首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 671 毫秒
1.
无阀压电泵用平面锥管内部流动特性   总被引:1,自引:0,他引:1  
为了研究锥管的流阻特性,采用数值模拟的方法对最小截面宽度为150μm,高度为150μm的平面锥管进行分析,得到雷诺数在100~2 000范围内,收缩方向流阻系数与扩散方向流阻系数的比值λ随锥角θ及流管长宽比l/w变化的规律.结果表明:流管锥角越小,θ及l/w对λ值的影响越大,且流管的流阻特性随θ和l/w的变化发生了转换;在Re=100与Re≥500两种工况下,流管扩散方向流阻系数ξd随θ及l/w的变化趋势相反;Re=100时,流管多呈沿扩散方向流阻较小的Ⅰ类流管特性,θ=20°,l/w=20的流管的λ值最大达到1.22;Re≥500时,流管多呈沿收缩方向流阻较小的Ⅱ类流管特性,θ=20°,l/w=1的流管的λ值最小达到0.63.说明不同雷诺数流动下流管的流阻特性相差较大,不同工况下可通过选用合适的流管结构参数提高无阀压电泵的工作效率.  相似文献   

2.
基于扩散/渐缩管流动特性,提出一种用于无阀压电泵的 "V"型管,以满足微型全分析系统等应用需求.阐述了"V"型无阀压电泵的结构,对"V"型无阀压电泵内的流阻特性进行理论分析.通过采用有限元法对"V"型管进行模拟计算,研究"V"型管的结构参数对其流阻特性的影响.研究表明:"V"型管的分流角、扩散角以及进口宽度对其流阻特性影响较大,"V"型管的长度对其流阻特性影响较小;较大的"V"型管深度有利于提高泵的效率.  相似文献   

3.
“V”形无阀压电泵理论分析与数值模拟   总被引:1,自引:1,他引:0  
何秀华  张睿 《排灌机械》2008,26(4):30-34
基于无阀压电泵中扩散/渐缩管流动特性,提出一种用于无阀压电泵的新型“V”形管,以满足微型全分析系统的应用要求.阐述了“V”形无阀压电泵的结构和工作原理,对“V”形无阀压电泵内的流动进行理论分析,得到了“V”形无阀压电泵的平均流量计算公式和效率公式.采用有限元方法对“V”形管进行模拟计算,得到了“V”形管内正反流动的压力分布,发现“V”形管正反流动的速度存在差异.通过分析得出最优分流角与扩散角.在不同进出口压力差下,对“V”形管、并联扩散管以及"Y"形管的压力损失系数比进行比较,发现前两者压力损失系数比曲线变化趋势具有一致性,证明了“V”形管数值模拟的可靠性.数值计算结果对“V”形无阀压电泵优化设计具有指导意义.  相似文献   

4.
基于无阀压电泵中扩散/渐缩管流动特性,提出一种新型“V”形管.为了获得“V”形管最佳的流阻性能,对“V”形管的结构参数进行优化设计.基于正交设计法,采用有限元仿真的试验方法,设计了一个四因素三水平的正交方案,并对仿真试验所获得的数据进行极差分析,得到了各几何参数对“V”形管流阻系数影响的主次顺序,同时获得较合理的新方案.通过进行再设计和分析,并与正交方案进行对比,最终验证了新方案是最优方案,为“V”形管无阀压电泵的优化设计提供了一定的参考.  相似文献   

5.
V型无阀压电泵的流场分析   总被引:1,自引:1,他引:0  
简述了V型无阀压电泵的结构和工作原理,通过对其流动进行理论分析,建立泵的平均流量方程和效率公式.采用有限元方法建立V型无阀压电泵的简化模型,通过对V型无阀压电泵内部流场进行模拟分析,得到供给状态与泵送状态下的压力云图与速度矢量图.通过与并联扩散管压电泵在不同进出口压差下的压力损失系数比进行比较发现其变化规律的一致性,且V型无阀压电泵压力损失系数比的曲线平直上升,说明V型无阀压电泵比并联扩散管压电泵的流动稳定性好,从而验证了V型无阀压电泵的可靠性.  相似文献   

6.
邓志丹  何秀华  杨嵩  李富 《农业机械学报》2013,44(9):284-288,278
为了提高无阀压电泵中流管的流阻特性,提出一种新型椭圆组合管结构。该流管为三通结构,汇流管是传统扩散/收缩管,分流管是椭圆曲线结构的扩散/收缩管。通过数值模拟,应用正交方法优化椭圆组合管的结构参数。设计选用的汇流管最小宽度d=150μm,流管深度H=150μm,优化结果表明当进出口压差为50kPa时,结构尺寸为r=75μm,L=3000μm,θ=7°,γ=80°,a=1000μm,b=450μm的椭圆组合管有最高的正反向流阻系数比λ。通过MEMS技术制作出优化后的椭圆组合管并进行试验,并与数值模拟结果对比。结果表明:试验值小于模拟值,压差在10~100kPa范围内,正向流量试验值与模拟值最大相差12.6%,反向流量两者最大相差5.3%;压差为50kPa时,两者的λ值分别为1.83和1.97,相差7.65%。  相似文献   

7.
提出一种基于附壁效应的无阀压电泵,该泵利用附壁射流元件造成吸入过程和排出过程中进出口的流量差,实现流体输送。首先通过动网格技术及数值模拟研究微泵的内部流场和外特性,结果表明该无阀压电泵的容积效率η可以达到0.5以上,高于传统扩散/收缩管无阀压电泵。然后讨论了平面锥管长度和两分流直管间凹劈面宽度对微泵性能的影响,平面锥管长度L1必须大于dcot(θ/2),当c2/c1=1时L1/d=9的微泵在零输出压力下流量最大;不同输出压力和c2/c1的微泵流量对比表明凹劈面宽度越宽微泵输出压力性能越佳,但是在低输出压力下微泵随着凹劈面宽度的增加其容积效率降低。最后应用响应面方法对平面锥管长度和凹劈面宽度进行优化,结果表明当输出压力为5 k Pa时,最优的参数选取范围为4≤L1/d≤5,0.75≤c2/c1≤0.85,当L1/d=4.3,c2/c1=0.80时η达到最大,为0.323。其数值模拟为0.317,相差1.89%。  相似文献   

8.
为了增大流管的流阻比以提高微泵性能,在传统的扩散/收缩管基础上提出1种新型对数螺旋组合管结构.该组合管为三通结构,由汇流管即传统的扩散/收缩管和分流管即以对数螺旋线为轮廓的一对对称流管组成.利用数值模拟方法分别对汇流管和分流管进行正交优化设计,并通过试验对数值模拟结果进行检验.结果表明优化后的对数螺旋组合管正反向流阻比近似为常数1.7,优于传统的扩散/收缩管.正、反向流动数值模拟结果相比试验值误差分别小于20%和12%.加工出应用对数螺旋组合管的样泵并进行试验测量,结果显示该微泵的扬程和流量在频率为225 Hz下存在峰值,该频率下扬程和流量随输入电压的增大而增大.该微泵最大扬程为396 mm水柱,最大流量为0.43 mL/min.应用该组合管可以有效增大正反流阻比从而提高无阀压电微泵的性能.  相似文献   

9.
分析了V形管内的流动损失,并初步优化V形管无阀压电泵结构,利用CFD软件对改进前后的V形管内流场进行了数值模拟,结果表明:直角汇流管口改为圆角后的V形管流阻系数有了明显提高.通过对比改进前后两种V形管流场速度矢量图,发现圆角V形管可抑制正向流动时管内回流和漩涡的发生,减小流动损失.对不同圆角半径的V形管内流场进行数值模拟,得到不同圆角半径V形流管的流阻系数,表明较大的圆角半径可有效地提高V形管流阻系数,即提高了V形管无阀压电泵的效率.此优化设计可为V形管压电泵的进一步改进提供思路.  相似文献   

10.
无阀压电泵的泵送性能主要取决于管道系统中的正、反向流阻差值,因而对流阻的测试尤为重要。为此设计了能够实现自动或半自动上水功能的无阀压电泵流阻测试装置,该装置测试液体的流速范围较宽,易于分析、研究流阻作用规律;以半球缺阀为例推导了阻力系数公式;利用新、旧2种测试装置对半球缺阻流体无阀压电泵的流阻进行了测试并计算了泵理论流量,与试验流量的偏差分别为34.38%、117.33%。研究表明:无阀压电泵流阻测试装置极大地提高了流阻测试精度;能够进行流阻测试、分析、泵理论流量计算及试验流量的预测。  相似文献   

11.
弯道后的水流调整不好,可导致进/出口存在严重偏流和水头损失增大.为了保证竖井式进/出水口的配水均匀性和水力稳定,采用三维RNG k-ε紊流模型,对某抽水蓄能电站上水库盖板竖井式进/出水口进行了数值模拟,并进行了模型试验验证.重点对比研究了竖井扩散段采用椭圆曲线与渐扩锥管两种形式在抽水工况出流时的流动特性.计算结果显示,渐扩锥管的配水均匀性和稳定性均好于椭圆曲线扩散管的.对比分析了弯道后渐扩锥管扩散角分别为4.3°,5°和7°时的配水均匀性,计算结果显示竖井式进/出水口应尽可能控制扩散段的扩散角,防止出现偏流;在弯管段后的扩散段的扩散角宜小于4.5°.采用物理模型对推荐体型进行了验证,模型试验显示按照推荐体型设计的进/出水口配水均匀,双机抽水工况下总水头损失系数为0.48;双机发电工况下,总水头损失系数为0.33.  相似文献   

12.
为了研究涡轮出口旋流动能对入口锥角较大的直线型扩大管压力回复性能的影响,采用数值仿真的方法对其流体力学机理及规律进行探讨.选用可动翼灯泡贯流式水轮机作为研究对象,经水轮机进水管入口、固定导叶、导水机构叶栅、涡轮至尾水管(扩大管)出口实施了三维整体流动数值计算,计算了多运行工况下尾水管压力回复系数Cp,水力损失和比水能损率δD,得到了直线型扩大管内最优旋回动能与最大压力回复性能之间的流体力学关系,进而对于尾水管的水力性能进行了预测.提出了新定义的尾水管出口动能歪曲度Iek,进行了不同旋回入流条件下尾水管内部流动动能的比较.结果表明:Iek和Cp存在一定规律的内在关系,当尾水管动能歪曲度Iek具有最小值时,尾水管压力回复系数Cp最大、比水能损率δD最小.新提出的Iek可作为可动翼贯流式水轮机直线型尾水管内含旋回流动流体品质的评价指标.  相似文献   

13.
液体射流泵内部流动分析:Ⅱ理论计算参数确定   总被引:2,自引:0,他引:2  
推导了射流泵理论模型方程中计算参数与断面几何和流动参数的关系,利用数值模拟结果,确定了理论模型中的计算参数,分析了理论计算参数随流量比的变化规律.结果表明:反力分布系数c1与吸入面积比c在最优工况近似相等,而随着流量比偏离最优工况,两者偏差增大;利用c值代替c1值不会导致理论计算结果显著误差;工作流体速度一定条件下,动量修正系数k1不随流量比变化而变化,近似为常数;k2随流量比变化呈双曲线形状,随着流量比增大,逐渐趋近于1;喷嘴流速系数1、吸入管路流速系数4为常数;扩散管入口断面流速分布均匀性对扩散管流速系数3值有重要影响;喉管流速系数2及喉管入口收缩段流速系数5随流量比增加而线性减少,是影响理论计算结果的主要参数.理论计算结果与试验结果吻合较好,验证了计算参数确定方法的可行性和理论模型的可靠性.  相似文献   

14.
为了研究在多场耦合影响下的压电微泵的输出性能,提出了一种新的数值模拟方法,以附壁射流无阀压电微泵为对象进行数值计算,并通过试验验证了数值计算方法的正确性,同时对压电泵的外特性进行了研究.结果表明:随着频率的增大,压电泵的流量和背压都呈现先增大后减小的趋势;当电压为200 V,频率为62.5 Hz时,压电泵的流量和背压都达到最大,分别为0.703 mL/min和0.672 kPa;提取压电振子的位移分布和压电泵瞬时流量的数据,显示压电泵的出口瞬时流量滞后于瞬时电压的原因是耦合作用的影响;随着喉部高度H的增大,压电泵的流量呈现先增大后减小的趋势,当电压为200 V,频率为50.0 Hz,喉部高度H=0.4 mm时流量达到最大,为4.023 mL/min;结合压电振子的最大位移曲线和压电泵内部流场的速度矢量图分析,表明压电振子的最大振幅决定于从泵腔泵出的总流量,而内流场形成的旋涡尺寸和位置决定了进口管和出口管之间流量的分配.  相似文献   

15.
为了提高支管射流三通水力性能,改善滴灌的灌水均匀性,基于CFX数值模拟技术,对进口宽度为15 mm的支管射流三通进行结构优化.选取位差、劈距、劈尖半径和侧壁倾角为影响因素,通过四因素三水平正交设计了9组模型,边界条件设定为进口压力100 kPa.选取支管射流三通出口设计流量为评价标准,支管射流三通最优结构尺寸为位差5.5 mm、劈距113 mm、劈尖半径13 mm、侧壁倾角10°.此结构尺寸参数下的支管射流三通水力性能试验结果表明:在进口水压为100 kPa时,支管射流三通脉冲频率为148次/min,水头压力振幅为37.9 kPa,水头压力损失为16.7 kPa,出口流量为0.698 L/s;支管射流三通所接滴灌带长度为60 m时,与普通支管三通相比,支管射流三通的灌水均匀系数提高了2.78%,流量偏差率降低了4.72%.该研究可为射流技术在脉冲滴灌系统的研究、开发与应用提供理论依据.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号