calculated. To describe the development of the vegetative plant parts (leaves + culms) and the spikes, plants were sampled four times during grain filling. Dry weights and the relative dry‐matter content were recorded for leaves + culms and spikes. The N status of the plants was assessed by measuring the total N concentration and by calculating the aboveground N uptake. Good correlations were found between spectral indices and single plant traits throughout grain filling but varied with N supply and development stage. The normalized difference vegetation index, NDVI, was strongly affected by the saturation effects of increased N concentration. The red‐edge inflection point, REIP, predicted plant traits with r2 values up to 0.98. However, in plants with advanced senescence, the REIP was less efficient in describing plant traits. The NIR‐based index R760/R730 was closely related to yield‐related plant traits at early grain filling. Compared to the REIP, the R760/R730 index was resistant to strong chlorophyll decays being able to predict plant traits at late grain filling, with r2 values of up to 0.92. Spectral reflectance measurements may represent a promising tool to assess phenotypic differences in yield‐related plant traits during grain filling.  相似文献   

2.
为研究旱涝急转对玉米叶片衰老特性和产量的影响,以春玉米“宜丹629”为供试材料,2021年在测坑条件下,设置拔节期旱(drought,D)、涝(waterlogging,W)、旱急转轻涝(drought-light waterlogging,D-LW)、旱急转中涝(drought-moderate waterlogging,D-MW)、旱急转重涝(drought-heave waterlogging,D-HW)、和正常供水(control,CK)6个处理。测定不同处理组合下玉米大喇叭口期、抽雄期和灌浆期叶片叶绿素仪(soil and plant analyzer development,SPAD)值、过氧化物歧化酶(superoxide dismutase,SOD)、过氧化物酶(peroxidase,POD)、过氧化氢酶(catalase,CAT)活性、丙二醛(malondialdehyde,MDA)、可溶性蛋白含量和净光合速率(net photosynthetic rate,Pn),成熟期籽粒产量及其构成。结果表明,与CK相比,D-LW处理抽雄期和灌浆期玉米叶片的SPAD值、SOD、POD、CAT活性、可溶性蛋白含量、Pn及成熟期穗数、穗粒数和千粒质量差异不显著,使其籽粒产量维持在较高水平(7810.3 kg/hm2)。说明旱急转轻涝不会加速玉米叶片的衰老,从而稳定籽粒产量。而其他水分胁迫处理显著降低各监测时期玉米叶片SPAD值、SOD、POD、CAT活性、可溶性蛋白含量和Pn,明显提高MDA含量,使穗数、穗粒数和千粒质量减少,最终显著降低产量(较CK的值下降13.3%~72.7%)。整体上,D-MW和D-HW处理明显加速玉米叶片衰老,严重抑制最终产量。综上,拔节期旱后急转轻涝对玉米叶片SPAD值、抗氧化酶活性、可溶性蛋白含量和Pn有补偿作用,从而获得较高的籽粒产量。该研究结果为玉米应对旱涝急转灾害和灌排管理提供一定理论依据。  相似文献   

3.
Crop productivity in future may be limited due to water scarcity. However, foliar spray of plant growth promoters may boost crop production even in adverse environments. In the present study, foliar application of one natural (moringa leaf extract, 3% MLE) and four synthetic (Polydol, Multisol, Classic, and Asahi Star) were applied at tillering, jointing, booting, and heading growth stages of wheat (Triticum aestivum L.) during severe, moderate, and light drought and well‐watered condition. No spray and water spray were taken as controls. Results showed significant reduction in growth parameters such as total dry matter production, mean crop growth rate, net assimilation rate, leaf area index, and duration due to drought employed at various phenophases of wheat. However, improvement in these parameters was observed after foliar application of growth promoters, whereas interactive effects between factors were found non‐significant. The activities of catalase (CAT), superoxide dismutase (SOD), and peroxidase (POD) were more accelerated under drought treatments from exogenously supplied growth promoters. Foliar application of promoters significantly alleviated drought‐induced reduction of yield and related traits. Grain weight (15%) and grain yield (27%) were improved due to exogenously applied MLE under moderate drought stress treatments relative to controls. Furthermore, 16% higher grain yield and 17% saving of irrigation water over fully irrigated and without promoter treatment (farmers' practice) was recorded from foliar‐applied MLE under skipped irrigation at jointing. In conclusion, foliar‐applied MLE may ameliorate drought‐induced deleterious effects by enhancing antioxidant activities under drought stress.  相似文献   

4.
在防雨棚内的盆栽实验条件下,研究了4种梯度的10种水分组合对红芒麦和宁春10号产量及耗水量等的影响.结果表明,试验期间充分灌水、轻度、中度、重度干旱处理,随着干旱程度的加剧,株高、干物质积累、产量、耗水量都逐渐减少;红芒麦灌浆期不同程度的干旱处理,均有利于产量的形成,促进物质运输,提高了千粒重,同时减少了水分消耗,提高了WUE;孕穗期干旱处理后,灌浆期复水,会造成减产,和灌浆期相比,孕穗期是水分敏感的时期,而灌浆期对水分亏缺不敏感.两种小麦相比较,宁春10号耗水量大、产量低、抗旱性较强,但适应性较差.  相似文献   

5.
干旱对玉米穗发育及产量的影响   总被引:6,自引:2,他引:6  
干旱作为影响玉米产量的环境因素之首,对玉米植株形态、物质积累、生理作用、性器官发育等方面产生影响,最终降低穗粒数、粒重,导致产量降低。以雌雄穗发育为研究重点,本文综述了不同时期干旱对雌雄穗性状及开花吐丝间隔期的影响。玉米开花前遭遇干旱,延缓雌雄穗发育进程,减少分化小花数,增加籽粒败育,导致穗粒数降低;抽雄吐丝期间遭遇干旱,导致雄穗抽出困难、吐丝延迟,使开花吐丝间隔期拉长,严重时导致花粉、花丝超微结构发生改变,影响玉米授粉、受精过程,最终导致秃尖形成,穗粒数降低;灌浆期遭遇干旱导致叶片早衰,光合产物积累不足,籽粒灌浆受阻,粒重降低,最终均会导致产量下降。从源库关系角度分析,玉米灌浆期前干旱导致玉米产量降低的主要原因是穗粒数降低导致的库强不足;而灌浆期干旱主要是叶片早衰等营养器官发育受阻,限制同化物的积累及转运,此时源不足限制了产量的增加。  相似文献   

6.
To investigate the effects of irrigation regimes on assimilate remobilization, water use efficiency (WUE), relative water content (RWC), photosynthesis and yield of five wheat cultivars, a field experiment was conducted at Shiraz University during the 2008 and 2009 growing seasons. The experimental design was a randomized complete block and treatments were arranged as split-plot in three replicates. There were four levels of water regime including well-watered [irrigation based on 100% field capacity (FC)], excess watered (125% FC), mild drought (75% FC) and severe drought (50% FC) stress, and four bread wheat cultivars (Shiraz, Bahar, Pishtaz and Sistan) and a durum wheat (Yavaros). In all cultivars, progressed leaf senescence at 30 days after anthesis (DAA), was associated with a reduction in chlorophyll content. The reduction was more pronounced in Shiraz and Yavaros than Pishtaz and Sistan. With increasing temperature and remobilization of assimilate to grain, net photosynthesis and stomatal conductance were decreased significantly at 18 DAA compared with 8 DAA. Sistan and Pishtaz cultivars maintained higher RWC than sensitive cultivars of Shiraz and Yavaros under drought stress. The higher WUE in Pishtaz and Sistan was attributed to the effectiveness of a small amount of water in alleviating severe stress during the sensitive stages of growth. Under mild drought stress, controlled soil drying could enhance remobilization efficiency of assimilates in Pishtaz and Sistan and under severe drought, these cultivars had the highest grain yield compared with the other cultivars. Reduction of assimilates remobilization to the grain and 1000-grain weight, caused lower grain yield in Shiraz under severe drought. Overall, controlled soil drying in Sistan and Pishtaz might result in better mobilization of pre-stored assimilates to the grain in arid areas, where a rapid depletion of water resources is threatening crop production.  相似文献   

7.
Nitrogen efficiency is a complex trait. Identification of secondary plant traits correlating with N efficiency would facilitate the breeding for N‐efficient cultivars. Sixteen tropical maize cultivars differing in grain yield at low N supply (N efficiency) under field conditions in Zimbabwe exhibited a significant negative correlation between N efficiency and leaf senescence during grain filling. The same cultivars were studied for leaf senescence under N deficiency in a short‐term nutrient‐solution experiment. Leaf chlorophyll contents as estimated by SPAD values and photosynthesis rates were used as measures for leaf senescence. Cultivars differed both in SPAD values and photosynthesis rates of the older leaves during N deprivation. Significant negative correlations were found between SPAD values, photosynthesis rates in the nutrient‐solution experiment, and leaf‐senescence scores in the field experiments, and positive correlations were found between photosynthesis rates and grain yield under low‐N conditions in the field. Relationships between physiological root parameters, which were also investigated in the nutrient‐solution experiment, and N uptake or grain yield of the cultivars in the field could not be established. It is concluded, that the assessment of the capacity of a genotype to maintain a higher photosynthetic capacity of older leaves during N deficiency–induced senescence at the seedling stage is a suitable selection parameter for the N efficiency of tropical maize cultivars.  相似文献   

8.
ABSTRACT

Climate change is imposing high temperature resulting in prolonged drought episodes and shrinking of fresh water resources across the globe. In this scenario, even drought tolerant crops like quinoa are also losing significant yield. However, this study was planned to investigate the impact of drought on quinoa at critical growth stages and bacterial inoculation to improve drought tolerance. Drought was imposed by maintaining 25% pot water holding capacity (PWC) at multiple leaf, flowering, and seed filling stage (DSFS), while 80% PWC was considered as control. Three strains of plant growth promoting rhizobacteria (PGPR) named as: Bacillus licheniformis, Pseudomonas fluorescens, and Azospirillum brasilense were inoculated with quinoa seeds before sowing with respect to drought treatments. PGPR inoculation mitigated the drastic effects of drought by improving crop growth, net assimilation rate, water use efficiency, leaf chlorophyll, and phenolic contents, all of these ultimately contributed to improvement in grain yield and its contributing attributes. Moreover, PGPR markedly improves the grain quality attributes including protein, phosphorus, and potassium contents. Principal component analysis linked the different scales of study and demonstrated the potential of physio-biochemical traits to explain the quinoa yield variations under drought condition with response to PGPR inoculation. Among different PGPR, A. brasilense was found most effective both under normal and drought conditions. Overall, DSFS has more detrimental effects among critical growth stages of quinoa and A. brasilense can be used as a shotgun tactic to ameliorate drought stress in quinoa.  相似文献   

9.
有限供水条件下旱地春小麦水分的高效利用   总被引:10,自引:1,他引:10  
全球气候变化最令人担忧的问题是干旱,而水分又是影响小麦产量的重要因素之一,农田水分的管理与有效利用已经受到人们的高度重视。作者以春小麦为实验材料,采用盆栽和小区试验相结合的方法,针对黄土高原半干旱地区的有限水分环境,研究了有限供水的高效利用问题。盆栽条件下,采用3种肥力水平与拔节期、孕穗期和灌浆期有限供水组合处理。对生长发育、产量构成和水分利用效率等指标测定的结果表明,施肥可以显著增大叶面积,促进根系生长,提高子粒产量;而施肥条件下,拔节期有限供水能够显著增加穗粒数和粒重。小区试验结果表明,满足春小麦最大产量所需的灌水量约为200mm,获得作物水分利用效率最高时的适宜灌水量约为100mm,而拔节期60mm的灌水量可以使灌水利用效率接近最大值。拔节期60mm灌水条件下,耗水量、作物水分利用效率和灌水利用效率同步增长,同时土壤的贮存水也得到了有效利用。根据以上结果可得出:在黄土高原缺水地区,春小麦有限灌溉的适宜灌水量下限应不低于60mm,一次性补充灌溉的最佳时期为拔节期  相似文献   

10.
The genetic diversity of durum wheat (Triticum durum Desf.) is held by landraces, which are generally considered to be endemic to a particular region to which they are well adapted. To evaluate the effect of climate in the countries of origin on their agronomic performance, 172 durum wheat landraces from 21 Mediterranean countries were grown in northeastern Spain. Average long-term climatic data of the main wheat-growing areas in each country of origin allowed us to identify four climatic zones in the Mediterranean Basin, steadily varying from warm and dry to cool and wet. The phenology, biomass, and yield of landraces were affected by the climatic zone of origin. The climatic zone accounted for 32.8, 28.3 and 14.5 % of variance for days to anthesis, plant height, and grain filling rate, respectively. The number of days to heading and anthesis steadily increased when moving from the warmest and driest zone of origin to the coldest and wettest one. Landraces collected in the warmest and driest zone had a smaller biomass, a lower chlorophyll content in the flag leaf, more fertile tillers, spikes and grains m?2, a lower grain filling rate, lighter grains, and lower yields than those originated in colder and wetter zones. Landraces collected in countries with high solar radiation showed a shorter cycle until anthesis and smaller height and biomass accumulation, while higher temperatures after anthesis resulted in more tillers and spikes. Landraces from countries with high potential evapotranspiration during grain filling had significantly lower grain filling rates and grain weight.  相似文献   

11.
土壤水分对小麦产量和品质的影响   总被引:17,自引:5,他引:12  
姜东燕  于振文 《核农学报》2007,21(6):641-645
本文综述了土壤水分对小麦产量和品质的影响。土壤水分既影响小麦产量,也影响其籽粒品质;土壤水分缺少能够影响器官发育,使叶面积减小,叶绿素含量降低,群体叶片光合性能下降。土壤水分缺少还使开花后的光合产物减少,造成灌浆物质不足,原贮存在营养器官中的物质向籽粒的运转速度加快,贮存物质在粒重中的比例提高,在一定程度上弥补了粒重和产量的降低。同时,土壤水分也影响小麦品质,主要表现在蛋白质和淀粉上。  相似文献   

12.
Chitosan and its components have beneficial effects on a wide variety of plant species. Yet, their effects on wheat plants under drought stress are not well known. So, a field experiment was laid out in order to evaluate the effect of chitosan nanoparticles (NPs) on wheat. The wheat seeds were sown in plots. Then, the chitosan NPs were added to them through soil and foliar application at tillering, stem elongation, and heading stages. Results indicated that the drought stress significantly decreased majority of the studied traits compared to the normal irrigation. Application of the NPs especially 90?ppm increased leaf area (LA), relative water content (RWC), chlorophyll content, photosynthesis rate, catalase (CAT), and superoxide dismutase (SOD) activities, yield, and biomass compared to the control. Finally, our results highlight that usage of the chitosan NPs especially 90?ppm can mitigate adverse effects of drought in the wheat under drought stress.  相似文献   

13.
Abstract. Avalon winter wheat was grown on deep silty clay loam soil (Hook series) under a fixed shelter at Rothamsted with either full drought or irrigation from the end of March to July, 1982. During this time the irrigated crop used 295 mm of irrigation water plus 45 mm of stored soil water, while the droughted crop extracted 223 mm of water from the soil. The roots penetrated to at least 1.8m and water was extracted from 2 m depth.
Even with a fully developed root system the crops could transpire at the full rate of atmospheric demand only when the near-surface soil was well supplied with water. However, the draughted crop extracted enough water from the loamy sub-soil to maintain a reduced transpiration flow for a further nine weeks after the near-surface water was depleted. Thus crop growth was maintained with a loss at final harvest of only 10% in total dry weight and even less in grain yield.
A summary of other results confirm that yield losses due to drought have been reported only for light soils, except in the exceptional year of 1976, and that drought is not normally an important factor affecting yields of winter wheat in the UK.  相似文献   

14.
《Journal of plant nutrition》2013,36(12):2453-2468
Abstract

The top three leaves play important roles in biomass production and grain yield of rice (Oryza sativa L.) crop since the three leaves not only assimilate majority of carbon for grain filling during ripening phase, but also provide large proportion of remobilized‐nitrogen (N) for grain development during their senescence. The objectives of this study were to (a) compare senescence of the top three leaves and (b) compare the changes in N, chlorophyll, and ribulose‐1,5‐bisphosphate carboxylase/oxygenase (Rubisco) contents of the top three leaves after their full expansion in field‐grown rice plants. When the basis of comparison among the top three leaves was plant age in terms of days after transplanting (DAT), senescence generally started earliest in ?3rd leaf, intermediate in ?2nd leaf, and latest in flag leaf. If the basis of comparison among the top three leaves was leaf age in terms of days after full leaf expansion (DAFE), it was not clear which leaf senesced earlier. Senescence rate was generally greatest in flag leaf, intermediate in ?2nd leaf, and smallest in ?3rd leaf. Ribulose‐1,5‐bisphosphate carboxylase/oxygenase content declined earlier, and at a faster rate than N and chlorophyll contents during the senescence of all top three leaves. Correlation analysis indicated a close relationship between N and chlorophyll contents. Ribulose‐1,5‐bisphosphate carboxylase/oxygenase content correlated with N content better than with chlorophyll content. The suitability of N, chlorophyll, and Rubisco contents for quantifying the leaf senescence of field‐grown rice plants is discussed.  相似文献   

15.
Carbon isotope discrimination (Δ) has been proposed as physiological criterion to select C3 crops for yield and water use efficiency. The relationships between carbon isotope discrimination (Δ), water use efficiency for grain and biomass production (WUEG and WUEB, respectively) and plant and leaf traits were examined in 20 Iranian wheat genotypes including einkorn wheat (Triticum monococcum L. subsp. monococcum) accessions, durum wheat (T. turgidum L. subsp. durum (Desf.) Husn.) landraces and bread wheat (T. aestivum L. subsp. aestivum) landraces and improved cultivars, grown in pots under well-watered conditions. Carbon isotope discrimination was higher in diploid than in hexaploid and tetraploid wheats and was negatively associated with grain yield across species as well as within bread wheat. It was also positively correlated to stomatal frequency. The highest WUEG and grain yield were noted in bread wheat and the lowest in einkorn wheat. Einkorn and bread wheat had higher WUEB and biomass than durum wheat. WUEG and WUEB were significantly negatively associated to Δ across species as well as within bread and durum wheat. The variation for WUEG was mainly driven by the variation for harvest index across species and by the variation for Δ within species. The quantity of water extracted by the crop, that was closely correlated to root mass, poorly influenced WUEG. Environmental conditions and genetic variation for water use efficiency related traits appear to highly determine the relationships between WUEG and its different components (water consumed, transpiration efficiency and carbon partitioning).  相似文献   

16.
Abstract

To investigate the effect of foliar application of nano-chelates of iron, zinc, and manganese subjected to different irrigation conditions on physiological traits, and yield of soybean (cultivar M9), a split plot experiment was conducted in a completely randomized block design with three replications in two crop years (2016–2017). The main plot included four levels of irrigation (I): full irrigation (I 1), irrigation withhold at flowering stage (I 2), irrigation withhold at podding stage (I 3), and irrigation withhold during the grain filling period (I 4). Also, the subplot included eight levels of foliar application with Fe, Zn, Mn, Fe?+?Zn, Fe?+?Mn, Zn?+?Mn, Fe?+?Zn?+?Mn nano-chelates, and distilled water (control). The results of combined analysis of variance suggested that the effect of irrigation and foliar application of nano-chelate was significant on all traits. Water deficit stress significantly reduced the grain yield. The minimum numbers of pods per plant, number of grains per plant, 100-seed weight per plant, leaf area index, leaf chlorophyll concentration, total dry weight of plant, and the grain yield were obtained by irrigation withhold at podding stage. Foliar application of combined nano-chelates increased the soybean resistance against water shortage more considerably than the separate consumption of these elements. Under drought stress in podding stage, the application of Fe?+?Zn led to the highest yield with a mean of 2613.84?kg ha?1 where this increase was 61.1% higher than control.  相似文献   

17.
在限制小麦灌溉面积的大背景下,为进一步稳产促优,本文探讨了华北地区水分亏缺对不同小麦品种矿质元素吸收、分布特性及其与植株水分利用和产量的关系。选用3个生态类型冬小麦品种(抗旱品种‘沧麦6001’、丰水高产品种‘邯麦9’和多抗超高产品种‘济麦22’),设置正常和水分亏缺两个水平的人工气候室箱体栽培试验,主要调查了小麦不同器官矿质元素含量、积累量变化、分配比以及矿质元素变化对水分利用效率和产量的影响。结果表明,矿质元素的含量和分配具有器官特异性,其中小麦叶片Ca、籽粒Cu和Zn、茎秆Na的含量、分配比最高;Fe含量、积累量及Fe分配比因品种、器官、水分差异而不同:正常水分下,‘沧麦6001’以茎秆、‘邯麦9’以叶片的Fe含量、分配比最高;‘济麦22’以茎秆和颖壳Fe含量较高,以叶片和颖壳Fe分配比较高。而水分亏缺下,‘沧麦6001’和‘邯麦9’Fe含量以籽粒最高,‘济麦22’以叶片最高;3品种Fe分配比均以籽粒最高。此外,水分亏缺增加了小麦籽粒Cu、Zn含量及分配比,籽粒Zn、Na和Ca积累量,显著增加‘沧麦6001’的水分利用效率和产量以及‘济麦22’的产量水分利用效率;而降低了‘沧麦6001’籽粒Mn、‘邯麦9’籽粒Cu和Mn、‘济麦22’籽粒Cu和Fe积累量以及‘邯麦9’水分利用效率、干物重、产量。综上,水分亏缺下,‘沧麦6001’更易高产高效,籽粒Fe含量增加,但需补充一定的Mn元素;‘济麦22’的水分利用效率增加,产量未显著下降,需补充一定Fe元素保证品质;‘邯麦9’产量和水分利用效率均显著下降,且籽粒中Cu和Mn积累下降明显。相关分析表明,Cu、Zn、Ca、Mn含量与干物重变化之间存在一定的相互调节作用,但未直接影响产量和水分利用效率,这可能与品种间差异及品种和水分互作影响有关。但矿质元素可能通过影响干物重间接调控水分利用效率的趋势是存在的,尚需进一步研究和验证。  相似文献   

18.
土下覆膜与适宜灌水提高冬小麦水分利用率   总被引:1,自引:1,他引:1  
为缓解河北平原区水资源匮乏与小麦生产水分高耗的特征性矛盾,该文采用大田试验方法,设置土下微膜覆盖结合拔节期灌水75 mm、抽穗期灌水75 mm、灌浆期灌水75 mm、雨养,露地条件下雨养和常规生产(CK)共6个处理,定位研究了连续3个生长季的土下微膜覆盖与不同时期灌水对冬小麦用水与产量形成的效果。结果表明,采用土下微膜覆盖种植小麦,基本苗数和有效穗数较CK分别降低了8.6%~12.0%和7.4%~11.7%,拔节至抽穗期75 mm灌水保证了覆盖下小麦生物产量形成及穗粒数、粒重的提高。土下微膜覆盖并适时灌水75 mm,开花后营养器官干物质向籽粒转运量比CK提高37.2%~57.3%,对籽粒贡献率提高4.7%~10.1%。土下微膜覆盖结合抽穗前一次灌水,全生育期田间耗水减少99.9~118.9 mm,用占CK 3/4的耗水量生产了与其相当的籽粒产量,水分利用效率提高26.1%~34.5%。回归分析表明,土下微膜覆盖下拔节-抽穗田间耗水118 mm可获得最高的生物产量,抽穗-灌浆耗水78 mm可获得15个以上的结实小穗数和灌浆期不小于5的叶面积指数,从而籽粒产量得以有效维持。2 m土体贮水随小麦生育进程和种植年限的推进而呈现亏损态势,而且趋近地表土壤水分亏损就越多。从第2季开始,持续干旱导致覆盖下灌浆期灌水对提高产量已不具有作用,反而增加耗水,灌溉时间前移可增加产量并提高水分利用效率。播种时土壤贮水较上季小麦收获时大幅增加,播种-拔节期间土壤贮水保蓄是小麦节水生产的关键,土下微膜覆盖则可实现麦田土壤贮水的秋冬保蓄、春季供应的跨季节调用。在河北省小麦产区,土下微膜覆盖结合春季适时少量灌水是有效降低小麦耗水、提高水分利用效率和维持小麦产量的新型种植方法。  相似文献   

19.
生育后期干旱对冬小麦产量和生理特性的影响   总被引:8,自引:0,他引:8  
盆栽试验的结果表明:后期干旱明显降低冬小麦叶片光合速率和蒸腾速率,并导致保护酶活性下降,MDA累积,叶片衰老加速,硝酸还原酶活性下降,干物质生产受到显著影响。但中度干旱会提高籽粒中酸性转化酶、蔗糖合成酶、碱性转化酶的活性,有利于同化物向籽粒库转运分配;而严重干旱会降低籽粒的代谢活性,不利于同化物向籽粒库转运分配。后期中度干旱对穗粒数、千粒重无影响,对籽粒产量的影响较小,提高了收获指数和水分利用效率。严重干旱显著降低了株高、有效穗数、穗粒数和千粒重,显著降低了产量;同时收获指数和水分利用效率也降低。  相似文献   

20.
干旱条件下不同温型小麦叶片衰老与活性氧代谢特性的研究   总被引:29,自引:0,他引:29  
试验研究干旱条件下不同温型小麦叶片衰老和活性氧代谢特性结果表明,与暖型小麦相比,冷型小麦叶片叶绿素和可溶性蛋白质含量下降缓慢,丙二醛含量低,累积速度慢,而保护性酶超氧化物歧化酶、过氧化氢酶和过氧化物酶活性降幅小,且籽粒灌浆中后期各酶活性均较高。小麦叶片衰老和活性氧代谢特性与其温度型归属关系密切,可借助冠层温度进行抗旱材料生理代谢性状的判别。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号