首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A headspace gas chromatographic method for the determination of traces of ethylene oxide in ethoxylated surfactants and demulsifiers was developed. Samples are analyzed directly by the technique to a 1.0 ppm (w/w) quantitation limit. The procedure also performs well for propylene oxide, acetaldehyde, and 1,4-dioxane. It is simple, sensitive, and linear. The percent relative standard deviations for 0.5 and 30 ppm ethylene oxide in the surfactant were 2.8 and 8.3%, respectively.  相似文献   

2.
A simple and accurate method is described for the determination of ethylene chlorohydrin (ECH) by using capillary gas chromatography (GC) and flame ionization detection. Acetonitrile-methanol was chosen as the extraction solvent in preference to other solvents because its use reduced the number of compounds detected by the GC system, thus enabling easier identification and quantitation of ECH. The coefficient of variation for the method is 2.7% at 5 ppm, and recovery is good, even for the standard addition of 1 ppm. Fifteen different spices and condiments were analyzed using this method; 20% were identified as positive for ECH. The method also identifies the related compound ethylene bromohydrin (EBH).  相似文献   

3.
A gas-liquid chromatographic (GLC) method was developed for the detection and determination of thiourea in citrus peels. After the peel is extracted with ethyl ether, the ether extract is adsorbed on sodium sulfate together with water. Thiourea is recoverd from both the sodium sulfate and the peel residue with ethyl acetate-acetone(2+1). The extracted mixture is cleaned on an alumina column, the eluate is concentrated under vacuum, and thiourea is extracted from the concentrate with sodium carbonate solution. GLC was carried out on the prepared benzoyl derivative of thiourea. The average recoveries of thiourea from lemon peel were 85.3, 93.1, and 97.6% at the fortification levels of 1, 10, and 100 ppm, respectively. The detection limit was low as 0.08 ppm.  相似文献   

4.
Methoxyfenozide [3-methoxy-2-methylbenzoic acid 2-(3,5-dimethylbenzoyl)-2-(1,1-dimethylethyl) hydrazide; RH-2485], in the formulation of INTREPID, was applied to various crops. Analysis of methoxyfenozide was accomplished by utilizing liquid-liquid extraction and partitioning, followed by liquid chromatography-tandem mass spectrometry (LC-MS/MS). Method validations for fruits, vegetables, and mint are reported. Methoxyfenozide mean recoveries ranged from 72 to 129% over three levels of fortification. The overall average of mean recoveries is 97 +/- 10%. The limit of quantitation for fruits, artichoke, cucumber, squash, and refined sugar was 0.010 ppm, with a detection limit of 0.005 ppm. For all other crops, the limit of quantitation was 0.050 ppm, with a detection limit of 0.025 ppm. No residues were found greater than the limit of quantitation in control samples. Residues above the limit of quantitation were found in all matrices except refined sugar. Foliage (bean, beet, pea, and radish) had greater residue levels of methoxyfenozide residue than their corresponding roots or pods. Other crop matrices contained <1.0 ppm of methoxyfenozide except artichoke, which had a mean of 1.10 ppm.  相似文献   

5.
Samples of soil (25 g) were treated with 1 or 2 ml of propylene oxide, 400 or 800 parts/106 of sodium azide, or autoclaved for 1.5 or 3.0 h. Soil sterilization was achieved by the propylene oxide and autoclaving treatments. Sodium azide inhibited the bacteria and actinomycetes and drastically reduced the fungal population. The autoclaving treatment decreased the soil pH 0.2 unit, while propylene oxide and sodium azide treatments increased it 0.5–1.1 units. Extractable manganous—Mn was increased 2- to 3-fold by all treatments except for a 90- to 120-fold increase in an autoclaved soil; extractable Ca was not affected; and the extractable K changes were slight. Total extractable N was increased 10–20 parts/106, and available P was generally increased by the treatments. Propylene oxide induced the least chemical alterations upon sterilization and is considered an appropriate sterilant to study chemical transformations in soils; but, germination and growth of wheat and alfalfa were retarded in propylene oxide treated soil.  相似文献   

6.
An analytical method for the determination of fenhexamid [N-(2,3-dichloro-4-hydroxyphenyl)-1-methylcyclohexanecarboxamide] in caneberry, blueberry, and pomegranate was developed utilizing acetone extraction, column cleanup, liquid-liquid partitioning, and liquid chromatography-tandem mass spectroscopy (LC-MS/MS) for detection. Method validation recoveries ranged from 91 to 96% for caneberry, from 80 to 91% for blueberry, and from 74 to 95% for pomegranate. Control samples collected from IR-4 trials for all matrixes had residue levels of <0.020 ppm. Fenhexamid-treated field samples had residue levels that ranged from 0.46 to 16.11 ppm (caneberry), from 0.87 to 2.91 ppm (blueberry), and from 1.59 to 1.85 ppm (pomegranate). The method was validated to a limit of quantitation of 0.020 ppm, and the limit of detection was 0.009 ppm.  相似文献   

7.
Residues of 2-chloroethyl fatty acid esters (CEEs) and 2-chloroethanol (ECH), by-products of ethylene oxide fumigation, were determined in black walnuts, seasoning mixes, and spices. Extracts containing ECH and CEE were cleaned up by previously described procedures, and residue levels were quantitatively determined using a gas chromatograph equipped with a halogen-selective electrolytic conductivity detector. All food products that contained CEE residues also contained ECH. ECH residues ranged from less than 0.2 to 880 ppm and were less than 0.2-7 times the CEE levels found.  相似文献   

8.
The objective of this study is to develop a method for using the single-well natural gradient drift test (SWNGDT) in the field to assess in situ aerobic cometabolism of trichloroethylene (TCE) and to analyze microbial community changes. The SWNGDT was performed in a monitoring well installed in a TCE-contaminated aquifer in Wonju, South Korea. The natural gradient drift biostimulation test (NGDBT) and surrogate test (NGDST) were performed by injecting dissolved solutes (bromide (a tracer), toluene (a growth substrate), ethylene (a nontoxic surrogate substrate to probe for TCE transformation activity), dissolved oxygen (DO, an electron acceptor), and nitrate (nutrient)) into the aquifer. Push?Cpull blocking tests (PPBT) were also performed to examine whether the monooxygenase of toluene oxidizers is involved in the degradation of toluene and the transformation of ethylene. Through the NGDBT, NGDST, and PPBT, we confirmed that the addition of toluene and oxygen in these field tests stimulated indigenous toluene utilizers to cometabolize aerobically TCE, with the following results: (1) the observed simultaneous utilization of toluene and DO; (2) the transformation of ethylene to ethylene oxide and propylene to propylene oxide; and (3) the transformation of TCE. Furthermore, the results of restriction fragment length polymorphism suggested that the microbial community shifts and the microbes capable of transforming TCE are stimulated by injecting the growth substrate, toluene.  相似文献   

9.
A sensitive, selective analytical method has been developed for determination of phenol in honey by liquid chromotography (LC) with amperometric detection (AMD). Phenol is extracted with benzene from the distillate of honey. The benzene extract is washed with 1% sodium bicarbonate solution and then reextracted with 0.1N sodium hydroxide followed by cleanup on a C18 cartridge. Phenol is determined by reverse-phase LC with amperometric detection. An Inertsil ODS column (150 X 4.6 mm, 5 microns) is used in the determination. The mobile phase is a mixture (20 + 80 v/v) of acetonitrile and 0.01M sodium dihydrogen phosphate containing 2mM ethylenediaminetetraacetic acid, disodium salt (EDTA) with the pH adjusted to 5.0. The flow rate is 1 mL/min under ambient conditions. The applied potential of the AMD using a glassy carbon electrode is 0.7 V vs an Ag/AgCl reference electrode. Average recoveries of phenol added to honey were 79.8% at 0.01 ppm spiking level, 90.4% at 0.1 ppm, and 91.0% at 1.0 ppm. Repeatabilities were 3.4, 1.3, and 1.8%, respectively. The detection limit of phenol in honey was 0.002 ppm. For analysis of 112 commercial honey samples, the range and average values of 32 detected samples were 0.05-5.88 ppm and 0.71 ppm, respectively.  相似文献   

10.
An analytical method has been developed that can reliably measure the metabolic marker residue of lasalocid. The method monitors this marker residue in food samples to ensure that the total residue of toxicological concern is not being exceeded. Interlaboratory studies of the liquid chromatographic determinative procedure and the gas chromatographic/mass spectrometric confirmatory procedure for lasalocid sodium at the 0.7 ppm level and higher were successful.  相似文献   

11.
A liquid chromatograph was interfaced to an atomic absorption spectrometer for the detection and quantitation of maduramicin in feed matrixes at the 1-8 ppm level. Ionophores in general form strong 1:1 products with various metal cations, yielding complexes that are insoluble in water but very soluble in organic solvents. Maduramicin, a carboxylic, polyalcohol, polyether antibiotic, is labeled with the sodium cation and analyzed by atomic absorption spectroscopy (AAS). The lower limit of detection is approximately 100-200 ng maduramicin sodium salt. Feeds containing 1-8 ppm maduramicin are extracted with acetone, the extract is passed through an alumina column, the column is eluted with acetonitrile-water (90 + 10), and the eluate is analyzed for maduramicin by liquid chromatography-AAS after concentration and conversion of maduramicin to the sodium salt. Recoveries of maduramicin averaged 89.5%. Liquid chromatography with AAS detection has been shown to be a sensitive and highly specific technique for the determination of ionophores in general and maduramicin in particular.  相似文献   

12.
Electrolyzed oxidizing (EO) water has recently generated much interest as a disinfectant in the food industry. 5,5-Dimethyl-1-pyrroline-N-oxide (DMPO) is a spin trapping agent widely used in the electron spin resonance (ESR) characterization of oxygen-centered free radicals. The reaction between electrolyzed water, collected from the anode side of a two-chamber electrolyzer, and DMPO was investigated by ESR spectroscopy. Addition of DMPO to EO water generated an ESR spectrum identical to that of 5,5-dimethyl-2-pyrrolidone-N-oxyl (DMPOX), suggesting that a compound from EO water oxidized DMPO with the formation of DMPOX. To further investigate the electrolytically generated compound that oxidized DMPO, aqueous solutions of different sodium salts (sodium chloride, sodium citrate, and sodium iodide) with similar conductivities were electrolyzed. The DMPOX signal was not detected in the electrolyzed sodium citrate sample, suggesting that DMPOX formation in the electrolyzed NaCl sample might be due to an electrolytically generated chlorine species. A low DMPOX signal was also observed from the electrolyzed NaI sample, suggesting that a similar species obtained through the electrolysis of I- can also oxidize DMPO. Hypochlorous acid is proposed to oxidize the spin trap DMPO with the formation of DMPOX. In a neutral pH environment, electrolyzed water also oxidized DMPO to DMPOX. This is consistent with the DMPOX formation in the reaction of chlorine water (containing HOCl and Cl2) or sodium hypochlorite with DMPO.  相似文献   

13.
A modified version of the Conditt and Baumgardner gas chromatographic/mass spectroscopic (GC/MS) method for determination of daminozide in peanut butter and raw peanuts is described. Daminozide in the food product is hydrolyzed to unsymmetrical dimethylhydrazine (UDMH) by sodium hydroxide digestion. The generated UDMH is distilled from the food matrix and captured by reaction with salicylaldehyde in a condensation trap. Resulting high pH distillates generated by peanuts and peanut products are adjusted back to a pH of 5-6 through addition of glacial acetic acid. After thermal incubation and extraction into methylene chloride, salicylaldehyde dimethylhydrazone is separated from interferences by capillary GC and quantitated by MS using the selective ion monitoring (SIM) mode. Quantitation of daminozide is based on the ratio of the salicylaldehyde dimethylhydrazone molecular ion (m/z 164) to the molecular ion (m/z 153) of the internal standard, 4-nitroanisole. Confirmation of daminozide identity is determined by relative intensity of the m/z 164 ion to the m/z 120 (C7H4ON) ion. Improved m/z 164 ion intensity and reduction of neighboring interferences due to acetic acid treatment permitted a daminozide detection limit of 0.005 ppm in a 50 g sample and an associated 0.02 ppm limit of quantitation. This modification is specific for high protein samples that generate high pH distillates such as peanuts and peanut products and is not specifically intended for analysis of low protein samples.  相似文献   

14.
An analytical method for the determination of dimethomorph [(E,Z)-4-[3-(4-chlorophenyl)-3-(3,4-dimethoxyphenyl)acryloyl]morpholine] residues in dried hops was developed utilizing liquid-liquid partitioning, automated gel permeation chromatography (GPC), Florisil and aminopropyl solid phase extraction (SPE) column cleanups, and gas chromatography (GC) with mass selective detection (MSD). Method validation recoveries from dried hops ranged from 79 to 103% over four levels of fortification (0.1, 1.0, 5.0, and 20 ppm). Control and dimethomorph-treated hop samples collected from three field sites had residue levels of <0.10 and 4.06-17.32 ppm, respectively. The method was validated to the limit of quantitation at 0.10 ppm. The limit of detection for this method was 0.045 ppm.  相似文献   

15.
A liquid chromatographic (LC) method is described for determination of ampicillin residues in fish tissues. The drug is extracted from tissues with methanol, and the extract is evaporated to dryness. This residue is cleaned up by Florisil cartridge chromatography. LC analysis is carried out on a Nucleosil C18 column, and ampicillin is quantitated by ultraviolet detection at 222 nm. Recoveries of ampicillin added to tissues at levels of 0.2 and 0.1 ppm were 73.2 and 61.5%, respectively. The detection limit was 3 ng for ampicillin standard, and 0.03 ppm in tissues.  相似文献   

16.
An analytical method for detecting cymoxanil [2-cyano-N-[(ethylamino)carbonyl]-2-(methoxyimino)acetamide] residues in dried hops was developed utilizing liquid-liquid partitioning, automated gel permeation chromatography (GPC), solid phase extraction (SPE) cleanup, and gas chromatography (GC). Method validation recoveries from dried hops were 96 +/- 12, 108 +/- 11, and 136 +/- 8% over three levels of fortification (0.05, 0.5, and 1.0 ppm, respectively). The hop samples from three field sites, which were treated with cymoxanil, had residue levels ranging from 0.146 to 0.646 ppm. The detection limit and the quantitation limit of the method developed in the present study were 0.022 and 0.050 ppm, respectively.  相似文献   

17.
An accurate, sensitive method is described for the determination of monensin residue in chicken tissues by liquid chromatography (LC), in which monensin is derivatized with a fluorescent labeling reagent, 9-anthryldiazomethane (ADAM), to enable fluorometric detection. Samples are extracted with methanol-water (8 + 2), the extract is partitioned between CHCl3 and water, and the CHCl3 layer is cleaned up by silica gel column chromatography. Free monensin, obtained by treatment with phosphate buffer solution (pH 3) at 0 degrees C, is derivatized with ADAM and passed through a disposable silica cartridge. Monensin-ADAM is identified and quantitated by normal phase LC using fluorometric detection. The detection limit is 1 ppb in chicken tissues. Recoveries were 77.6 +/- 1.8% at 1 ppm, 56.7 +/- 7.1% at 100 ppb, and 46.5 +/- 3.7% at 10 ppb fortification levels in chicken. Gas chromatography-mass spectrometry is capable of confirming monensin methyl ester tris trimethylsilyl ether in samples containing residues greater than 5 ppm.  相似文献   

18.
Suresh Babu  G.  Farooq  M.  Ray  R. S.  Joshi  P. C.  Viswanathan  P. N.  Hans  R. K. 《Water, air, and soil pollution》2003,144(1-4):149-157
Organochlorine pesticides were used earlier for agricultureproduction. Their residues may still be present in soil and mayaccumulate in food crops, posing potential health problems to consumers. DDT, HCH, their isomers and metabolites were analyzedin samples of soil and rice plants collected from ten differentvillages of a well-known Basmati rice growing area in Dehradun.Residues of both pesticides were found in all samples ofsoil and different parts of rice plants except for a few grainsamples. Maximum residue was observed in husk and minimum ingrains. The average concentration of DDT in soil ranged from0.013 to 0.238 ppm. p,p′-DDE was the major metabolite (>63%). Theaverage concentration of DDT in rice grain varied from 0.002 to 0.040 ppm. o,p′-DDT was the main isomer (>93%). Theaverage concentration of HCH in soil ranged from 0.122 to 0.638 ppm. β-HCH was the predominant (43%) isomerfollowed by α-HCH (21%). The average HCH concentrationin rice grain ranged between 0.013 and 0.113 ppm. All four isomers were present in grains. The levels of DDT and CHCin grains were similar in magnitude as those from differentIndian states, but well below the maximum residue limit of 0.1 ppm for DDT and 0.05 ppm for HCH prescribed by the Government ofIndia and WHO/FAO. As such, the pesticide residue levels in thisexport commodity are not of hazardous nature.  相似文献   

19.
A liquid chromatographic (LC) method is described for determination of olaquindox residues in swine tissues. The drug is extracted from tissues with acetonitrile, and the extract is evaporated to dryness. This residue is cleaned up by alumina column chromatography. LC analysis is carried out on a Nucleosil C18 column, and olaquindox is quantitated by ultraviolet detection at 350 nm. The average recoveries of olaquindox added to tissues at levels of 0.2, 0.1, and 0.05 ppm were 74.0, 68.6, and 66.3%, respectively. The detection limit was 2 ng for olaquindox standard and 0.02 ppm in tissues.  相似文献   

20.
A rugged and sensitive method was developed to monitor urinary concentrations of O,S-dimethyl hydrogen phosphorothioate (O,S-DMPT), a specific biomarker of exposure to the organophosphate insecticide methamidophos. After pH adjustment and C18 solid phase extraction column cleanup, the urine was lyophilized at a low temperature to prevent loss of possibly highly volatile and unstable O,S-DMPT metabolite. The dried residue was derivatized using N-methyl-N-(tert-butyldimethylsilyl)trifluoroacetamide and 1% tert-butyldimethylchlorosilane (MTBSTFA + 1% TBDMCS) in acetonitrile. After it was filtered, the derivatized product was analyzed and quantified by gas chromatography using a pulse flame photometric detector specific for phosphorus compounds. The limit of detection for this method was 0.004 ppm with a limit of quantitation of 0.02 ppm of urine. The mean recovery value for O,S-DMPT from 17 urine samples fortified at varying concentrations was 108% with a standard deviation of 12%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号