首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Eddy covariance measurements and estimates of biomass net primary production (NPP) in combination with soil carbon turnover modelled by the Roth-C model were used to assess the ecosystem carbon balance of an agricultural ecosystem in Thuringia, Germany, growing winter wheat in 2001. The eddy CO2 flux measurements indicate an annual net ecosystem exchange (NEE) uptake in the range from −185 to −245 g C m−2 per year. Main data analysis uncertainty in the annual NEE arises from night-time u1 screening, other effects (e.g. coordinate rotation scheme) have only a small influence on the annual NEE estimate. In agricultural ecosystems the fate of the carbon removed during harvest plays a role in the net biome production (NBP) of the ecosystem, where NBP is given by net ecosystem production (NEP=−NEE) minus non-respiratory losses of the ecosystem (e.g. harvest). Taking account of the carbon removed by the wheat harvest (290 g C m−2), the agricultural field becomes a source of carbon with a NBP in the order of −45 to −105 g C m−2 per year. Annual carbon balance modelled with the Roth-C model also indicated that the ecosystem was a source for carbon (NBP −25 to −55 g C m−2 per year). Based on the modelling most of carbon respired resulted from changes in the litter and fast soil organic matter pool. Also, the crop and management history, particularly the C input to soil in the previous year, significantly affect next year’s CO2 exchange.  相似文献   

2.
We studied a semi-natural forest in Northern Italy that was set aside more than 50 years ago, in order to better understand the soil carbon cycle and in particular the partitioning of soil respiration between autotrophic and heterotrophic respiration. Here we report on soil organic carbon, root density, and estimates of annual fluxes of soil CO2 as measured with a mobile chamber system at 16 permanent collars about monthly during the course of a year. We partitioned between autotrophic and heterotrophic respiration by the indirect regression method, which enabled us to obtain the seasonal pattern of single components.The soil pool of organic carbon, with 15.8 (±4.5) kg m?2, was very high over the entire depth of 45 cm. The annual respiration rates ranged from 0.6 to 6.9 μmol CO2 m?2 s?1 with an average value of 3.4 (±2.3) μmol CO2 m?2 s?1, and a cumulative flux of 1.1 kg C m?2 yr?1. The heterotrophic component accounted for 66% of annual CO2 efflux. Soil temperature largely controlled the heterotrophic respiration (R2 = 0.93), while the autotrophic component followed irradiation, pointing to the role of photosynthesis in modulating the annual course of soil respiration.Most studies on soil respiration partitioning indicate autotrophic root respiration as a first control of the spatial variability of the overall respiration, which originates mainly from the uppermost soil layers. Instead, in our forest the spatial variability of soil respiration was mainly linked to soil carbon, and deeper layers seemed to provide a significant contribution to soil respiration, a feature that may be typical for an undisturbed, naturally maturing ecosystem with well developed pedobiological processes and high carbon stocks.  相似文献   

3.
A short-term incubation study was carried out to investigate the effect of biochar addition to soil on CO2 emissions, microbial biomass, soil soluble carbon (C) nitrogen (N) and nitrate–nitrogen (NO3–N). Four soil treatments were investigated: soil only (control); soil + 5% biochar; soil + 0.5% wheat straw; soil + 5% biochar + 0.5% wheat straw. The biochar used was obtained from hardwood by pyrolysis at 500 °C. Periodic measurements of soil respiration, microbial biomass, soluble organic C, N and NO3–N were performed throughout the experiment (84 days). Only 2.8% of the added biochar C was respired, whereas 56% of the added wheat straw C was decomposed. Total net CO2 emitted by soil respiration suggested that wheat straw had no priming effect on biochar C decomposition. Moreover, wheat straw significantly increased microbial C and N and at the same time decreased soluble organic N. On the other hand, biochar did not influence microbial biomass nor soluble organic N. Thus it is possible to conclude that biochar was a very stable C source and could be an efficient, long-term strategy to sequester C in soils. Moreover, the addition of crop residues together with biochar could actively reduce the soil N leaching potential by means of N immobilization.  相似文献   

4.
In recent years alternative farming practices have received considerable attention from Canadian producers as a means to improve their net return from grain and oilseed production. Enhancing the efficiency of nitrogen fertilizer use, including a pulse crop in the rotation, reducing tillage and pesticide use are seen as viable options to reduce reliance on fossil fuel, lower input costs and decrease the risk of soil, air and water degradation. The objective of this study was to determine the effects of 16 alternative management practices for a 2-year spring wheat (Triticum aestivum L.)–field pea (Pisum sativum L.) rotation on economic returns, non-renewable energy use efficiency, and greenhouse gas emissions. The alternative management methods for wheat consisted of a factorial combination of high vs. low soil disturbance one pass seeding, four nitrogen (N) fertilizer rates (20 kg N ha?1, 40 kg N ha?1, 60 kg N ha?1 and 80 kg N ha?1), and recommended vs. reduced rates of in-crop herbicide application. Alternative management practices for field pea were high vs. low soil disturbance one pass seeding. The resulting 16 cropping systems were evaluated at the whole farm level based on 4 years (two rotation cycles) of data from field experiments conducted on two Orthic Black Chernozem soils (clay loam and loam textures) in Manitoba, Canada. The highest net returns on the clay loam soil were for the high disturbance system with 60 kg N ha?1 applied to wheat and the recommended rates of in-crop herbicides. The lowest application rate of N, together with low disturbance seeding, provided the highest economic returns on the loam soil. Energy use efficiency was highest for the lowest rate of N application for both tillage systems. The highest rate of N fertilizer and recommended rates of in-crop herbicide produced little additional yield response, lower net returns, and higher GHG emissions. An increase in N fertilizer application from 20 kg ha?1 to 80 kg ha?1 increased whole farm energy requirements by about 40%, while reducing herbicide rates had negligible effects on grain yields and total energy input. Overall, as N fertilizer rate increased, the associated GHG emissions were not offset by an increase in carbon retained in the above-ground crop biomass. Moderate to high soil test NO3-N levels at experimental sites reduced the potential for positive yield responses to N fertilizer in this study, thus minimizing the economic benefits derived from N fertilizer application.  相似文献   

5.
Net ecosystem exchange of carbon (FNEE) was estimated for a temperate broadleaf, evergreen eucalypt forest ecosystem at Tumbarumba in south-eastern Australia to investigate the processes controlling forest carbon sinks and their response to climate. Measurements at a range of temporal and spatial scales were used to make three different estimates of FNEE based on: (1) the difference between fluxes of carbon input by photosynthesis and output by autotrophic plus heterotrophic respiration, (2) changes over time in the carbon pools in the above- and below-ground biomass, soil and litter, and (3) micrometeorological flux measurements that provide a continuous estimate of the net exchange. A rigorous comparison of aggregated component fluxes and the net eddy fluxes within a flux tower source area was achieved based on an inventory of the site and a detailed sampling strategy. Measurements replicated in space and time provided mean values, confidence limits and patterns of variation of carbon pools and fluxes that allowed comparisons within known limits of uncertainty. As a result of comparisons between nighttime eddy flux and chamber measurements of respiration, a revised micrometeorological method was developed for estimating nighttime carbon flux using flux tower measurements. Uncertainty in the final estimate of FNEE was reduced through mutual constraints of each of these measurement approaches. FNEE for the period October 2001–September 2002, with average rainfall, was an uptake of 6.7 (5.1–8.3) tC ha?1 yr?1 estimated from component fluxes, and 5.4 (3.0–7.5) tC ha?1 yr?1 estimated from the revised eddy flux method. Biomass increment was 4.5 (3.7–5.4) tC ha?1 yr?1 and the remaining 0.9–2.2 tC ha?1 yr?1 could represent a carbon sink in the soil and litter pools or lie within the confidence limits of the measured fluxes. FNEE was reduced to ?0.1 to 2.4 tC ha?1 yr?1 during a period of drought and insect disturbance in October 2002–September 2003, with biomass increment being the main component reduced. The forest is a large carbon sink compared with other forest ecosystems, but this is subject to high-annual variability in response to climate variability and disturbance.  相似文献   

6.
《Applied soil ecology》2007,35(2-3):258-265
We examined the relationship between soil respiration rate and environmental determinants in three types of tropical forest ecosystem—primary forest, secondary forest, and an oil palm plantation in the Pasoh Forest Reserve on the Malaysian Peninsula. In August 2000, the soil respiration rate and environmental factors (soil temperature, soil water content, soil C and N contents, biomass of fine roots, and microbes) were measured at 12–16 points in research quadrats. Soil respiration rates were 831 ± 480, 1104 ± 995, 838 ± 143, 576 ± 374, and 966 ± 578 (mean ± S.D.) mg CO2 m−2 h−1 in the primary forest canopy and gap site, secondary forest canopy and gap site, and oil palm plantation, respectively. Although the mean soil respiration rates in the three forest ecosystems did not differ significantly, differences were evident in the environmental factors affecting the soil respiration. The major causes of spatial variation in soil respiration were fine root biomass, soil water content, and soil C content in the primary and secondary forests and oil palm plantation, respectively.  相似文献   

7.
The use of organic residues as soil amendments or fertilisers may represent a valuable recycling strategy. In this study, a series of laboratory assays was performed to study the effects of the application of organic residues on C and N mineralization and biochemical properties in a Mediterranean agricultural soil. Two crop residues (straw and cotton) and two animal by-products (meat bone meal and blood meal) were added at three rates (5, 10 and 20 mg g?1 on dry weight basis) to a moist (40% water holding capacity) sandy soil and incubated at 20 °C for 28 days. Each residue underwent a different mineralization pattern depending on the nature and complexity of its chemical constituents. In all cases, the addition of the waste produced, after a short lag-phase, an exponential increase in the soil respiration rate, reflecting the growth of microbial biomass. The amount of total extra CO2-C evolved after 28 days, expressed as % in respect to added C, differed significantly (P < 0.005) among application doses: 5 > 10 > 20 mg g?1 and residue type: meat bone meal > blood meal > cotton cardings > wheat straw. Plant residues led to a rapid immobilisation of N that affected microbial size and activity and further mineralization. Animal by-products produced an immediate and remarkable increase of mineral N in the soil. However, the large amounts of NH4+ released in the soil at high rates of animal residues led, in some cases, to temporary adverse effects on microbial biomass growth and nitrification. All residues produced a significant increase in soil microbial biomass size and activity, being the intensity of the response related to their chemical properties.  相似文献   

8.
We used natural gradients in soil and vegetation δ13C signatures in a savannah ecosystem in Texas to partition soil respiration into the autotrophic (Ra) and heterotrophic (Rh) components. We measured soil respiration along short transects from under clusters of C3 trees into the C4 dominated grassland. The site chosen for the study was experiencing a prolonged drought, so an irrigation treatment was applied at two positions of each transect. Soil surface CO2 efflux was measured along transects and CO2 collected for analysis of the δ13C signature in order to: (i) determine how soil respiration rates varied along transects and were affected by localised change in soil moisture and (ii) partition the soil surface CO2 efflux into Ra and Rh, which required measurement of the δ13C signature of root- and soil-derived CO2 for use in a mass balance model.The soil at the site was unusually dry, with mean volumetric soil water content of 8.2%. Soil respiration rates were fastest in the centre of the tree cluster (1.5 ± 0.18 μmol m?2 s?1; mean ± SE) and slowest at the cluster–grassland transition (0.6 ± 0.12 μmol m?2 s?1). Irrigation produced a 7–11 fold increase in the soil respiration rate. There were no significant differences (p > 0.5) between the δ13C signature of root biomass and respired CO2, but differences (p < 0.01) were observed between the respired CO2 and soil when sampled at the edge of the clusters and in the grassland. Therefore, end member values were measured by root and soil incubations, with times kept constant at 30 min for roots and 2 h for soils. The δ13C signature of the soil surface CO2 efflux and the two end member values were used to calculate that, in the irrigated soils, Rh comprised 51 ± 13.5% of the soil surface CO2 efflux at the mid canopy position and 57 ± 7.4% at the drip line. In non-irrigated soil it was not possible to partition soil respiration, because the δ13C signature of the soil surface CO2 efflux was enriched compared to both the end member values. This was probably due to a combination of the very dry porous soils at our study site (which may have been particularly susceptible to ingress of atmospheric CO2) and the very slow respiration rates of the non-irrigated soils.  相似文献   

9.
Organic amendments not only promote soil quality and plant performance directly but also facilitate the establishment of introduced microbial agents. A field experiment with a fully factorial design was conducted using three levels of vermicompost (without vermicompost, low dose of 15 Mg ha−1 and high dose of 30 Mg ha−1), with and without plant growth-promoting rhizobacteria (PGPR) to investigate their effects in a tomato – by spinach rotation system. Our results demonstrated that applying PGPR alone had no effect on soil properties and crop performance. Vermicompost enhanced the beneficial effects of PGPR on both soil and crop, with the extent of promotion depending on the dose of vermicompost and crop types. In the presence of vermicompost, PGPR significantly (P < 0.05) reduced soil carbon and nitrogen but increased soil microbial biomass carbon and nitrogen. PGPR also significantly increased the yield of tomato and spinach under the low dose of vermicompost, but only significantly increased tomato yield under the high dose of vermicompost. There were strongly synergistic effects between vermicompost and PGPR on crop quality, with crop nitrate concentration being significantly decreased, while the vitamin C in tomato and soluble protein in spinach was significantly increased. Our results revealed the high potential of integrating vermicompost and microbial agents to substitute for regular chemical fertilization practices.  相似文献   

10.
The impact of intensified drought and rewetting on C cycling in peatlands is debated. We conducted drying/rewetting (DW) experiments with intact monoliths of a temperate fen over a period of 10 months. One treatment with original vegetation (DW-V) and one defoliated treatment (DW-D) were rewetted after an experimental drought of 50 days; another treatment was kept permanently wet (W-V). Soil water content was determined by the TDR technique, C fluxes from chamber measurements and gas profiles in the soils, and respiration from mass balancing CO2 and CH4 fluxes in the peat using hourly to weekly data. Zones of high root associated respiration were determined from a 13C labeling experiment. Autotrophic respiration contributed from 55 to 65% to an average ecosystem respiration (ER) of 92 (DW-D), 211 (DW-V), and 267 mmol m?2 d?1 (W-V). Photosynthesis ranged from 0 (DW-D) to 450 mmol m?2 d?1 (W-V), and strongly declined for about 30 days after rewetting (DW-V), while ER remained constant during the drying and rewetting event. Drying raised air-filled porosity in the soil to 2–13%, temporarily increased respiration to estimated anaerobic and aerobic rates of up to 550 and 1000 nmol cm?3 d?1, and delayed methane production and emission by weeks to months. Root associated respiration was concentrated in the uppermost peat layer. In spite of clear relative changes in respiration during and after drought, the impact on carbon exchange with the atmosphere was small. We attribute this finding to the importance of respiration in the uppermost and soil layer, which remained moist and aerated, and the insensitivity of autotrophic respiration to drought. We expect a similar dynamics to occur in other temperate wetland soils in which soil respiration is concentrated near the peatland surface, such as rich minerotrophic fens.  相似文献   

11.
Paclobutrazol is a plant growth regulator largely utilized in mango cultivation and usually applied directly to soil. The aim of this study was to examine the effect of paclobutrazol on soil microbial biomass, soil respiration and cellulose decomposition in Brazilian soils under laboratory conditions. Soil samples were collected from fields with and without a reported history of paclobutrazol application. A solution of paclobutrazol (8 mg of active ingredient kg?1 of soil) was added to soils, which were then incubated at 28 °C for 30 days. Paclobutrazol decreased soil microbial biomass, soil respiration and cellulose decomposition in soil with and without a report of paclobutrazol application, while significant increase was observed in the respiratory quotient (qCO2). Our results show that the soil microbiological attributes were negatively affected by paclobutrazol in short-term experiment.  相似文献   

12.
We used the eddy-covariance technique to measure evapotranspiration (E) and gross primary production (GPP) in a chronosequence of three coastal Douglas-fir (Pseudotsuga menziesii) stands (7, 19 and 58 years old in 2007, hereafter referred to as HDF00, HDF88 and DF49, respectively) since 1998. Here, we focus on the controls on canopy conductance (gc), E, GPP and water use efficiency (WUE) and the effect of interannual climate variability at the intermediate-aged stand (DF49) and then analyze the effects of stand age following clearcut harvesting on these characteristics. Daytime dry-foliage Priestley–Taylor α and gc at DF49 were 0.4–0.8 and 2–6 mm s?1, respectively, and were linearly correlated (R2 = 0.65). Low values of α and gc at DF49 as well at the other two stands suggested stomatal limitation to transpiration. Monthly E, however, showed strong positive linear correlations to monthly net radiation (R2 = 0.94), air temperature (R2 = 0.77), and daytime vapour pressure deficit (R2 = 0.76). During July–September, monthly E (mm) was linearly correlated to monthly mean soil water content (θ, m3 m?3) in the 0–60 cm layer (E = 453θ ? 21, R2 = 0.69), and GPP was similarly affected. Annual E and GPP of DF49 for the period 1998–2007 varied from 370 to 430 mm and from 1950 to 2390 g C m?2, respectively. After clearcut harvesting, E dropped to about 70% of that for DF49 while ecosystem evapotranspiration was fully recovered when stand age was ~12 years. This contrasted to GPP, which varied hyperbolically with stand age. Monthly GPP showed a strong positive linear relationship with E irrespective of the stand age. While annual WUE of HDF00 and HDF88 varied with age from 0.5 to 4.1 g C m?2 kg?1 and from 2.8 to 4.4 g C m?2 kg?1, respectively, it was quite conservative at ~5.3 g C m?2 kg?1 for DF49. N-fertilization had little first-year response on E and WUE. This study not only provides important results for a more detailed validation of process-based models but also helps in predicting the influences of climate change and forest management on water vapour and CO2 fluxes in Douglas-fir forests.  相似文献   

13.
Microbial biomass (MB) is the key factor in nutrient dynamics in soil, but no information exists how clearing of vegetation to cultivate maize in the central highlands of Mexico might affect it. Soil MB was measured with the chloroform fumigation incubation (CFI) and fumigation extraction (CFE) techniques and the substrate-induced respiration (SIR) method in soil sampled under or outside the canopy of mesquite (Prosopis laevigata) and huisache (Acacia tortuoso), N2 fixing shrubs, and from fields cultivated with maize. Microbial biomass C as measured with the CFI technique ranged from 122 mg C kg−1 in agricultural soil to 373 mg C kg−1 in soil sampled under mesquite shrubs. Microbial biomass N as measured with the CFI technique ranged from 11 mg N kg−1 in agricultural soil to 116 mg N kg−1 in soil sampled under mesquite shrub. The ratio of microbial biomass C as measured with CFI related to the ninhydrin-positive compounds (NPC) was 12.23 after 1 day and 8.43 after 10 days while the relationship with extractable C was 3.15 and 2.96, respectively. The metabolic quotient (qCO2) decreased in the order OUTSIDE > MESQUITE > HUIZACHE > AGRICULTURE, and the microbial biomass:soil organic C ratio decreased in the order MESQUITE > HUIZACHE > OUTSIDE > AGRICULTURE using SIR to determine the microbial biomass. It was found that converting soil under natural vegetation to arable soil was not only detrimental for soil quality, but might be unsustainable as organic matter input is limited.  相似文献   

14.
A number of recent studies have focused on estimating gross primary production (GPP) using vegetation indices (VIs). In this paper, GPP is retrieved as a product of incident light use efficiency (LUE), defined as GPP/PAR, and the photosynthetically active radiation (PAR). As a good correlation is found between canopy chlorophyll content and incident LUE for six types of wheat canopy (R2 = 0.87, n = 24), indices aimed for chlorophyll assessment can be used as an indicator of incident LUE and the product of chlorophyll indices and PAR will be a proxy of GPP. In a field experiment, we investigated four canopy chlorophyll content related indices (Red edge Normalized Difference Vegetation Index [Red Edge NDVI], modified Chlorophyll Absorption Ratio Index [MCARI710], Red Edge Chlorophyll Index [CIred edge] and the MERIS Terrestrial Chlorophyll Index [MTCI]) for GPP estimation during the growth cycle of wheat. These indices are validated for leaf and canopy chlorophyll estimation with ground truth data of canopy chlorophyll content. With ground truth data, a strong correlation is observed for canopy chlorophyll estimation with correlation coefficients R2 of 0.79, 0.84, 0.85 and 0.87 for Red Edge NDVI, MCARI710, CIred edge and MTCI, respectively (n = 24). As evidence of the existence of a relationship between canopy chlorophyll and GPP/PAR, these indices are shown to be a good proxy of GPP/PAR with R2 ranging from 0.70 for Red Edge NDVI and 0.75 for MTCI (n = 240). Remote estimation of GPP from canopy chlorophyll content × PAR is proved to be relatively successful (R2 of 0.47, 0.53, 0.65 and 0.66 for Red edge NDVI, MCARI710, CIred edge and MTCI respectively, n = 240). These results open up a new possibility to estimate GPP and should inspire new models for remote sensing of GPP.  相似文献   

15.
After reforesting pasture land, it is often observed that soil carbon stocks decrease. The present work reports findings from a site near Canberra, Australia, where a pine forest (Pinus radiata) was planted onto a former unimproved pasture site. We report a number of detailed observations seeking to understand the basis of the decline in soil C stocks. This is supported by simulations using the whole-ecosystem carbon and nitrogen cycling model CenW 3.1. The model indicated that over the first 18 years after forest establishment, the site lost about 5.5 t C ha?1 and 588 kgN ha?1 from the soil. The C:N ratio of soil organic matter did not change in a systematic manner over the observational period. Carbon and nitrogen stocks contained in the biomass of the 18-year old pine stand exceeded that of the pasture by 88 t C ha?1 and 393 kgN ha?1. An additional 6.1 t C ha?1 and 110 kgN ha?1 accumulated in above-ground litter. These changes, together with the vertical distribution of carbon and nitrogen in the soil, agreed well with the observation at the site. It was assumed that over 18 years, there was also a loss of 86 kgN ha?1 from the ecosystem because of normal gaseous losses during nitrogen turn-over and a small amount of nitrogen leaching. Those losses could not be replenished in the pine system without symbiotic biological nitrogen fixation, and there were no fertiliser additions. A simple mass balance approach indicated that the amount of nitrogen accumulating in plant biomass and the litter layer plus the assumed nitrogen loss from the site matched the amount of nitrogen lost from the soil organic nitrogen pool. This reduction in soil nitrogen, together with an unchanged C:N ratio, provided a simple and internally consistent explanation for the observed reduction of soil carbon after reforestation. It supports the general notion that trends in soil carbon upon land-use change can often be controlled by the possible fates of available soil nitrogen.  相似文献   

16.
The substrate availability for microbial biomass (MB) in soil is crucial for microbial biomass activity. Due to the fast microbial decomposition and the permanent production of easily available substrates in the rooted top soil mainly by plants during photosynthesis, easily available substrates make a very important contribution to many soil processes including soil organic matter turnover, microbial growth and maintenance, aggregate stabilization, CO2 efflux, etc. Naturally occurring concentrations of easily available substances are low, ranging from 0.1 μM in soils free of roots and plant residues to 80 mM in root cells. We investigated the effect of adding 14C-labelled glucose at concentrations spanning the 6 orders of magnitude naturally occurring concentrations on glucose uptake and mineralization by microbial biomass. A positive correlation between the amount of added glucose and its portion mineralized to CO2 was observed: After 22 days, from 26% to 44% of the added 0.0009 to 257 μg glucose C g?1 soil was mineralized. The dependence of glucose mineralization on its amount can be described with two functions. Up to 2.6 μg glucose C g?1 soil (corresponds to 0.78% of initial microbial biomass C), glucose mineralization increased with the slope of 1.8% more mineralized glucose C per 1 μg C added, accompanied by an increasing incorporation of glucose C into MB. An increased spatial contact between micro-organisms and glucose molecules with increasing concentration may be responsible for this fast increase in mineralization rates (at glucose additions <2.6 μg C g?1). At glucose additions higher than 2.6 μg C g?1 soil, however, the increase of the glucose mineralization per 1 μg added glucose was much smaller as at additions below 2.6 μg C g?1 soil and was accompanied by decreasing portions of glucose 14C incorporated into microbial biomass. This supports the hypothesis of decreasing efficiency of glucose utilization by MB in response to increased substrate availability in the range 2.6–257 μg C g?1 (=0.78–78% of microbial biomass C). At low glucose amounts, it was mainly stored in a chloroform-labile microbial pool, but not readily mineralized to CO2. The addition of 257 μg glucose C g?1 soil (0.78 μg C glucose μg?1 C micro-organisms) caused a lag phase in mineralization of 19 h, indicating that glucose mineralization was not limited by the substrate availability but by the amount of MB which is typical for 2nd order kinetics.  相似文献   

17.
《Soil & Tillage Research》2007,93(1):126-137
Although reduced tillage itself is beneficial to soil quality and farm economics, the amount of crop residues returned to the soil will likely alter the success of a particular conservation tillage system within a farm operation. We investigated the impact of three cropping systems (a gradient in silage cropping intensity) on selected soil physical, chemical, and biological properties in the Piedmont of North Carolina, USA. Cropping systems were: (1) maize (Zea mays L.) silage/barley (Hordeum vulgare L.) silage (high silage intensity), (2) maize silage/winter cover crop (medium silage intensity), and (3) maize silage/barley grain—summer cover crop/winter cover crop (low silage intensity). There was an inverse relationship between silage intensity and the quantity of surface residue C and N contents. With time, soil bulk density at a depth of 0–3 cm became lower and total and particulate C and N fractions, and stability of macroaggregates became higher with lower silage intensity as a result of greater crop residue returned to soil. Soil bulk density at 0–3 cm depth was initially 0.88 Mg m−3 and increased to 1.08 Mg m−3 at the end of 7 years under high silage intensity. Total organic C at 0–20 cm depth was initially 11.7 g kg−1 and increased to 14.3 g kg−1 at the end of 7 years under low silage intensity. Stability of macroaggregates at 0–3 cm depth at the end of 7 years was 99% under low silage intensity, 96% under medium silage intensity, and 89% under high silage intensity. Soil microbial biomass C at 0–3 cm depth at the end of 7 years was greater with low silage intensity (1910 mg kg−1) than with high silage intensity (1172 mg kg−1). Less intensive silage cropping (i.e., greater quantities of crop residue returned to soil) had a multitude of positive effects on soil properties, even in continuous no-tillage crop production systems. An optimum balance between short-term economic returns and longer-term investments in improved soil quality for more sustainable production can be achieved in no-tillage silage cropping systems.  相似文献   

18.
The ultimate goal of soil remediation is to restore soil health. Soil microbial parameters are considered to be effective indicators of soil health. The aim of this study was to determine the effects of phytoextraction on microbial properties through the measurement of soil microbial biomass carbon, soil basal respiration and enzyme activities. For this purpose, a pre-stratified rhizobox experiment was conducted with the Cd hyperaccumulator Sedum alfredii H. for phytoextraction Cd from an artificial contaminated soil (15.81 mg kg−1) under greenhouse conditions. The plant and soil samples were collected after growing the plant for three and six months with three replications. The results indicated that the ecotype of S. alfredii H. originating from an ancient silver mining site was a Cd-hyperaccumulator as it showed high tolerance to Cd stress, the shoot Cd concentration were as high as 922.6 mg kg−1 and 581.9 mg kg−1 at the two samplings, and it also showed high BF (58.4 and 36.8 after 3 and 6 months growth), and TF (5.8 and 5.1 after 3 and 6 months growth). The amounts of Cd accumulated in the shoots of S. alfredii reached to an average of 1206 μg plant−1 after 6 months growth. Basal respiration, invertase and acid phosphatase activities of the rhizosphere soil separated by the shaking method were significantly higher (P < 0.01) than that of the near-rhizosphere soil and the unplanted soil after 3 months growth, so were microbial biomass carbon, urease, invertase and acid phosphatase activities of the rhizosphere soil after 6 months growth. Acid phosphatase activity of the 0–2 mm sub-layer rhizosphere soil collected by the pre-stratified method after 3 months growth was significantly higher (P < 0.05) than that of other sub-layer rhizosphere soils and bulk soil, and so were microbial biomass carbon, basal respiration, urease, invertase and acid phosphatase activities of the 0–2 mm sub-layer rhizosphere soil after 6 months growth. It was concluded that phytoextraction by S. alfredii could improve soil microbial properties, especially in rhizosphere, and this plant poses a great potential for the remediation of Cd contaminated soil.  相似文献   

19.
Although tropical and subtropical environments permit two cropping cycles per year, maintaining adequate mulching on the soil surface remains a challenge. In some cases, leaving soils fallow during the winter as an agricultural practice to control pathogens contributes to reduce soil mulching. The aim of this study was to assess attributes associated with C and N cycling in a soil under conventional and no-tillage management, with contrasting uses in winter: black oats (Avena strigosa Schreb) as cover crop or fallow. No-tillage increased total C and N, irrespective the winter crop. Cropping black oats under no-tillage resulted in more microbial biomass C and N, and glutaminase activity (15.2%, 65.2%, and 24%, respectively) than no-tillage under fallow. Under conventional tillage, winter cropping did not affect the attributes under study. Available P was higher in the no-tillage system (9.2–12.3 mg kg−1), especially when cropped with black oats, than in the conventional tillage system (4.8–6.6 mg kg−1). A multivariate analysis showed strong relationships between soil microbiological and chemical attributes in the no-tillage system, especially when cropped with black oats. Soil pH, dehydrogenase and acid phosphatase activities were the most effective at separating the soil use in winter. Microbial N, total N, microbial to total N ratio, available P, metabolic quotient (qCO2), and glutaminase activity were more effective at separating soil management regimes. The no-tillage system in association with winter oat cropping stimulated the soil microbial community, carbon and nutrient cycling, thereby helping to improve the sustainability of the cropping system.  相似文献   

20.
Spatial and temporal patterns of soil respiration rates and controlling factors were investigated in three wet arctic tundra systems. In situ summer season carbon dioxide fluxes were measured across a range of micro-topographic positions in tussock tundra, wet sedge tundra, and low-centre polygonal tundra, at two different latitudes on the Taimyr Peninsular, central Siberia. Measurements were carried out by means of a multi-channel gas exchange system operating in continuous-flow mode.Measured soil respiration rates ranged from 0.1 g CO2-C m?2 d?1 to 3.9 g CO2-C m?2 d?1 and rate differences between neighbouring sites in the micro-topography (microsites) were larger than those observed between different tundra systems. Statistical analysis identified position of the water table and soil temperature at shallow depths to be common controls of soil respiration rates across all microsites, with each of these two factors explaining high proportions of the observed variations.Modelling of the response of soil respiration to soil temperature and water table for individual microsites revealed systematic differences in the response to the controlling factors between wet and drier microsites. Wet microsites – with a water table position close to the soil surface during most of the summer – showed large soil respiration rate changes with fluctuations of the water table compared to drier microsites. Wet microsites also showed consistently higher temperature sensitivity and a steeper increase of temperature sensitivity with decreasing temperatures than drier sites. Overall, Q10 values ranged from 1.2 to 3.4. The concept of substrate availability for determining temperature sensitivity is applied to reconcile these systematic differences. The results highlight that soil respiration rates in wet tundra are foremost controlled by water table and only secondarily by soil temperature. Wet sites have a larger potential for changes in soil respiration rates under changing environmental conditions, compared to drier sites.It is concluded that understanding and forecasting gaseous carbon losses from arctic tundra soils and its implication for ecosystem-scale CO2 fluxes and soil organic matter dynamics require good knowledge about temporal and spatial patterns of soil water conditions. The water status of tundra soils can serve as a control on the temperature sensitivity of soil respiration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号