首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
The aim of the present study was to examine the plasma concentrations of progesterone, oestradiol-17beta and cortisol in the cows with cystic follicle and to examine its relationship with the ovulatory response to gonadotropin-releasing hormone (GnRH). Eighty-five post-partum Holstein-Friesian cows with cystic follicles regardless of the presence of corpus luteum were studied. Follicular size, presence of corpus luteum and occurrence of ovulation were checked by palpation per rectum. Blood collection and palpation per rectum were conducted on days 0, 7 and 14. Gonadotropin-releasing hormone was administered at day 7. Plasma concentrations of progesterone, oestradiol-17beta and cortisol were determined. Progesterone concentrations of <3.2, 3.2-4.8 and >4.8 nmol/l were defined as low, intermediate and high, respectively. Sixty-three (74.1%) of 85 cows showed low (<3.2 nmol/l =1 ng/ml) progesterone concentrations on day 0. Only 40 (47.1%) of them showed low-low pattern of progesterone at days 0 and 7. In 27 (31.8%) of them, progesterone concentration had increased by day 14. Of 22 cows having high progesterone concentration (>/=4.8 nmol/l) on day 0, corpus luteum was not detected in 18 cows (21.2%). Only in 10 cows, cystic follicle disappeared after GnRH administration. However, only one of 27 cows in which progesterone pattern was low-low-high at days 0, 7 and 14 experienced ovulation of the cystic follicle. Significantly lower oestradiol-17beta concentration was found on day 7 in cows showing a low-low-low pattern than a low-low-high pattern of progesterone (43.0 +/- 4.6 vs 55.8 +/- 2.8 pmol/l, p < 0.05). There was no significant difference in cortisol concentration on any days (days 0, 7 and 14) between cows showing a low-low-low and low-low-high pattern of progesterone. These results suggest that approximately one-fifth of cows diagnosed to have ovarian cysts possess luteal cysts and that a high oestradiol-17beta concentration at the time of GnRH administration is involved in the subsequent ovulation of the follicle, although ovulated follicle may not be cystic.  相似文献   

2.
Female llamas ovulate in response to copulation, and progesterone secretion by the corpus luteum indicates recent ovulation (mating) and, or, pregnancy. The plasma progesterone concentration was 0.9 to 1.4 ng/ml in five non-pregnant llamas and 7.4 to 9.2 ng/ml in three llamas in the last month of pregnancy. After ovulation had been induced in nine of 10 llamas by a single intramuscular injection of 500 or 750 iu of human chorionic gonadotrophin, the plasma progesterone concentration increased after two days from 0.5 to 1.2 ng/ml to 4.6 to 10.3 ng/ml after six to nine days and returned to basal values after 10 to 13 days, reflecting the life-span of a corpus luteum in the absence of conception. After a male llama had been introduced into a group of 13 females, 10 matings which resulted in eight conceptions occurred in the first 11 days, and 11 of the llamas became pregnant. The llamas' progesterone concentrations increased after mating and remained high if conception had occurred: 6 to 12 ng/ml in months one to four, and 5 to 9 ng/ml in months five to nine of the 11-month gestation. Two of the 13 llamas had high concentrations of progesterone although they did not become pregnant.  相似文献   

3.
Plasma concentrations of oestradiol-17ß, progesterone, 15-keto–dihydro–PGF and luteinizing hormone (LH) were monitored in llamas and alpacas after mating with an intact male. Concentrations of LH and PGF metabolite were high immediately after copulation. Ovulation occurred in 92% of the animals. The first significant increases in progesterone were recorded on day 4 after mating. In non-pregnant animals the lifespan of the corpus luteum was estimated to be 8–9 days. Luteolysis occurred in association with the release of PGF. In pregnant animals, a transient decrease in progesterone concentrations was observed between days 8 and 18 in both species. No significant changes in PGF secretion were registered during this period. Oes– tradiol–17ß concentrations were high on the day of mating, declined to low values on day 4, and started to increase again on day 8. Peak values after luteolysis in non-pregnant animals were significantly higher than those registered in pregnant ones. Furthermore, concentrations of oestradiol-17ß were elevated for a longer period in non–pregnant than in pregnant animals. The results suggest that progesterone from the corpus luteum exerts a negative influence on follicular activity in pregnant animals by reducing oes– tradiol-17ß secretion.  相似文献   

4.
Endometrial expression of oestrogen (ERα), progesterone (PR) and oxytocin receptor (OR) and cyclooxygenase‐2 (COX‐2) was evaluated from the induction of ovulation to luteolysis in llamas. Ovarian activity was daily assessed by ultrasonography in five females. Ovulation was induced immediately after the detection of an ovulatory follicle by a GnRH injection (Day 0). Endometrial samples were obtained by transcervical biopsies from the left and right horns on day 0 and days 4, 8, 10 and 12 post‐GnRH. Blood samples were collected daily for progesterone and estradiol‐17β determinations by RIA. An immunohistochemical technique was used to study receptors population and COX‐2 expression which were then evaluated by two independent observers. The expression of ERα and PR was highest on day 0 in the luminal epithelium and stroma in association with high plasma estradiol‐17β concentrations. Thereafter, a decrease in ERα population was registered on day 4 and a new increase of its expression was observed between days 8 and 12 in those cell types. Conversely, PR population was gradually down‐regulated until its lowest expression was reached on day 10 post‐GnRH in the luminal epithelium. Content of OR was similar throughout the study in all cell types. The expression of COX‐2 was highest from day 8 to 12 post‐GnRH in the luminal epithelium, in relation to the time of maximal PGF release. Both steroid receptors populations and COX‐2 expression were similar between horns. Meanwhile, OR expression was higher in the right than in the left uterine horn. In summary, this study showed that the loss of endometrium sensitivity to progesterone by days 8–10 post‐induction of ovulation and the concomitant increase of COX‐2 expression could play a key role in the mechanism of luteolysis and somehow be related to the short corpus luteum lifespan of llamas.  相似文献   

5.
An ultrasonic linear array scanner with a transrectal probe was used to observe ovarian and uterine changes associated with the reproductive cycle in llamas. 'Waves' of follicular development and regression occurred in unstimulated females, during which the dominant follicle reached a maximum size of 9 to 13 mm; both ovaries were equally active. Ovulation was induced by mating in 80 per cent of cases, and when mating was accompanied by the administration of human chorionic gonadotrophin the ovulation rate increased to 90 per cent and the time to ovulation decreased from two to three days to one to two days. Some spontaneous ovulations occurred. Corpora lutea reached a maximum size of 12 mm (non-pregnant) or 14 mm (pregnant) after seven or 16 days, respectively. The lifespan of the corpus luteum was approximately 11 days in non-pregnant llamas and the regression time was advanced by the administration of prostaglandin or embryo recovery. Pregnancy could be diagnosed as early as 19 days after mating.  相似文献   

6.
Oestrous synchronization involves synchronization of ovarian follicular turnover, new wave emergence, and finally induction of ovulation. The final step can be synchronized by the parenteral administration of either GnRH or oestradiol benzoate. This study investigated corpus luteum and follicular emergence after ovulation had been induced by the administration of either GnRH or oestradiol benzoate. The injection of oestradiol benzoate may have delayed the emergence of the first follicular wave subsequent to the induced ovulation; administration of oestradiol benzoate or GnRH lowered the progesterone rise so that the maximum dioestrous concentration of progesterone on Day 9 was lower when cows were treated during pro-oestrus compared to the spontaneously ovulating controls. One implication of findings from the present study is that induction of ovulation with either oestradiol benzoate or GnRH, administered 24 or 36 h after withdrawal of the CIDR device, respectively, may lower fertility. Future studies must identify the timing of administration relative to the time of CIDR device withdrawal and the optimum concentration of oestradiol benzoate or GnRH that would not have untoward effects on the development of the corpus lutea, particularly within the first week of dioestrus.  相似文献   

7.
Concentrations of oestradiol-17 beta and progesterone in defatted milk have been used to study the post-partum restoration of ovarian function in 52 autumn-calved dairy cattle. In 32 cows the first preovulatory peaks in oestradiol-17 beta concentration (indicative of imminent ovulation) were less than or equal to 15 days and in 49 cows less than or equal to 49 days post partum. Delay to first ovulation was mainly due, not to failure of ovarian secretion of oestradiol-17 beta at preovulatory level, but to failure of oestradiol-17 beta at this level to exert its normal preovulatory function. Longer intervals to first ovulation were associated with longer intervals from calving to the clearance of placental oestradiol-17 beta, high peak milk yields and high body weight losses, suggesting that in high-yielding dairy cows these factors (themselves inter-related) may be associated with others, which are the immediate cause of the inhibition of the normal, preovulatory function of oestradiol-17 beta. Forty-eight per cent of cows had short, first ovulation cycles. Ovarian function, comprising oestradiol-17 beta secretion at preovulatory level, normal preovulatory function of oestradiol-17 beta and normal corpus luteum progesterone secretion were almost fully restored in this herd by the 49th day post partum.  相似文献   

8.
Ovarian follicular dynamics and estrous synchronization after Gonadotropin-releasing hormone (GnRH) treatment at Controlled Internal Drug Releasing device (CIDR) insertion were investigated in Japanese Black cows. CIDR was inserted for eight cows at 7 days after estrus. Cows were allocated to either Group A: 8-day CIDR insertion with GnRH treatment on d 0 (n=4, d 0=CIDR insertion) or Group B: 8-day CIDR insertion (n=4). Both groups were injected with prostaglandin F2alpha (PGF2alpha) on d 7. Ultrasonography and blood sampling were performed twice daily. Intensive sampling was performed every 15 min for 8 hr to determine the pulsatile release of LH on d -1, d 5 and d 10. Three of four cows showed intermediate ovulation within 2 days after GnRH treatment during CIDR insertion in Group A, whereas no ovulation was found in Group B. Three of four cows in Group A and all four cows in Group B ovulated after CIDR removal. Plasma progesterone concentrations from d 3 to d 7 in three intermediate ovulatory cows in Group A (8.4 +/- 1.6 ng/ml) was significantly higher than those in Group B (4.1 +/- 1.2 ng/ml; 4 cows) during CIDR insertion (P<0.01). Interval to estrus and ovulation after CIDR removal was observed at 60.0 +/- 12.0 hr and 76.0 +/- 6.9 hr in three cows in Group A, and 75.0 +/- 15.1 hr and 93.0 +/- 20.5 hr in Group B, respectively. There was a significant increase in LH pulse frequency on d 10 compared on d -1 or d 5 in both groups (P<0.05), in addition those on d 10 in Group A tended to be higher than in Group B. As a result, GnRH treatment at CIDR insertion at 7 days after estrus induced intermediate ovulation with formation of corpus luteum (CL) and rather synchronized emergence of ovulatory follicle during CIDR insertion. These induced CL increased plasma progesterone concentrations and contributed to precise synchronization.  相似文献   

9.
Changes in follicular and luteal structures were assessed and concentrations of estradiol and progesterone were measured in 13 Hereford X Angus suckled beef cows during resumption of estrous cycles. Transrectal ultrasonography was used to monitor follicular size, ovulation, and formation and regression of the corpus luteum (CL). The interval from parturition to first postpartum ovulation (FO) was 82 +/- 4.7 d. Serum progesterone remained low before FO. One cow exhibited standing estrus, two cows showed other signs of estrus, and 10 displayed no signs of behavioral estrus preceding FO. All cows exhibited standing estrus before the second postpartum ovulation (SO). All cows had a short luteal phase after FO, with an average interval of 8.5 +/- .2 d between FO and SO. Concentrations of estradiol in serum during the 8 d preceding ovulation were similar before FO and SO. Maximal diameter of the preovulatory follicle was similar before FO and SO. However, the ovulatory follicle was larger in diameter at 2 d (P = .02) and 3 to 8 d (P less than .005) before FO than before SO. The time from detection until ovulation was less (P = .005) for the ovulatory follicle preceding SO than for the follicle associated with FO (8.5 vs 10.2 d, respectively, SE = .4). The second-largest follicle was larger (P less than .005) in diameter during the 8 d preceding the FO than before the SO. The difference in size between the ovulatory follicle and the second-largest follicle on the day before ovulation was greater (P less than .005) preceding SO than preceding FO (8.7 vs 6.6 mm, respectively, SE = .4).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
The objectives of this study were 1) to determine the effects of adding a CIDR to the Ovsynch protocol on plasma concentrations of estradiol-17β and progesterone and conception in dairy cows with cystic ovarian diseases and 2) to examine associations among the estradiol-17β and progesterone concentrations and conception. Cows were diagnosed as having cystic ovarian diseases if they were found to have a cystic follicle (diameter ≥25 mm) without a corpus luteum by two palpations per rectum with an interval for 7 to 14 days. They were treated with either the Ovsynch (GnRH on Day 0, PGF(2α) on Day 7 and GnRH on Day 9, with AI on Day 10; n=15) or Ovsynch+CIDR protocol (Ovsynch protocol plus a CIDR from Day 0 to Day 7; n=23). Plasma estradiol-17β concentrations were determined on Days 0, 7 and 9, and plasma progesterone concentrations were determined on Days 0, 7, 9 and 17. The plasma estradiol-17β and progesterone concentrations at all of the days examined and conception rates did not differ significantly between the two timed AI protocols. The progesterone concentrations on Day 17 and conception rates were lower (P<0.05) for cows with low concentrations of estradiol-17β (<2 pg/ml) on Day 9 than for cows with high concentrations of estradiol-17β (≥2 pg/ml). The present study suggests that, in dairy cows with cystic ovarian diseases, addition of a CIDR to the Ovsynch protocol had no remarkable effects on plasma estradiol-17β and progesterone concentrations during and after the treatments or on conception after timed AI. This study indicates that the low plasma estradiol-17β concentration at the second administration of GnRH in the protocols can be a predictor for impaired luteal formation and lower likelihood of pregnancy in dairy cows with cystic ovarian diseases.  相似文献   

11.
Our objectives were to identify stages of the estrous cycle at which initiation of a timed artificial insemination (Ovsynch/TAI) protocol may reduce pregnancy rates and to monitor ovarian follicle dynamics and corpus luteum development after initiation of the Ovsynch/TAI protocol at different stages of the cycle. Cycling Holstein heifers (n = 24) were injected twice with prostaglandin F2alpha to induce estrus and were scanned by ovarian ultrasonography to determine the day of ovulation (d 0). Heifers were assigned to initiate the Ovsynch/TAI protocol at d 2 (n = 5), 5 (n = 5), 10 (n = 4), 15 (n = 5), or 18 (n = 5) of the cycle. The Ovsynch/TAI was initiated with an injection of gonadotropin-releasing hormone agonist followed 7 d later with an injection of prostaglandin F2alpha. At 36 h after injection of prostaglandin F2alpha, heifers were injected with gonadotropin-releasing hormone agonist and inseminated 16 h later. Heifers were scanned daily during the Ovsynch/TAI protocol and every other day after insemination until 16 d later. Blood samples were collected daily starting at the 1st day heifers were scanned and continued until 16 d after insemination. Initiation of the Ovsynch/TAI protocol at d 15 of the estrous cycle caused heifers to ovulate prior to insemination. A shortened return to estrus (< 16 d) was caused by ovulation failure to the second gonadotropin-releasing hormone injection, by incomplete regression of the corpus luteum, and by short life-span of the induced corpus luteum. Day of the cycle in which the Ovsynch/TAI protocol is initiated affects dynamics of follicular development, plasma progesterone profiles, and occurrence of premature ovulation. Size of the pre-ovulatory follicle was associated positively with subsequent progesterone concentrations following insemination.  相似文献   

12.
OBJECTIVE: To determine relationships between mating behaviour, ovarian follicular state and successful conception in receptive female alpacas. PROCEDURE: Seventy pen matings were observed at a commercial alpaca stud in south-western Victoria. The behaviours observed included time taken to assume sternal recumbency, mating duration, and evidence of nonreceptive behaviour such as spitting, kicking and vocalisation. Ovarian follicular state was determined by ultrasonography, which was complemented by measuring plasma concentrations of oestradiol and progesterone. Pregnancies were confirmed by transabdominal ultrasonography between days 45 and 80 after mating. RESULTS: There were no significant differences between receptive females that conceived and those that failed to conceive in the time taken to adopt the copulation position of sternal recumbency, mating duration, or maximum follicle diameter. There was no significant relationship between time taken to assume sternal recumbency (log10) and maximum follicle diameter or plasma oestradiol (log10). However, there was a significant quadratic relationship between plasma oestradiol concentration (log10) and follicle diameter, and the probability of pregnancy increased as the plasma concentration of oestradiol (log10) at the time of mating increased. Females were sexually receptive most of the time in the absence of a corpus luteum, and regardless of size of the largest follicle or plasma concentration of oestradiol. Breed (Huacaya vs Suri), site of the dominant follicle (left or right ovary), lactation state, number of matings by the male (1 or 2), or interval between parturition and mating, did not affect pregnancy outcome. Follicles with a diameter less than 7 mm were able to ovulate in response to mating. This was smaller than previously reported. Thirty-four pregnancies (49% pregnancy rate) resulted in 30 (88%) births with a gestation length of 343 days (SEM +/- 2, range 316-367 days). There were 4 (12%) abortions between days 45 and 80 of gestation and full term. CONCLUSION: It was not possible to correlate mating behaviour and ovarian state with conception. To optimise pregnancy rates in receptive alpacas, matings need to occur in the presence of an oestrogenic follicle that is capable of ovulation in response to mating. A simple method of detecting alpacas with follicles in this state is not currently available and treatments that control ovarian follicular growth should therefore be investigated.  相似文献   

13.
This report reviews the most recent developments in prostaglandin‐based oestrous synchronization programmes for postpartum dairy cows and addresses the efficiency of controlled breeding protocols based on such developments for cows with abnormal ovarian conditions. A double prostaglandin protocol applied 11–14 days apart seems to be capable of bringing most cows to oestrus. Because of varying oestrus onset times, improved conception rates are obtained following artificial insemination (AI) at detected oestrus rather than fixed‐time AI in prostaglandin‐treated cows. The administration of oestradiol or human chorionic gonadotrophin, or both these hormones, after prostaglandin treatment, improves the synchrony of oestrus yet does not enhance the conception rate. Progesterone‐based treatments for oestrous synchronization are considered the most appropriate for non‐cyclic or anoestrous postpartum dairy cows; prostaglandin alone being ineffective because of the absence of a mature corpus luteum in these cows. Improved oestrus synchrony and fertility rate have been reported using short‐term progesterone treatment regimes (7–9 days) with or without oestradiol benzoate combined with the use of a luteolytic agent given 1 day before, or at the time of, progesterone withdrawal. The ovulation synchronization (Ovsynch) protocol, based on the use of gonadotrophin releasing hormone and prostaglandin, was developed to coordinate follicular recruitment, CL regression and the time of ovulation. This protocol allows fixed time insemination and has proved effective in improving reproductive management in postpartum dairy cows. However, timed AI following Ovsynch seems to have no beneficial effects in heifers, because of an inconsistent follicle wave pattern, and in anoestrous cows, given their lack of prostaglandin responsive CL. To date, there are several prostaglandin based, fixed‐time insemination oestrous synchronization protocols for use in early postpartum dairy cows with ovarian disorders such as ovarian cysts and acyclicity.  相似文献   

14.
Ultrasonography is useful for monitoring the dynamic follicular and luteal changes of equine ovaries, since it permits rapid, visual, non-invasive access to the reproductive tract. A 5 MHz transducer has greater resolving power and is far more suitable for evaluation of ovaries than a 3–3.5 MHz transducer. Follicles as small as 2–3 mm can be seen and the corpus luteum can usually be identified throughout its functional life. In a study involving daily ovarian examinations, there was a pronounced change in shape of the preovulatory follicle from a roughly spherical to a pear-shaped or oblong form in 66% of the ovulatory periods, This change usually occurred on the day preceding ovulation. The occurrence of ovulation was detectable by the disappearance of a large follicle. In addition, the ovulation site on day 0 was characterized by an intense echogenic area in 88% of 32 ovulations. The developing corpus luteum retained the echogenicity for a mean of 2.4 days. In a blind study, the location of the corpus luteum, as determined by ultrasound, agreed with a previous independent determination of the side of ovulation by palpation in 88% of the 40 bred mares on days 0–14. In all of the 12 mares that were in estrus, the location of the corpus luteum could not be ascertained. In another study, the corpus luteum was identified for a mean of 16 days in 14 estrous cycles. One or more days before the corpus luteum became ultrasonically unidentifiable, it developed increased echogenicity in 36% of the mares, indicating greater tissue density. It is concluded that ultrasonic evaluation of the corpus luteum is superior to digital evaluation by rectal palpation. Some of the potential applications of ultrasonic examination of the ovaries include: 1) obtaining important, sometimes definitive, information by a single examination for judging whether a mare has entered the ovulatory season, 2) aiding in estimating the stage of the estrous cycle, 3) detecting double preovulatory-sized follicles which are in close apposition and difficult to discern by palpation, 4) detecting failure of ovulation or anovulatory estrus by the absence of a corpus luteum, 5) differentiating a persistent corpus luteum from anovulatory or anestrous conditions, 6) diagnosing certain pathological conditions such as peri-ovarian cysts and ovarian tumors, and 7) diagnosing anovulatory hemorrhagic follicles.  相似文献   

15.
We tested the hypothesis that a small dose of estradiol benzoate (EB) at the midstage of the estrous cycle in cattle would synchronize the subsequent pattern of ovarian follicular development, estrus, and ovulation. Nonlactating Friesian cows received either 1 mg of EB i.m. on d 13 of the estrous cycle (T; n = 12; estrus = d0) or served as untreated controls (C; n = 12). Their ovaries were examined daily with transrectal ultrasonography from d 7, and blood samples were collected 0, 2, 4, 8, 24, and 48 h after treatment on d 13. Plasma concentrations of estradiol-17beta were elevated to 12 pg/mL during the initial 24 h following treatment, compared with a baseline of 1 pg/mL in untreated controls (P < .001). Progesterone concentrations in cows of the T group declined between 24 and 48 h after treatment (-3.2 +/- .5 ng/mL) compared with little change in concentrations of progesterone in cows of the C group at this time (P < .01). This difference was coincident with an earlier time to regression of the corpus luteum in cows of the T group. Disregarding treatment groups, the second dominant follicle of the estrous cycle (DF2) emerged on d 10.6 +/- .3 and was 9.4 +/- .4 mm in diameter on d 13. Further growth of the DF2 was halted by EB treatment on d 13. Cessation of growth occurred irrespective of whether the DF2 was in the early or late growth phase, and a new follicular wave emerged 4.5 +/- .2 d later. The dominant follicle from this wave (DF3) ovulated 5 d after emergence in most cases. During the estrous cycle of every cow in the T group, there were three waves of follicular development (3-wave), whereas the ratio of 2:3 waves of follicular development in cows of the C group was 1:3. Consequently, the interval from emergence to ovulation of the ovulatory dominant follicle in cows of the C group ranged from 3 to 11 d. The dynamics of ovarian follicular wave development during the estrous cycle can be strategically manipulated by treating with a small dose of EB to synchronize proestrous development of the ovulatory follicle.  相似文献   

16.
The present study aimed to investigate the pathogenesis of cystic ovarian disease (COD) in high-yielding dairy cows postpartum (pp). Hormonal and metabolic profiles during the first 3 weeks pp as well as during the final week prior to ovulation/cyst formation, were compared between dairy cows that developed either an ovulatory follicle (OV) or a cyst (CYST) < day 60 pp. Thirty-four lactations of 28 high-yielding (9500 kg/305 days) Holstein-Friesian dairy cows were studied. Ovaries of cows were scanned twice a week from day 10 pp on, until ovulation/cyst formation. Milk yield data, body condition scores and blood samples, for determination of oestradiol-17beta, insulin, beta-OH-butyrate and non-esterified fatty acids, were collected simultaneously. Milk samples for progesterone analysis were collected daily. Four lactations were excluded from further analysis because of irregular pp ovarian cyclicity, excluding COD. Eight lactations (26.7%) developed a cyst, while 22 lactations ovulated < days 60 pp. Ovulation and cyst formation occurred at similar times pp. Metabolic and hormonal profiles did not differ between CYST and OV lactations during the first 3 weeks pp. In the final week prior to cyst formation/ovulation, insulin concentrations were lower in CYST than in OV lactations while no differences were observed for any of the other parameters tested. In two lactations, cyst formation was preceded by suprabasal progesterone and increased oestradiol-17beta concentrations. These results suggest that cyst formation in high-yielding dairy cows pp is associated with lower insulin levels but not with other distinct hormonal and metabolic alterations. However from this study, we cannot exclude the involvement of subtle hormonal and metabolic changes in the pathogenesis of ovarian cysts. Suprabasal progesterone, and altered oestradiol-17beta concentrations, seem to play a minor role in cyst formation.  相似文献   

17.
雌性羊驼生殖器官解剖构造与繁殖生理特征   总被引:5,自引:1,他引:4  
本文综述了羊驼卵巢、输卵管,子宫等雌性生殖器官的解剖学结构特点和发情,交配、排卵、黄体形成,妊娠,分娩等繁殖生理学特点。羊驼属季节性繁殖,其雌性生殖器官有自身独特的解剖学特征,发情、交配、排卵,黄体形成,妊娠,分娩等也有其特点,如:交配诱导排卵,妊娠期342-350d,立式分娩,无须人工助产,同时对发情,排卵、黄体和妊娠等繁殖生理现象的鉴定方法进行了叙述。  相似文献   

18.
Applicability of ovulation synchronization protocol using GnRH and PGF(2alpha) (PGF) injection to anestrous beef cows remains controversial. We compared the effectiveness of the protocol in the anestrous stage of the beef cow with that in the cycling stage using the same animals. Ovaries of five Japanese Black and three Japanese Shorthorn cows were ultrasonographically examined, and blood samples were collected daily for hormonal analyses. Each animal received the protocol twice (Day -6 to -8: GnRH, Day 0: PGF, Day 2: GnRH). Additional blood samples were taken before and after GnRH injection for LH and FSH measurements to evaluate the pituitary function. For the ovarian status at the onset of the protocol cows were divided into anestrous (n=8) and cycling (n=8) stages. There was no significant difference in size of the dominant follicle at the first and second GnRH injections, and in the magnitude of the pituitary response to GnRH between the two stages. However, the size of the corpus luteum and progesterone concentrations at the PGF injection in the anestrous stage were significantly smaller and lower (P<0.01), respectively, and ovulation synchronization rate in the anestrous stage was significantly lower (P<0.05) than in the cycling stage. In conclusion, ovulation synchronization protocol in anestrous beef cows has limited effectiveness.  相似文献   

19.
The effect of gonadotropin-releasing hormone analogue (GnRH-A) or follicular aspiration at the onset of progesterone-based timed artificial insemination (TAI) on subsequent follicular growth and synchronization of ovulation was examined in early postpartum Japanese Black cows. A total of 40 (22 in Exp. 1 and 18 in Exp. 2) Japanese Black cows at 20-30 days postpartum were fitted with a progesterone releasing internal device (PRID) for 7 days, injected with a prostaglandin F2α analogue upon removal of the PRID and GnRH-A 48 h later, and inseminated 18 h after GnRH-A injection. In Exp. 1, the animals were divided into three groups (untreated control, GnRH-A injection or follicular aspiration) of different treatments on the first day of PRID insertion (day 0), and the synchronized ovulation rate in the follicular aspiration group (100%; 8/8) tended to be higher (P = 0.077) than that in the control group (42.9%; 3/7). In Exp. 2, follicular growth in the GnRH (n = 9) and follicular aspiration (n = 9) groups was monitored by ultrasonography. Four out of the nine animals in the GnRH group had a corpus luteum on either day 4 or day 7 (OV group), and the other five animals had no induced ovulation (NOV group). The diameter of the ovulatory follicle on day 9 in the OV group (1.44 ± 0.11 cm) tended to be greater (P = 0.078) than that in the NOV group (1.13 ± 0.07 cm). Follicular aspiration at the onset of PRID-based TAI of early postpartum Japanese Black cows, regardless of the resumption of ovarian cyclicity, tended to result in a higher rate of synchronization of ovulation than that of the untreated controls.  相似文献   

20.
This study was conducted on summer anoestrous buffalo heifers to monitor the efficacy of melatonin for induction of ovulation and ovarian cyclicity. During pre‐treatment period of 24 days, the ovarian dynamics of five cycling and 10 summer anoestrous heifers was monitored on each alternate day using a transrectal ultrasound scanner. Thereafter, during treatment period, these 10 anoestrous heifers along with additional seven anoestrous heifers were randomly allocated into non‐implanted (n = 5) and implanted (n = 12, one melatonin implant/50 kg, 18 mg melatonin/implant) group. Non‐implanted heifers were monitored on each alternate day till the confirmation of second‐ovulation in implanted heifers. Pre‐treatment period revealed the presence of dominant follicles in anoestrous heifers which attained the diameter comparable with ovulatory follicles of cycling heifers but failed to ovulate and regressed. Between 6 and 36 days (15.3 ± 2.9 days) post‐treatment, all the implanted heifers (p < 0.05) exhibited ovulation of dominant follicles; however none of the non‐implanted heifers ovulated during the corresponding period. The first‐interovulatory period in implanted heifers ranged between 8 and 28 days (18.0 ± 1.8 days). The implanted heifers with short (≤16 days) interovulatory period had short‐lived corpus luteum (CL) that had smaller diameter and secreted less progesterone (p < 0.05). The diameter of CL was large (p < 0.05) and plasma progesterone was high (p < 0.05) following second‐ovulation compared with first‐ovulation in implanted heifers. In conclusion, using melatonin implants, ovulatory size nonovulatory follicles observed in summer anoestrous buffalo heifers can be successfully ovulated to initiate ovarian cyclicity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号