首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Regolith and soils in Bhutan, Eastern Himalayas   总被引:1,自引:0,他引:1  
Bhutan lies at altitudes of 100–7500 m on the steep, long and complex southern slopes of the Eastern Himalayas. Soil surveys show that, despite steep gradients, there are many moderately or deeply weathered soils. Many slopes are mantled with polycyclic, layered drift materials, so soil horizons owe as much to regolith heterogeneity as to pedogenesis. In the limited arable areas soil profiles are further complicated by rice cultivation and the construction, maintenance and irrigation of flat terraces on steep slopes. Some natural pedogenic horizonation is apparent, and there is an altitudinal zonation of soil types. Although the climate is warm and seasonally wet, most soils on the subtropical southern foothills are not particularly weathered and leached. The foothills are seismically active, and many soils are formed in unstable landslide debris. Elsewhere the regoliths are more stable. The main soils up to about 3000 m in the inner valleys are moderately weathered and leached, and have bright subsoil colours and thin dark topsoils. Above these there is a zone of bright orange‐coloured non‐volcanic andosolic soils. Further upslope there are acid soils with thick surface litter, stagnogleyic topsoils, and drab brown subsoils with organic cutans. These grade to weak podzols, which extend from about 3500 m up to the treeline, around 4000 m. Above this, alpine turf soils, with deep, dark, and friable topsoils and yellowish friable subsoils, are intermixed with unweathered glacial deposits. The interactions between pedogenesis and the deposition of the varied and layered drift materials complicate mapping and classification of the soils.  相似文献   

2.
《CATENA》2008,72(3):394-405
Soil chronosequences developed on elevated marine terraces are ideal for studying changes in soil-forming processes with time. The coastal range of eastern Taiwan is a product of active arc–continent collision. Vertisols, Mollisols and Entisols are generally found on the different levels of marine terraces herein, but no detailed investigations of soil chronosequence have been conducted by integrating field morphology, physio-chemical characterization, micromorphology and mass-balance interpretations. Five soil pedons were selected on the three marine terraces including Tt-1 and Tt-2 pedons (Typic Hapluderts) on the first higher level with the oldest soil age (9–10 ka), Tt-3 (Vertic Hapludolls) and Tt-4 pedons (Typic Hapludolls) on the second intermediate level (5–6 ka), and Tt-5 pedon (Typic Udipsamments) on the third lower level with the youngest soil age (≤ 3.5 ka). The morphological characteristics showed that strongly developed angular blocky structures, pressure faces and slickensides are more common in higher terrace soils than in lower terrace soils. In this study, depth to C horizon, solum thickness, and thickness of the clay-enriched zone increase with relative terrace age. Although only one to two profiles per terrace were characterized, the following soil analytical characterizations increase with time: the degree of sand grains weathering, pH (H2O), organic carbon, CEC, contents of Fed, Feo and Mnd. Based on X-ray diffraction analysis of the clay-size fraction, soils on all terraces have a mixed mineralogy. Mica, smectite, and kaolinite have slightly increased with increasing terrace age. Furthermore, the dominant processes identified with mass-balance analysis include loss of bases (Ca and Mg), iron, and clay with time. The soil properties, including analytical and mineralogical characterizations, which do not have notable changes with time are primarily due to relatively young soil age (< 10 ka).  相似文献   

3.
Soils chronosequences are valuable tools for investigating rates and directions of soil and landscape evolution. Post-incisive chronosequences are the most common type of chronosequence. They are found in many landscapes, including sand dunes, glacial moraines, landslide scars, old pasture, burnt landscape patches, old mining areas, lava flows, alluvial fans, floodplains, river terraces, and marine terraces. They register pedogenic change over time-scales ranging from years to millions of years. Soil chronosequences help in testing rival theories of pedogenesis. Traditional soil formation theory sees a soil developing progressively under the influence of the environmental state factors until it is in equilibrium with prevailing environmental conditions. This developmental view of pedogenesis is supported by the classic soil chronosequence studies. A new evolutionary view of pedogenesis, which was prompted by the omnipresent inconstancy of environmental conditions and the notions of multidirectional changes and multiple steady states (as predicted by non-linear dynamics), proposes that environmental inconstancy and non-linear behaviour in soil-landscapes lead to soil evolution, rather than to soil development. Soils ‘evolve' through continual creation and destruction at all scales, and may progress, stay the same, or retrogress, depending on the environmental circumstances. Some recent soil and vegetation chronosequence investigations support an evolutionary view of pedogenesis. It is concluded that soil chronosequences are still potent instruments for pedological investigations and that they have a starring role to play in the testing of pedological theories.  相似文献   

4.
Background, Aim and Scope   Historically, built areas were ignored in soil mapping and in studies of soil formation and behaviour. It is now recognized that these areas, and therefore their soils, are of prime importance to human populations. Another trend is the large increase in reclaimed lands and new uses for old industrial areas. In several countries there are active projects to map such areas, either with locally-developed classification systems or ad-hoc names. Soil classification gives unique and reproducible names to soil individuals, thereby facilitating correlation of soil studies; this should be possible also for urban soils. The World Reference Base for Soil Resources (WRB) is the soil classification system endorsed by the International Union of Soil Science (IUSS). The 2006 edition has important enhancements which allow urban and industrial soils to be described and mapped, most notably a new reference group, the Technosols. Main Features   Urban soils are first defined, followed by the philosophical basis of soil classification in general and the WRB in particular. WRB 2006 added a new Technosols reference soil group for soils whose properties and function are dominated by technical human activity as evidenced by either a substantial presence of artefacts, or a impermeable constructed geomembrane, or technic hard rock. Technosols are one of Ekranic, Linic, Urbic, Spolic or Garbic; further qualifiers are added to show intergrades to other groups as well as specific soil properties. Soils from fill are recognized as Transportic Regosols or Arenosols. Toxic soils are specifically recognized by a qualifier. Results   - Discussion   The limit between Technosols and other groups may be difficult to determine, because of the requirement that the technic nature dominate any subsequent pedogenesis. Conclusions   - Perspectives   The WRB should certainly be used in all urban soil studies to facilitate communication and correlation of results. In the period leading up to the next revision in 2010, the quantitative results from urban soil studies should be used to refine class definitions.  相似文献   

5.
Soil studies in cultural landscapes of the medieval epoch within the Vladimir opolie territory on the Russian Plain suggest that virtually all automorphic soils in this area were plowed in that period. The morphology of the profiles of studied soils depends on the composition of parent materials. If the parent material represents a pedocyclith that passed through the stage of periglacial pedogenesis in the Late Pleistocene, then the soil profile developed from this material is a heterochronous body with distinct features of polygenesis. If the parent material is a relatively homogeneous sediment that was not subjected to periglacial pedogenesis in the Late Pleistocene, then the soil profile developed from this material contains only the features of the Holocene pedogenesis, even in the case when the thickness of the homogeneous substrate does not exceed 0.5 m. It is hypothesized that the Holocene pedogenesis within the humid forest and southern taiga zones in the center of the Russian Plain cannot delete the features of the pre-Holocene pedogenesis and morpholithogenesis; these features are always inherited by the profiles of modern soils. The presence of these features ensures the development of a fully developed mature soil profile.  相似文献   

6.
Considerable amounts of rock fragments are found in many “Purple soils” developed from purple rocks in the Sichuan basin of southwestern China. We describe the effects of anthropic pedogenetic processes on purple rock fragments associated with soil amelioration by determining changes in rock fragment size distribution, transformation of P and K of purple rocks into soils, and the complexing of purple rock particles (soil mineral particles) with organic matter during anthropic pedogenesis of “Purple soils” in Sichuan basin of southwestern China. The pedogenetic capacity of rock fragments can be expressed by the content of < 2.0 mm particles as weathered products of rock fragment disintegration. The pedogenetic capacity of the purple rocks studied ranges from 0.3% to 6.2% under natural conditions. The rates of P and K transformed from purple rocks are closely associated with the pedogenetic capacity of rock fragments(r = 0.891??; 0.961??, n = 16). Digging (simulated by sieving) and crop planting facilitate pedogenesis of purple rock fragments and their mineral nutrient transformations. The soil mineral particles preserve 18%–36% of the organic carbon added as corn straw. The organic carbon is complexed after corn straw is mixed with < 1.0 mm soil mineral particles for 1 year. The improvement of newly reclaimed purple soils is enhanced by the complexing effect of organic substances with purple rock particles. The pedogenesis of purple rock in Sichaun basin can be accelerated by anthropic activity, such as tillage, crop planting, fertilization, and land reclamation.  相似文献   

7.
The crystallinity of soil kaolinites as a function of clay particle-size and soil age was investigated in soil chronosequences of the Shingle House Creek and Hawkesbury River alluvial terraces in south-eastern Australia. The youngest soils (late Holocene) in each sequence are texturally uniform Entisols containing kaolinite and illite. The oldest soils (Pleistocene to late Tertiary) are Ustalfs with strong textural differentiation and are predominantly kaolinitic. With increasing age, textural B horizons are increasingly enriched in kaolinite and in particles of fine clay (< 0.2 μm) size. In two sub-fractions of the fine clay (0.2-0.06 μm; < 0.03 μm), no corresponding changes were observed in the crystallinity of kaolinites (as measured by the index, C k) with age. However, values of C k were significantly higher in the coarse clay (2-0.2 μm) than for both fine clay fractions in all except the Ultic Paleustalf of the oldest, possibly late Tertiary, terrace of the Hawkesbury River sequence. In this soil, C k values are low in all three clay-size fractions.
In these sequences, the effects of both clay particle-size and soil age were identified in the crystallinity of kaolinites. Disorder as a result of pedogenesis, however, was associated only with the most prolonged weathering and the strongest soil textural differentiation.  相似文献   

8.
An accurate estimation of soil organic carbon (SOC) is important for the evaluation and management of carbon (C) flux in terrestrial ecosystems. However, there is little work on the spatial variability of SOC in deep soils and its driving factors. Thus, the objective of the study was to derive the primary factors dominating the spatial distribution of SOC in different soil layers with the use of the autoregressive state‐space approach. The concentration of SOC was measured to the depth of 500 cm (n  = 86) along a south–north transect of China's Loess Plateau. The mean SOC of the 500‐cm soil profile generally decreased from south to north following the decreasing rainfall gradient. Based on the investigated factors, the state‐space model was able to capture 90.3–99.9% of the spatial variability of SOC in the various soil layers. According to the coefficients in the optimal state‐space model for each soil layer, climatic factors such as precipitation and temperature had a dominant control over the spatial distribution of SOC at shallow depths. However, both climatic and edaphic (e.g. soil texture) factors, and to a small extent land use, influenced the spatial behavior of SOC at the 40–200 cm soil depth. For soil layers below 200 cm, the importance of land use was revealed, and the spatial characteristics of SOC were together driven by land use, climatic and edaphic factors. This is critical for the management of soil C flux in deep soils and the C stock and cycle in terrestrial ecosystems. Table SI. Basic properties of soils and climate and elevation under three land uses along the south–north transect on the Loess Plateau (mean ± standard deviation). Note that SWC is gravimetric soil water content. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

9.
A quaternary soil sequence in the Kennet Valley,central southern England   总被引:1,自引:0,他引:1  
C.J. Chartres 《Geoderma》1980,23(2):125-146
The field characteristics, texture, mineralogy and micromorphology of the soils of four chronologically separate river terraces of the River Kennet are described. The soils on the three uppermost terraces have illuvial (palaeoargillic) horizons, which have been intensely disturbed by periglacial activity. These horizons are overlain by similarly disrupted eluvial horizons mixed with aeolian silts derived from outside the Kennet catchment. The illuvial horizons most probably result from interglacial pedogenesis under climatic conditions warmer and wetter than at present, whilst the aeolian material was probably added to the soils during the last glacial period (Devensian). The lowest and youngest terrace is characterised by an undisturbed (normal argillic) soil developed in loams derived predominantly from the aeolian silts. Consequently, it is postulated that the soils of the lowest terrace owe their characteristics to a phase of postglacial pedogenesis.The results illustrate that several phases of pedogenesis can be recognised, which provide important information on the Quaternary development of the area. This is especially significant where floral, faunal, or archaeological evidence of environmental changes is unavailable.  相似文献   

10.
陇东黄土丘陵区坡改梯田土壤有机碳累积动态   总被引:4,自引:0,他引:4  
采用时空互代法,以不同年限坡改梯田为研究对象,分析了陇东黄土丘陵区梯田土壤有机碳(SOC)的时空分布特征。结果表明,1)陇东黄土丘陵区黄绵土在坡改梯后近50 a内,农田060 cm土层土壤有机碳处于持续累积状态,2040 cm与4060 cm土层SOC较坡耕地的增幅分别为54.6%和52.4%,大于表层增幅 (33.7%)(P0.05);各土层SOC随梯田年限的变化趋势基本一致,在修建初期(0~8 a)累积较快并超过坡耕地SOC水平(P0.01),24 a 后有了显著提高(P0.05),后期SOC累积变化不显著。2)不同土壤类型及地形下SOC含量及累积速率有所差异,020 cm 土层的SOC在黄绵土中累积最为明显,2040 cm与4060 cm 两个土层SOC在红粘土中的累积量最为显著(P0.05);阴坡表层SOC大于阳坡,梯田修建25 a 后阴坡平均SOC较阳坡高22.1%。3)梯田土壤有机碳的时空变异受土壤类型的影响最大,其贡献率达62.0%,海拔和坡向影响次之,两者可解释20.4%的有机碳的变异;梯田年限和施用有机肥可分别解释11.7%和5.8%的变异。陇东黄土丘陵区坡改梯田土壤在当前经营状况下表现出较弱的碳汇效应。  相似文献   

11.
Soil chronosequences developed on elevated marine terraces are ideal for studying changes in soil-forming processes with time. The coastal range of eastern Taiwan is a product of active arc–continent collision. Vertisols, Mollisols and Entisols are generally found on the different levels of marine terraces herein, but no detailed investigations of soil chronosequence have been conducted by integrating field morphology, physio-chemical characterization, micromorphology and mass-balance interpretations. Five soil pedons were selected on the three marine terraces including Tt-1 and Tt-2 pedons (Typic Hapluderts) on the first higher level with the oldest soil age (9–10 ka), Tt-3 (Vertic Hapludolls) and Tt-4 pedons (Typic Hapludolls) on the second intermediate level (5–6 ka), and Tt-5 pedon (Typic Udipsamments) on the third lower level with the youngest soil age (≤ 3.5 ka). The morphological characteristics showed that strongly developed angular blocky structures, pressure faces and slickensides are more common in higher terrace soils than in lower terrace soils. In this study, depth to C horizon, solum thickness, and thickness of the clay-enriched zone increase with relative terrace age. Although only one to two profiles per terrace were characterized, the following soil analytical characterizations increase with time: the degree of sand grains weathering, pH (H2O), organic carbon, CEC, contents of Fed, Feo and Mnd. Based on X-ray diffraction analysis of the clay-size fraction, soils on all terraces have a mixed mineralogy. Mica, smectite, and kaolinite have slightly increased with increasing terrace age. Furthermore, the dominant processes identified with mass-balance analysis include loss of bases (Ca and Mg), iron, and clay with time. The soil properties, including analytical and mineralogical characterizations, which do not have notable changes with time are primarily due to relatively young soil age (< 10 ka).  相似文献   

12.
The aim of this paper was to compare the concentration of P in soil extracts prepared with water and a ‘soil solution proxy’ (‘SSP’, that is, a salt solution similar in ionic composition and strength to the actual soil solution) with that in 0.01 m CaCl2 extracts, which is usually taken as a measure of soil P intensity. Seventy widely ranging agricultural soils from the Mediterranean part of Spain were used. Soil/solution ratio was 1:10 and extraction time 3 days. For 0.01 m CaCl2, a short extraction time of 30 min was also used as the reference method. CaCl2‐P(3 days) and CaCl2‐P(30 min) were not significantly different for the 40 noncalcareous soils group, but CaCl2‐P(3 days) was significantly larger than CaCl2‐P(30 min) for the 30 calcareous soils group. The Water‐P/CaCl2‐P(30 min) ratio was not significantly related to any soil property, its mean being 6.3 for the noncalcareous and 5.8 for the calcareous soils group. The mean SSP‐P/CaCl2‐P(30 min) ratio was 2.6 for the noncalcareous and 3.1 for the calcareous soils group, and decreased slightly with increasing ionic strength of the soil solution in the noncalcareous soils group. These results are consistent with the promoting influence of the Ca ion and ionic strength on P adsorption by permanent‐charge soils. The fact that extraction with 0.01 m CaCl2 generally results in underestimation of the actual concentration of P in the soil solution should be considered when CaCl2‐P is used as a soil P test.  相似文献   

13.
Soil compaction limits soil water availability which adversely affects coconut production in Sri Lanka. Field experiments were conducted in coconut (Cocos nucifera L.) plantations with highly and less compacted soils in the intermediate climatic zone of Sri Lanka. Soil physical properties of sixteen major soil series planted with coconut were evaluated to select the most suitable soil series to investigate the effect of deep ploughing on soil water conservation. Soil compaction and soil water retention with respect to deep ploughing were monitored during the dry and rainy seasons using cone penetrometer and neutron scattering techniques, respectively. Evaluation of soil physical properties showed that the range of mean values of bulk density (BD) and soil penetration resistance (SPR) in the surface soil (0–10 cm depth) of major soil series in coconut lands was from 1.38 ± 0.02 to 1.57 ± 0.07 g/cm3 and 55 ± 10 to 315 ± 16.4 N/cm2 respectively. The total available water fraction increased with clay content of soil as a result of high micropores. However, due to soil compaction, ability of soils to conserve water and to remain aerated was low for those series. Deep ploughing during the rainy and dry periods in highly compacted soils (BD > 1.5 g/cm3 and SPR > 250 N/cm2) greatly increased conserved soil water in the profile, while in less compacted soils (BD < 1.5 g/cm3 and SPR < 250 N/cm2) conserved water content was adversely affected. Soil water retention in bare soils of both highly and less compacted soil series was higher than that of live grass-covered soil. Amount of water conserved in ploughed Andigama series with respect to bare soils and grass-covered treatments during the severe dry period was 10.4 and 16.9 cm/m, while water storage reduction in the same treatments with ploughed Madampe series was 6.55 and 5.45 cm/m respectively. In addition, deep ploughing even in the effective root zone with live grass-covered highly compacted soils around coconut tree was favorable for soil water retention compared to that of live grass-covered less compacted soils.  相似文献   

14.
Liuchiu Island is an uplifted coral-reef island located off southwestern Taiwan. A total of four soil pedons, labeled as LC-1 and LC-2 from the Holocene terraces and LC-3 and LC-4 from the Pleistocene terraces, were sampled on the island for this work. These soils were siliceous, and were characterized by enrichment of clay and free iron (Fed). According to Soil Taxonomy, pedons LC-3 and LC-4 were classified as Paleudults and pedons LC-1 and LC-2 were Dystrudepts. The soil properties showed progressive changes from pedon LC-1 to pedon LC-4 in morphology, physical and chemical properties, and clay mineralogy. The contents of total Fe and dithionite-citrate-bicarbonate extractable Fe were significantly higher in pedons LC-3 and LC-4 with high weathering degree than in pedons of LC-1 and LC-2 with less weathering degree. Enrichment of kaolinite and gibbsite in pedons LC-3 and LC-4 also suggested high chemical weathering degree of the soils. The estimated soil ages for all studied pedons were consistent with their degrees in pedogenesis, where pedons LC-3 and LC-4 were located at older terraces and pedons LC-1 and LC-2 were located at younger terraces. Namely, it complied with the geologic interpretation of the continuous and simultaneous uplift and tilt of the island over time. Instead of the in situ weathering from the underlying coral reef limestone, all soils developed from siliceous parent materials deposited onto the surfaces. The SiO2/Al2O3 ratios of soils indicated a component of loess may have been incorporated from continental China as part of the parent material, which confirmed a climate change of strong monsoons or severe dust storms occurred before the Holocene. However, soil development increased by the subsequent warm and humid climates of the interglacial stage over time.  相似文献   

15.
ABSTRACT

Alternative saturation and reduction are frequent in the Ultisols on aged alluvial terraces in Taiwan, which forms various redoximorphic features (RMFs) that depend on a seasonally high water table and geographic positions. The abundance and distribution of RMFs in the soil profile are criteria for the classification categories of Plinthite in Soil Taxonomy. Thus, we proposed an empirical relationship existed between regional hydrology and RMFs for soil interpretation and management on these terraces. The hydrological and pedological parameters included plinthite volume proportion (PVP, %), average annual saturated time of the year in soil (AAST, %), and average annual reduced time of the year (AART, %), which corresponded to the category levels in Soil Taxonomy of 14 reference pedons from the literatures and 14 additional pedons selected for this work in the study area. The analyses indicated that the PVP, AAST, and AART values all considerably decreased as elevation increased in the domain of <40 m above sea level (a.s.l.) in the reference pedons. The PVP generally decreased with increasing elevation in the domain of ≤50 m a.s.l. with the highest PVP was in 25–30 m a.s.l. where the AAST and AART were of medium duration. The Plinthite that meets the criteria for the great group was mainly distributed in the domain of ≤30 m a.s.l., while the Plinthite that meets the criteria for the subgroup was in the domain of 30–50 m a.s.l., according to this quantification of hydrogeomorphological information. The RMFs-based correction of the classifications for soil mapping matched the actual distribution of soil taxonomy categories. However, the fluctuations of the seasonally high water table and the soil texture were the additional factors controlling the variation of RMFs and distribution of category levels on the terraces.  相似文献   

16.
The study of soil cover in the mountainous forest-steppe on the southwestern macroslope of Khentei Ridge has shown that the spatial distribution of soils is controlled by the ruggedness of topography, slope aspects, geocryological conditions, and the thickness of loose deposits. The soils belong to the orders of lithozems and organo-accumulative soils (Mollic Leptosols) of the postlithogenic trunk of pedogenesis. Dark-humus and mucky–dark-humus horizons of the organic matter accumulation are characteristic features of these soils. The investigated area is differentiated according to the soil moistening conditions on the slopes of different aspects. Favorable growth conditions for dwarf birch and Siberian larch at the southern boundary of the boreal forests in Mongolia are explained by the relatively high moistening of mucky–darkhumus lithozems and mucky–dark-humus soils developed on windward northern slopes and on mountain terraces in places of the local snow accumulation by wind. An important role in preservation of forest vegetation belongs to permafrost in small cirque-like depressions.  相似文献   

17.
Land use change is a key factor driving changes in soil organic carbon (SOC) around the world. However, the changes in SOC following land use changes have not been fully elucidated, especially for deep soils (>100 cm). Thus, we investigated the variations of SOC under different land uses (cropland, jujube orchard, 7‐year‐old grassland and 30‐year‐old grassland) on hillslopes in the Yuanzegou watershed of the Loess Plateau in China based on soil datasets related to soils within the 0–100 cm. Furthermore, we quantified the contribution of deep‐layer SOC (200–1,800 cm) to that of whole soil profiles based on soil datasets within the 0–1,800 cm. The results showed that in shallow profiles (0–100 cm), land uses significantly (p  < 0·05) influenced the distribution of SOC contents and stocks in surface layer (0–20 cm) but not subsurface layers (20–100 cm). Pearson correlation analysis indicated that soil texture fractions and total N were significantly (p  < 0·05 or 0·01) correlated with SOC content, which may have masked effects of land use change on SOC. In deep profiles (0–1,800 cm), SOC stock generally decreased with soil depth. But deep soils showed high SOC sequestration capacity. The SOC accumulated in the 100–1,800 m equalled 90·6%, 91·6%, 87·5% and 88·6% of amounts in the top 100 cm under cropland, 7‐year‐old grassland, 30‐year‐old grassland and jujube orchard, respectively. The results provide insights into SOC dynamics following land use changes and stressed the importance of deep‐layer SOC in estimating SOC inventory in deep loess soils. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

18.
Factual materials on salt-affected soils in the Barguzin Depression (Buryat Republic) are generalized. A geomorphic map of the depression has been developed. The distribution of salt-affected soils and the specificity of salinization in different geomorphic regions are characterized. These soils tend to be developed within the low lacustrine–alluvial plain of the depression, on the floodplain of the Barguzin River and its tributaries. Smaller areas of salt-affected soils are found on the river terraces. They are virtually absent on ancient sandy ridged terraces (kuituns). The genesis and chemistry of soil salinization are mainly related to the discharge of slightly saline deep water along tectonic faults and fissures. An additional source of soil salinity is represented by surface water flows. The presence of permafrost preventing the leaching of salts and the cryoarid climate favoring the migration of salts toward the soil surface during the dry spring and early summer periods and during the soil freezing in the winter contribute to the soil salinization. Slightly saline hydromorphic solonchakous soils predominate among salt-affected soils of the depression; the portion of semihydromorphic saline soils is smaller. Automorphic saline soils rarely occur in the depression. Strongly saline soils— solonchaks—are widespread within lacustrine depressions around salt lakes. Soils of the soda and sulfate salinization predominate. The content of chlorides is small; their increased amounts, as well as the presence of sulfates, are indicative of the discharge of dee ground water onto the surface. The soda type of salinization is also related to the discharge of deep stratal water with further transformation of salt solutions during freeze–thaw cycles. Under anaerobic conditions, the formation of soda is favored the processes of sulfate reduction.  相似文献   

19.
Knowledge about soil formation in tropical montane rainforests is scarce and patchy. We examined the altitudinal change of soils in a Bolivian tropical montane rainforest, aiming to illuminate the contribution of podzolization and hydromorphic processes to soil formation. In three transects from 1700 m to 3400 m a.s.l. we determined the pH, exchangeable cation exchange capacity, carbon and nitrogen stocks, and iron and aluminium fractions from 26 soil profiles. Three zones of different dominant soil forming processes were found: In the lower montane forest (LMF, 1700–2200 m a.s.l.), Dystropepts with high nutrient concentration and acidity were common. The pronounced change to the upper montane cloud forest (UMCF, 2200–2700 m a.s.l.) coincided with the appearance of Placorthods with more acidic conditions, deep ectorganic horizons and increasing translocation of sesquioxides. In the sub-alpine forest (SCF, 2700 m–3400 m a.s.l.), hydromorphic processes dominated over podzolization, resulting in Placaquods with low mineralization rate and nutrient concentration. This shows that due to increasing wetness and colder temperatures at high altitudes, dominant soil forming processes change from podzolization to hydromorphism soils with increasing altitude.  相似文献   

20.
Knowledge of the origin, evolution and weathering of Pampean soils is still limited. There are few prior studies of silicophytoliths, even though they could be important pedogenetic indicators that provide information about the role of amorphous silica in the reestablishment of soil structure. The aim of this work is to determine the silicophytolith content in Typical Argiudolls of the Pampean Plain, Argentina, its relation with vegetal cover and its effect on pedogenesis. We worked in three plots with different vegetal cover: grasses and shelter-belt plantations of Acacia melanoxylonCeltis tala and Eucalyptus globulusCeltis tala. In the study area, morphological characterization and particle size distribution analysis of soils were completed, and pH and organic matter content were determined. The heavy liquid separation was realized with sodium polytungstate (δ = 2.3 g/cm3) and an average of around 500 mineral grains were counted under optical microscope for the quali-quantitative analysis. There were no differences between profiles with respect to their morphological properties, organic matter content and particle size distribution, except for the higher organic horizon development of the forest plots as compared with the grass plot. The silicophytolith content was higher in the forest plots than in the grass one; within each profile, this fraction content decreased from the surface (63–40%) to the subsurface levels (23–5%) of soils. This decrease parallels the pieces of amorphous silica (< 7.5 μm) distribution in all plots analyzed. Afforestation over the past 50 years does not affect either the morphological or the physico-chemical properties of soils. These forest species, through the organic horizons, preserve soil conditions, which insures a higher representativity of silicophytoliths in comparison with the grass plot.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号