首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Monocyclic components (development rate during the incubation period or latent period, lesion density, lesion size and disease severity) of rust ( Uromyces appendiculatus ) and of angular leaf spot ( Phaeoisariopsis griseola ) in two bean ( Phaseolus vulgaris ) cultivars (Rosinha G-2 and Carioca), pre-infected or not with bean line pattern mosaic virus (BLPMV), were determined. Trials were conducted at temperatures in the range from 9 to 27°C for rust and from 12 to 30°C for angular leaf spot. Regardless of viral pre-infection, the effect of temperature on the four monocyclic components followed an optimum curve and could be described by a generalized beta function. Generally, angular leaf spot was favoured by higher temperatures with an optimum for disease severity between 24.2 and 28.3°C compared with 15.9–18.5°C for rust. Pre-infection with BLPMV did not change the shape of the optimum curves for all components, but significantly reduced lesion density and disease severity on both cultivars. The development rates during incubation and latent periods for both fungal diseases were not affected by BLPMV. Pre-infection with virus did not alter the ranking of cultivars with respect to resistance to both fungal diseases.  相似文献   

2.
Experiments in controlled environments were carried out to determine the effects of temperature and leaf wetness duration on infection of oilseed rape leaves by conidia of the light leaf spot pathogen, Pyrenopeziza brassicae . Visible spore pustules developed on leaves of cv. Bristol inoculated with P. brassicae conidia at temperatures from 4 to 20°C, but not at 24°C; spore pustules developed when the leaf wetness duration after inoculation was longer than or equal to approximately 6 h at 12–20°C, 10 h at 8°C, 16 h at 6°C or 24 h at 4°C. On leaves of cvs. Capricorn or Cobra, light leaf spot symptoms developed at 8 and 16°C when the leaf wetness duration after inoculation was greater than 3 or 24 h, respectively. The latent period (the time period from inoculation to first spore pustules) of P. brassicae on cv. Bristol was, on average, approximately 10 days at 16°C when leaf wetness duration was 24 h, and increased to approximately 12 days as temperature increased to 20°C and to 26 days as temperature decreased to 4°C. At 8°C, an increase in leaf wetness duration from 10 to 72 h decreased the latent period from approximately 25 to 16 days; at 6°C, an increase in leaf wetness duration from 16 to 72 h decreased the latent period from approximately 23 to 17 days. The numbers of conidia produced were greatest at 12–16°C, and decreased as temperature decreased to 8°C or increased to 20°C. At temperatures from 8 to 20°C, an increase in leaf wetness duration from 6 to 24 h increased the production of conidia. There were linear relationships between the number of conidia produced on a leaf and the proportion of the leaf area covered by 'lesions' (both log10-transformed) at different temperatures.  相似文献   

3.
In controlled environment experiments, sporulation of Pyrenopeziza brassicae was observed on leaves of oilseed rape inoculated with ascospores or conidia at temperatures from 8 to 20°C at all leaf wetness durations from 6 to 72 h, except after 6 h leaf wetness duration at 8°C. The shortest times from inoculation to first observed sporulation ( l 0), for both ascospore and conidial inoculum, were 11–12 days at 16°C after 48 h wetness duration. For both ascospore and conidial inoculum (48 h wetness duration), the number of conidia produced per cm2 leaf area with sporulation was seven to eight times less at 20°C than at 8, 12 or 16°C. Values of Gompertz parameters c (maximum percentage leaf area with sporulation), r (maximum rate of increase in percentage leaf area with sporulation) and l 37 (days from inoculation to 37% of maximum sporulation), estimated by fitting the equation to the observed data, were linearly related to values predicted by inserting temperature and wetness duration treatment values into existing equations. The observed data were fitted better by logistic equations than by Gompertz equations (which overestimated at low temperatures). For both ascospore and conidial inoculum, the latent period derived from the logistic equation (days from inoculation to 50% of maximum sporulation, l 50) of P. brassicae was generally shortest at 16°C, and increased as temperature increased to 20°C or decreased to 8°C. Minimum numbers of spores needed to produce sporulation on leaves were ≈25 ascospores per leaf and ≈700 conidia per leaf, at 16°C after 48 h leaf wetness duration.  相似文献   

4.
In controlled environment experiments to study early development of light leaf spot, lesions developed with leaf wetness durations of 16 to 48 h after inoculation of oilseed rape with conidial suspensions of Pyrenopeziza brassicae at 12 or 18°C, but not with leaf wetness durations of 0 to 13h. The incubation period was 21 to 22 days at 12°C and 14 to 18 days at 18°C for leaf wetness durations of 16 to 48 h. The latent period was 21 to 23 days at 12°C and 18 to 19 days at 18°C, and the total number of lesions increased with increasing leaf wetness duration at both temperatures. In field experiments, light leaf spot always developed on oilseed rape with a leaf wetness duration of 48 h after inoculation in both 1990/1991 and 1991/1992, but the percentage leaf area affected was less on plants placed in an oilseed rape crop than on those placed in a glasshouse. Plants moved to an oilseed rape crop immediately after inoculation nearly always developed light leaf spot symptoms when they were inoculated between 19 October 1990 and 1 March 1991 or between 27 September 1991 and 14 February 1992, but plants inoculated between 31 August and 16 October 1990 or on 20 September 1991, when estimated leaf wetness duration was less than 16 h for several days after they were placed in crops, did not develop symptoms. The latent period of light leaf spot on plants transferred to the oilseed rape crop was 15 to 40 days, and there was an approximately linear relationship between 1 (latent period) and mean temperature during this period. The accumulated temperature during the latent period ranged from c. 150 to 250 day-degrees. The severity of lesions on these plants increased with increasing temperature from 5 to 15°C.  相似文献   

5.
Botrytis allii colonies incubated at low temperatures have been reported to produce larger conidia that germinate faster and give rise to longer germ-tubes than those grown at room temperature. The present study compared the effect of conidia produced at 20°C and at 0 and –2°C on their pathogenicity to artificially inoculated white onion bulbs, and the effect of conidial concentration (5×103 and 5×104 conidia/mL) on disease incidence, lesion area, incubation and latent period during storage at 20, 5 and 0°C. At all storage temperatures and periods tested conidia produced at −2°C caused a higher disease incidence and larger areas of rot than those produced at higher temperatures. When the conidial production temperature was raised to 20°C, the duration of incubation on the bulbs inoculated with 5×104 conidia/mL was more than doubled during storage at 0°C, tripled at 5°C, and took 50% longer at 20°C. The incubation period was not significantly affected by conidial concentration at 20°C, and only slightly at 5 and 0°C, but at low temperatures the latent period was longer because of the delay induced in sporulation. These data are consistent with the packers' opinion that cross-infection of spring onions by long-term refrigerated onions in grading lines caused earlier and heavier rotting.  相似文献   

6.
The effects of temperature on the development of light leaf spot (Pyrenopeziza brassicae) on winter oilseed rape were investigated in controlled-environment experiments. The proportion of conidia which germinated on leaves, the growth rate of germ tubes, the severity of light leaf spot and the production of conidia increased with increasing temperature from 5 to 15 C. The time to 50% germination of conidia and the incubation and latent periods of light leaf spot lesions decreased when temperature increased from 5 to 15°C. At 20°C, however, light leaf spot severity and production of conidia were less and the incubation and latent periods were longer than at 15 C. There were differences between P brassicae isolates and oilseed rape cultivars in the severity of light leaf spot, the production of conidia and the length of the incubation period but not in the length of the latent period. The responses to temperature for lesion severity and incubation and latent periods appeared to be approximately linear over the temperature range 5-15°C and could be quantified using linear regression analysis.  相似文献   

7.
Experiments are described to quantify the effects of temperature and leaf wetness duration on infection of groundnut by Phaeoisariopsis personata. Temperature response curves for conidial germination and infection were similar, with optima close to 20°C and minimum and maximum temperatures of about 8°C and 34 C, respectively. The effect of temperature on infection between 15°C and 26°C was slight. Lesions developed only if the leaf wetness period exceeded about 20 h, and the total wetness period necessary for maximum infection exceeded 160 h. The number of lesions resulting from a fixed amount of inoculum was several times greater if leaves were exposed to alternate wet and dry periods (intermittent wetness), compared with continuous wetness. With intermittent wetness the length of the dry period had little effect on the number of lesions, providing it exceeded 2 h. The response curve relating total wetness periods to lesion density was an exponential asymptote.  相似文献   

8.
Spring wheat seedlings containing Lr 20 and Sr 15 resistance alleles were raised at 30° C, prior to inoculation with leaf rust ( Puccinia recondita race 76–2,3) and stem rust ( Puccinia graminis f.sp, tritici race 343–1,2,3,5,6) pathogens, respectively. Infected plants were then grown at one of seven temperatures in the range 18–30 C and infection types were scored at 10 days post-inoculation. These results were compared with those obtained for plants raised at a pre-inoculation temperature of 18° C. In both 18° C and 30° C pre-grown plants, a progressive increase in infection type was observed on resistant lines as post-inoculation temperature increased. However, resistant lines raised at 30°C had significantly higher infection types than plants raised at 18° C at all post-inoculation temperatures for which some degree of resistance was still evident in the plants raised at 18°C, The maximum temperature for expression of resistance was significantly higher for Lr 20 than for Sr 15. irrespective of pre-inoculation temperature. A lowering of the resistance expression was also evident in Sr 15 -bearing lines raised at a very low pre-inoculation temperature (4°C). The effects of low pre-inoculation temperature on resistance were assessed in both winter and spring wheat lines. These results are discussed in the light of current ideas concerning the host membrane location of pathogen recognition events.  相似文献   

9.
The effects of growth and leaf temperature on photosynthesis were evaluated in sweet orange seedlings ( Citrus sinensis cv. Pera) infected with Xylella fastidiosa (the bacterium that causes citrus variegated chlorosis, CVC). Measurements of leaf gas exchange and chlorophyll  a fluorescence were taken at leaf temperatures of 25, 30, 35 and 40°C in healthy and infected (without visible symptoms) seedlings submitted to two temperature regimes (25/20 or 35/20°C, day/night), not simultaneously. The CO2 assimilation rates ( A ) and stomatal conductance ( g s) were higher in healthy plants in both temperature regimes. Values for A and g s of infected and healthy plants were higher in the 35/20°C regime, decreasing with leaf temperature increase. In addition, differences between healthy and infected plants were higher at 35/20°C, while no differences in chlorophyll  a fluorescence parameters were observed except for potential quantum efficiency of photosystem II, which was higher in infected plants. Low A values in infected plants were caused by low g s and probably by biochemical damage to photosynthesis. The high alternative electron sink of infected plants was another effect of reduced A . Both high growth and high leaf temperatures increased differences in A between healthy and infected plants. Therefore this feature may be partially responsible for lower growth and/or productivity of CVC-affected plants in regions with high air temperature.  相似文献   

10.
Myrtle rust (Austropuccinia psidii) is an invasive species causing damage to Myrtaceae species in natural and managed ecosystems in many countries. To better understand myrtle rust epidemiology we studied latent period (LP) and ontogenic resistance in relation to temperature on three susceptible hosts (Metrosideros excelsa, Lophomyrtus bullata × L. obcordata and Syzygium jambos). The latent period curve was U-shaped, with latent development >0 from between 8 and 10 °C, depending on the host, to 32 °C. Optimum range was 22–28 °C with minimum LP of 5–7 days. Peak spore production occurred over about 2 weeks, starting about 1 week after the LP ended. Some spore production continued for 1–2 months. Comparison of the LP data with field temperatures indicated that the uredinial stage of A. psidii can overwinter in the latent phase in temperate areas of New Zealand and southern Australia and, therefore, uredinial or telial reinfection is not required during winter. The LP information was used to correct the LP function in a New Zealand myrtle rust climatic risk model. The transition of emergent leaf and stem tissues in susceptible Myrtaceae genotypes from susceptible to immune (ontogenic resistance) was characterized in terms of uredinium density and LP. Onset of ontogenic resistance was closely linked to the degree of leaf expansion, with fully expanded leaves being immune to infection. Because ontogenic resistance restricts infection to periods when growth flushes occur, understanding it is crucial for explaining the seasonality of myrtle rust development in the natural environment.  相似文献   

11.
Experiments were conducted to examine the processes leading up to the infection of Lolium temulentum by crown rust ( Puccinia coronata ), stem rust ( P. graminis ) and brown rust ( P. loliina ), and the effects of temperature on these processes and sporulation. Uredia of all three rusts were produced freely if the adaxial leaf surface was inoculated, but did not form following inoculation of the abaxial surface. Light and scanning electron microscopy revealed abnormal growth of germlings on the abaxial surface which had amorphous sheet-like epicuticular waxes and very few stomata. On the adaxial leaf surface germ tubes of all the rusts orientated at right angles to the long axis of the leaf. However, the directional growth of germ tubes was often disrupted when they contacted the surface of bulliform cells at the base of leaf grooves. For P. loliina the optimum temperatures for urediospore germination and sub-stomatal vesicle formation were 12–16°C, and 8–20°C for appressorium formation. The optimum temperatures, for the same stages of fungal development, for P. coronata and P. graminis were higher. Urediospore production of P. loliina was higher at 10°C than at 25°C, but was similar at both temperatures for P. coronata .  相似文献   

12.
The post-inoculation temperature and humidity conditions most favourable for development of Phoma black stem and leaf spot (Phoma medicaginis) and Leptosphaerulina leaf spot (Leptosphaerulina trifolii) diseases on lucerne (Medicago sativa) were determined using controlled-environment cabinets. P. medicaginis caused more severe leaf disease at day/night temperatures of 21/16 and 18/13°C compared with 15/10°C; petiole disease was most severe at 21/16°C compared with 18/13°C, and least severe at 15/ 10°C. L. trifolii generally caused more severe leaf disease at 18/13°C compared with 21/16°C or 15/10°C, but the most severe petiole disease occurred at 21/16°C with least at 15/10°C Leaf disease caused by either P. medicaginis or L. trifolii was always more severe with the longest period (168 h) of high-humidity incubation and, generally, increased with increasing periods of high humidity. The severity of petiole disease was much less affected than that of leaf disease by an increase in the period of high-humidity incubation.  相似文献   

13.
Infection of onion by Alternaria porri and Stemphylium vesicarium was investigated under a range of controlled temperatures (4–25°C) and leaf wetness periods (0–24 h). Conidia of A. porri and S. vesicarium germinated within 2 h when incubated at 4°C. Terminal and intercalary appressoria were produced at similar frequencies at or above 10°C. The maximum number of appressoria was produced after 24 h at 25°C. Penetration of leaves by both pathogens was via the epidermis and stomata, but the frequency of stomatal penetration exceeded that of epidermal penetration. There was a strong correlation ( R 2 > 90%) between appressorium formation and total penetrations at all temperatures. Infection of onion leaves occurred after 16 h of leaf wetness at 15°C and 8 h of leaf wetness at 10–25°C, and infection increased with increasing leaf wetness duration to 24 h at all temperatures. Interruption of a single or double leaf wetness period by a dry period of 4–24 h had little effect on lesion numbers. Conidia of A. porri and S. vesicarium separately or in mixtures caused similar numbers of lesions. Alternaria porri and S. vesicarium are both potentially important pathogens in winter-grown Allium crops and purple leaf blotch symptoms were considered to be a complex caused by both pathogens.  相似文献   

14.
Batches of two winter wheat cultivars (Riband and Apollo) were inoculated with conidia of Mycosphaerella graminicola at weekly intervals over a 2 year period. Following 72 h incubation, plants were placed in ambient temperatures ranging between −7 and 32°C with mean batch temperatures of 2·9–20·2°C. Latent period until the first visible symptoms ranged between 11 and 42 days. The relationship between development of lesions and accumulated thermal time was described using a shifted cumulative gamma distribution model. The model provided good estimates of lesion development with r 2 > 0·92 for both cultivars. Base temperatures, below which the pathogen did not develop, were estimated from the model as approximately −2·4°C for the two cultivars. Latent period was estimated as being 250 and 301 degree-days above the estimated base temperature, when defined as time from inoculation to first lesion and time to 50% of maximal lesions, respectively, for cv. Riband. The values for cv. Apollo were similar, but with estimates of thermal time periods c . 5% higher. The relationship between mean temperature and inverse latent period, expressed as days either to first lesion or to 50% of maximal lesions, was best described by a linear regression with r 2 > 0·96 for both cultivars. The opportunity for plants to outgrow disease was reduced when prolonged periods of cold temperature occurred, because the base temperature for growth of the pathogen was less than that for the crop.  相似文献   

15.
Urediniospore production by Puccinia striiformis on wheat per unit leaf area infected was much lower at low light intensities than at high light intensities. The number of pustules per unit area of infected leaf and the daily sporulation rate per pustule increased linearly with increasing light over the range 10–50 W/m2. Increasing temperature between 7 and 20°C shortened latent period and reduced the longevity of sporulating leaves. Colonization rate and the frequency of pustules per unit area of infected leaf increased between 7 and 15°C but declined markedly at 20°C. Spore production reached its peak earlier and declined more rapidly with increasing temperature between 7 and 15°C. this decline being less marked in the highly susceptible cultivar Maris Beacon than in the more resistant Maris Nimrod and Maris Huntsman.  相似文献   

16.
Controlled-environment studies of conidial production by Phaeoisariopsis personata on groundnut are described. With constant relative humidity (RH), conidia were only produced above a threshold (94·5% RH) and there was a linear increase between 94·5% RH and 100% RH. Conidial production was less with continuous leaf wetness (resembling heavy dew) than with continuous 98–99% RH, but it was similar with intermittent leaf wetness and intermittent 98–99% RH (8 h at 70% RH each day). With alternate high (≥97% RH) and low humidity, daily conidial production depended both on the duration of high RH and on the low RH value. With 99% RH at night (12 h), night-time conidial production decreased with the previous daytime RH. After conidial production had started, small numbers of conidia were produced even when the RH was well below the threshold (94·5%). Conidia were produced in continuous light when the photon flux density was 2 μmol/m2/s, but production was completely inhibited with 60 μmol/m2/s. With constant RH, more conidia were produced with a 12 h photoperiod than in continuous darkness. However, more than 75% of the conidia were produced in the dark. With continuous darkness, more conidia were produced during the night (18.00–06.00 h) than during the day, but this biological rhythm was overcome with a (light-night)/(dark-day) regime. With constant 98–99% RH there was a linear increase in conidial production with temperature between 10 and 28°C, and virtually no conidia were produced at 33°C. The daily production of conidia increased with time for 2 to 6 days, depending on the treatment.  相似文献   

17.
The effects of temperature on the length of the incubation and latent periods of hawthorn powdery mildew, caused by Podosphaera clandestina , were studied. At constant temperatures over the range 10–28°C, the incubation period ranged from 5 to 14 days and the latent period from 5 to 16 days; no visible colonies had developed at 30°C after 15 days. The relationships between temperature and the rates of fungus development within the incubation and latent periods were well described by a nonlinear model. The resulting curves were asymmetrically bell-shaped with an optimum temperature of approximately 23°C. The lengths of the incubation and latent periods under fluctuating temperatures were also determined, and were used to evaluate the models developed from constant temperature experiments for their accuracy of prediction. The incubation and latent periods under fluctuating temperature regimes were predicted using a rate-summation scheme with a time step of 24 min, by integrating the respective incubation and latent rate functions obtained under constant temperatures. The predicted incubation or latent periods agreed well with the observed values. Under constant temperature the interval between the times when symptoms and sporulation on the same leaflet were first observed was very short, on average <1 day, and was not significantly correlated with temperature. However, this interval was negatively correlated with mean temperature under fluctuating regimes.  相似文献   

18.
The experiment was conducted under a controlled environment to study the effects of different temperature regimes (15/10°C, 20/15°C, and 25/20°C day/night) and sowing depths (0, 2, 4, and 6 cm) on the seedling emergence and early growth (height gain) of wheat (cv. Marvdasht) and wild barley ( Hordeum spontaneum ). The cumulative emergence and plant height gain over time were modeled with the use of a logistic function. For a particular temperature regime, the maximum percentage emergence (E max ) of wheat was higher than that of wild barley across all sowing depths. The maximum and minimum E max values for both species occurred at 20/15°C and 25/20°C, respectively. The time taken to reach 50% of the E max (i.e. E50) increased with the sowing depth in both species under all temperature regimes. The E50 of wild barley was greater than that of wheat for all temperature regimes, with maximum differences observed at 20/15°C. The greatest maximum plant height (H max ) was observed at the surface planting for both plants. The H max was reduced at temperatures either lower or higher than 20/15°C, with a more notable reduction in wild barley. At all temperature regimes, the time taken to reach 50% of the H max (i.e. H50) increased linearly with the sowing depth but, at higher temperatures, the accelerated growth rate reduced the H50. The wild barley seedling emergence and height gain rate, as expressed relative to those of wheat, revealed the highest superiority of wheat over wild barley at 25/20°C and the sowing depth of 4 cm.  相似文献   

19.
The effect of temperature and light after spraying on the activity of flumetsulam and metosulam when applied to seedlings of Raphanus raphanistrum was evaluated under controlled environments. Flumetsulam and metosulam were applied at 0.01–3 times the recommended doses and the plants were subjected to a range of temperatures after spraying. Herbicide activity was estimated from dose–response curves of fresh weight. Varying the temperature after spraying from 1 to 20 °C increased the activity of flumetsulam and metosulam, as determined by comparison of ED50, by a factor of 97 and 7 respectively. Large increases in herbicide activity occurred in the 1–5 °C range and smaller but significant increases at temperatures greater than 5 °C. No significant differences in the activity of the herbicides were found when the plants were subjected to light or dark conditions at 5 °C after spraying. The influence of temperature on activity may lead to opportunities for rate adjustment of flumetsulam and metosulam based on the temperature prevailing around the time of spraying.  相似文献   

20.
Rhubarb leaf and petiole spot disease, caused by Ramularia rhei and Ascochyta rhei , has gradually become more noticeable in the UK field crop. Conidial germination and subsequent colony growth of R. rhei and A. rhei were investigated under in vitro conditions on potato dextrose agar and in vivo on leaf discs. Results indicated that the two fungi responded differently to temperature. Ramularia rhei was better adapted to temperatures ≤ 25°C, with an optimum around 20°C, whereas A. rhei was more adapted to temperatures ≥ 15°C, with an optimum > 25°C. Overall, conidia of R. rhei germinated and subsequent colonies grew at greater rates than those of A. rhei on leaf discs at temperatures ≤ 25°C. These results indicated that it is important to identify the causal agent of leaf and petiole spot diseases in rhubarb field crops in order to estimate disease risks accurately.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号