首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 171 毫秒
1.
气源及活性剂对曝气滴灌带水气单双向传输均匀性的影响   总被引:2,自引:2,他引:0  
曝气滴灌过程中水、氧、气传输均匀性是评价曝气灌溉质量的重要指标。活性剂的添加和传输方式的优选对曝气滴灌传输过程中微气泡的存在和溶解氧的保持有重要意义。为提高水气耦合物在滴灌过程中传输的距离和均匀性,该文采用Mazzei 1078文丘里空气射流器进行曝气增氧,以空气和氧气为供试气源,研究活性剂BS1000浓度(0、1、2和4 mg/L)和传输方式(单向和双向)对曝气滴灌下水、氧、气传输特性的影响。结果表明:曝气导致单向传输下流量均匀性略有下降,但可显著提高灌溉水中溶解氧和掺气比例;随着活性剂浓度的增加,掺气比例显著增加(P0.05);活性剂的添加促进了氧气曝气下溶解氧的增加;溶氧均匀性和流量均匀性随着活性剂浓度的增加无显著性变化,但单向传输下4 mg/L BS1000的出气均匀性较未添加活性剂显著降低;双向传输的流量均匀性、溶氧均匀性和出气均匀性分别在95%、96%和67%以上,较单向传输分别平均提高14.00%、4.05%和30.64%(P0.05),是曝气滴灌长程管道传输推荐的布置方式。研究结果为曝气滴灌过程中灌溉技术参数优化和管道的科学布置提供理论依据。  相似文献   

2.
NaCl及生物降解活性剂对曝气灌溉水氧传输特性的影响   总被引:1,自引:1,他引:0  
曝气灌溉可有效调节植物根区环境、改善土壤通气性。微咸水中NaCl的存在及活性剂添加对提高曝气灌溉的氧传质效率,实现节能高效的灌溉有重要作用。为研究NaCl介质及生物降解活性剂对纯氧曝气灌溉水氧传输特性的影响,该文采用变压分离制氧技术-氧气扩散系统-空气注射技术耦合系统,分析NaCl介质(未添加和添加)及生物降解活性剂BS1000(醇烷氧基化物质量浓度0、1、2、4 mg/L)2个因素对氧总传质系数、溶氧饱和度、流量均匀系数和溶氧均匀系数的影响。结果表明:BS1000的添加促进氧传质过程的发生,提高了曝气水中的溶氧饱和度;随着BS1000浓度增加,氧总传质系数逐渐增加,而溶氧饱和度呈现下降的趋势;BS1000质量浓度在2 mg/L及以上时,NaCl介质对氧总传质系数的增幅显著;NaCl介质对曝气水中的溶氧饱和度起到抑制作用。各组合条件下,曝气滴灌中流量均匀系数均在95%以上,溶氧均匀系数均在97%以上。添加活性剂BS1000可使氧总传质系数平均提高18.85%以上(P0.05)。无论添加NaCl与否,添加1 mg/L BS1000的溶氧饱和度均最大,故1 mg/L BS1000是适宜的活性剂添加浓度。  相似文献   

3.
微纳米曝气滴灌系统的水、气和溶解氧传输特性不明,限制了其在农业领域的应用。该研究旨在探索微纳米气泡在滴灌管内的传输特性,为微纳米曝气滴灌系统科学运行提供理论依据。设计0.06~0.22 MPa之间的5个滴灌系统工作压力,0.60、1.50、2.40 L/min 3个进气速率,并以不曝气为对照,通过测量滴灌管首部、中部、末端滴头的水、气出流量及水中溶解氧浓度,分析三者沿滴灌管的传输特性和均匀性,以及进气速率和工作压力对其的影响规律。结果表明:1)微纳米曝气时所有处理的滴头平均出水流量达到额定流量的98.5%及以上,出水均匀度达到96%及以上,且两指标在所有曝气和不曝气处理之间的差异均未达到显著性水平(P<0.05)。2)在适中的工作压力范围内(0.10~0.18 MPa),曝气滴灌系统平均出气流量和均匀度分别在0.13~0.23 L/h、85.50%~92.41%之间,两指标分别随进气速率的提高而提高和降低;而过高或过低的工作压力(0.22 、0.06 MPa)会导致个别滴头出气流量异常高,最终提高滴灌系统平均出气流量的同时却大大降低了出气均匀度。3)微纳米曝气滴灌系统的溶解氧浓度较不曝气有明显提高,且所有处理的溶解氧均匀度均达到95%以上;溶解氧浓度沿管道传输方向呈增大趋势,随进气速率的提高呈单峰变化;在1.5 L/min进气速率组合0.14 MPa工作压力时,滴灌系统溶解氧平均值达到最高14.45 mg/L。综合考虑水、气和溶解氧传输效果,微纳米曝气滴灌最佳运行参数为1.5 L/min进气速率组合0.14 MPa工作压力,根据出气均匀度大于85%和溶解氧均值大于12 mg/L确定适宜的工作压力范围为0.10~0.18 MPa,进气速率范围1.5~2.4 L/min。该研究可为微纳米曝气滴灌系统科学运行提供理论依据。  相似文献   

4.
水肥气耦合滴灌番茄地土壤N2O排放特征及影响因素分析   总被引:2,自引:2,他引:0  
为了解水肥气耦合滴灌下不同水肥气调控措施对土壤N_2O排放的影响,该研究设置施氮量(低氮和常氮)、掺气量(不掺气和循环曝气处理)和灌水量(低湿度和高湿度处理)3因素2水平完全随机试验,通过静态箱-气相色谱法、q PCR技术和结构方程模型,系统研究了不同水肥气组合方案下温室番茄地土壤N_2O排放特征及其与相关影响因素之间的关系。结果表明,水肥气耦合滴灌下N_2O排放峰值出现在施氮后2 d内,其余时期N_2O排放通量较低且变幅较小。施氮量、掺气量和灌水量的增加可增加土壤N_2O排放通量和排放总量。其中,高湿度条件下N_2O排放总量较低湿度平均增加了30.14%,曝气条件下N_2O排放总量较对照平均增加了35.16%,常氮条件下N_2O排放总量较低氮平均增加了33.83%。施氮量、掺气量和灌水量的增加可提高温室番茄的产量和氮肥偏生产力。土壤NH4+-N和NO3--N含量对N_2O排放的总效应为0.60和0.79,是影响水肥气耦合滴灌下土壤N_2O排放的主导因子。综合考虑作物产量、N_2O排放总量和氮肥偏生产力,常氮曝气低湿度处理是适宜的水肥气耦合滴灌方案。  相似文献   

5.
微孔曝气流量与曝气管长度对水体增氧性能的影响   总被引:2,自引:2,他引:2  
为了探究曝气流量与曝气管长度对增氧性能的影响,在不同曝气流量、不同曝气管长度条件下进行了室内水体底部微孔曝气增氧试验。分析了曝气流量与曝气管长度对氧体积传质系数、增氧量和氧利用率的影响。研究结果表明,当曝气流量为0.27~0.55 m3/s、曝气管长为0.9~1.5 m时,所对应的氧体积传质系数在0.63~1.1 h-1变化,增氧量在6.8~12.9 g/h变化,氧利用率在6.87%~9.28%变化,且在一定的曝气管长度下,氧体积传质系数、增氧量均与曝气流量成正比,而氧利用率则与其成反比关系;在一定的曝气流量下,曝气管长度对氧体积传质系数产生的影响表现为先高后低再高的趋势;氧体积传质系数与修正的饱和溶解氧浓度是否作为增氧量的主要影响因子取决于曝气管长度;曝气流量对氧利用率较曝气管长度更为敏感。研究还发现,微孔曝气系统中存在着最优曝气管长度,使得增氧性能最佳,并建立了最优曝气管长度与曝气流量、水深、输入压力、最优初始气泡直径的相关关系式,为低碳经济下微孔曝气系统的设计和运行提供了理论依据。  相似文献   

6.
在水产养殖池塘中微孔曝气充氧系统日益受到关注,为了探究微气泡-水界面与水表面湍动对氧传质的贡献,在不同曝气流量、不同淹没水深条件下进行了水体底部微孔曝气增氧试验。基于氧体积传质理论,采用美国土木工程协会推荐的计算模型和两区氧传质模型进行耦合求解,计算得到了水体底部微孔曝气增氧过程中气泡-水界面和水表面湍动扩散氧体积传质速率。对温度修正后的体积传质速率进行分析,结果表明,在一定的淹没水深下,气泡-水界面和水表面湍动扩散氧体积传质速率均与曝气流量成正比;而在一定的流量下,气泡-水界面和水表面湍动扩散氧体积传质速率与水深成反比。针对于浅型养殖池塘,随着曝气管淹没水深的增加,虽然水表面传质的贡献率有所下降,但是其贡献仍然很大,占到了80%以上。结合微孔曝气式增氧系统具有能耗较低、安装简单等优点,采用微孔曝气式增氧系统对浅型水域增氧和湍动混合具有较大优势,值得推广采用。  相似文献   

7.
为解决固定式旋转喷头低压喷灌时,水射流向末端集中形成水量分布不均匀的问题,提出水气两相射流进行喷灌的方法。在摇臂喷头结构的基础上,增加掺气结构,形成掺气射流喷头,以相同工作水压力、射流仰角、喷嘴出口流量相同为约束,以及不考虑副喷嘴对喷洒的影响,对比了掺气与不掺气2种情况下 PY20喷头的射程、径向水量分布、1倍射程间距的正方形组合喷灌均匀系数,雨滴粒径等参数。试验结果表明:原不掺气摇臂喷头出口直径7 mm,安装内径2 mm 的掺气管后出口直径改为8.3 mm,此时两者具有相同的出口流量,2种喷头在相同工作压力下具有近似相等的射程;在掺气喷头工作水压低至100 kPa 情况下,喷头仍具有76 mm 水银柱高差的掺气负压能力;掺气摇臂喷头改善了径向水量分布线射程中段的水量,使水量分布线发生了中段略微增高、末端略下降的变化,从而使1倍间距的正方形组合喷灌均匀系数在低于国家标准工作压力的200 kPa 情况下,从62.8%提高到68.8%;采用激光雨滴谱仪测量射程中部和末端2个地方的水滴粒径表明:掺气状态下射程中部的水量累积百分比中位直径 d50远大于不掺气状态,射流末端对比 d50则小于不掺气状态,说明掺气改变了喷头的雨滴粒径分布。该文试验结果证明掺气摇臂喷头在农业喷灌中应用具有可行性。  相似文献   

8.
滴灌施肥机灌水与施肥均匀性试验   总被引:4,自引:3,他引:1  
为了研究滴灌施肥机在不同压力条件下灌水流量和溶液浓度的时空变化以及水力要素对灌溉均匀性的影响,该文以荧光示踪剂溶液模拟肥料,并以比例混合泵滴灌施肥机为研究对象,通过连续均匀采样的试验方法分析其灌水和施肥均匀性。结果表明:比例混合泵施肥机在不同压力条件下灌水和施肥均匀性都很好,但在施肥过程中存在施肥滞后时间和停肥延时时间,这两个时间决定施肥机灌溉的最小时间及最佳施肥方式,同时受这两个时间的影响,选择不同滴灌施肥测试时间得到的施肥均匀性分析结果存在着差别。  相似文献   

9.
为解决生物质直燃给锅炉带来的运行问题,以及燃煤锅炉掺烧秸秆气对运行性能以及污染物排放的影响,建立了秸秆气化及秸秆气与煤混合燃烧模型,且对模型的气化过程与燃烧过程进行了合理验证。为保证锅炉稳定运行,设置进入锅炉系统的总热值不变,在不同秸秆含水率、秸秆气掺烧比例及炉膛过量空气系数下,研究锅炉运行性能及污染物排放变化规律。结果表明:与纯煤燃烧相比,当掺烧比和含水率从10%增大到30%,混燃温度降低,最大降幅为89.3℃;在5%~30%秸秆含水率及10%~30%秸秆气掺烧比例下,空气预热器出口处排烟体积、排烟密度、排烟质量均有变化,掺烧后锅炉效率变化范围为92.72%~93.71%,系统效率变化范围为88.75%~92.62%;空气预热器出口处烟气中NO与SO_2排放浓度随掺烧比增大均减小,10%掺烧比例条件下,过量空气系数增大,NO排放浓度先增大后稍有下降,SO_2排放浓度减小。该研究为实现生物质的合理应用并减小已有燃煤电厂的污染物排放提供了理论依据。  相似文献   

10.
曝气处理广泛用于沼液滴灌前处理中,合理的曝气有利于农作物生长,降低沼液后续滴灌时发生堵塞,但目前缺乏相关工艺参数。基于此,该文从提高沼液农用生物有效性入手,对影响曝气过程的相关参数进行优化研究。结果表明,曝气能够降低沼液中氨氮、总磷含量和生物毒性,且添加好氧污泥情况下下降更明显。以保持沼液中氨基酸含量作为评价指标时,最优曝气参数为:好氧污泥量8000 mg/L、水力停留时间2h、气水比20、p H值8.5;以降低沼液生物毒性为目标的优化曝气参数为:好氧污泥量6000 mg/L、水力停留时间1h、气水比40、p H值6.5。通过玉米水培试验对2种优化方案进行验证,沼液氨基酸浓度的优化方案更利于玉米生长,而玉米在基于降低沼液生物毒性的优化方案中的生长情况较差,甚至劣于未优化方案。  相似文献   

11.
加气灌溉改善温室番茄根区土壤通气性   总被引:4,自引:3,他引:1  
为揭示加气灌溉对温室番茄根区土壤通气性的影响,探索加气灌溉下土壤温度、氧气含量、充气孔隙度与土壤呼吸和土壤微生物呼吸的关系,试验设置作物-皿系数为0.6、1.0这2种灌水水平和加气、不加气地下滴灌,共4个处理。结果表明,与地下滴灌相比,加气灌溉下土壤微生物呼吸显著增大了11.5%(P0.05),土壤氧气含量、土壤呼吸、温度、和植物根系呼吸均有所增大。而且作物-皿系数为1.0灌水水平下加气灌溉与不加气相比,土壤和植物根系呼吸显著增大了25.5%和38.8%(P0.05)。因此,加气灌溉通过调控土壤水气配合条件,促进了土壤、土壤微生物和植物根系呼吸,有效改善了土壤通气性。而且相比于不加气地下滴灌和作物-皿系数为0.6水平下加气灌溉,作物-皿系数为1.0时加气灌溉在促进土壤和植物根系呼吸方面的效果更明显。另外,土壤温度、充气孔隙度和氧气含量是土壤和土壤微生物呼吸的重要影响因子。番茄生长前期,土壤呼吸与充气孔隙度和氧气含量显著正相关,与土壤温度显著负相关(P0.05);番茄生长后期,土壤和土壤微生物呼吸与土壤温度显著正相关,与氧气含量显著负相关(P0.05)。  相似文献   

12.
加氧灌溉与土壤通气性研究进展   总被引:3,自引:1,他引:3  
水、肥、气、热是保障土壤肥力的四大要素,传统的灌溉方式往往忽视了气这一重要因素.土壤通气性不足,四个因素之间的平衡被打破,土壤理化性质变差,对作物生长造成不利影响,进而引起减产.良好的土壤通气性是作物正常生长发育的保证.加氧灌溉通过采用合理的方法改善土壤通气状况,协调土壤四大要素之间的关系,提高土壤肥力,满足作物生长的需要.研究表明,加氧灌溉可提高作物产量、改善作物品质.本文从根区低氧胁迫的影响分析人手,评述了土壤通气性的量化指标、测算方法和控制标准,综述了加氧灌溉技术及其应用,总结了加氧灌溉研究中存在的问题,探讨了加氧灌溉对土壤通气性的改善作用,提出了加氧灌溉与土壤通气性研究展望,以期为今后的研究提供参考.  相似文献   

13.
为探究有利于夏玉米生长和氮素利用的适宜灌溉水溶解氧浓度,本试验以夏玉米为供试作物,采用地下滴灌供水方式,以地下水灌溉为对照,设置10(OA10)、20(OA20)和40(OA40) mg·L-1灌溉水溶解氧浓度3个增氧水平,研究不同增氧水平对盆栽夏玉米生长、产量和氮素利用的影响。结果表明,增氧地下滴灌显著提高了土壤溶解氧浓度,与对照相比,OA40、OA20和OA10处理土壤溶解氧浓度平均提高14.83%、9.71%和8.00%,表现为作物生长增强,作物产量和氮素利用效率均显著提高(P<0.05)。与对照相比,OA10处理的株高、叶鲜质量和叶干质量分别增加7.39%、16.30%和12.02%;OA40处理叶干质量和茎鲜质量分别增加15.82%和12.43%;OA10、OA20和OA40根系鲜质量分别增加60.00%、17.66%和52.98%,根系体积分别增加34.03%、14.56%和51.32%;OA10和OA20处理根系活力分别增加272.77%和64.44%;OA10和OA40处理产量分别增加24.46%和21.83%,水分利用效率分别提高19.10%和21.61%,百粒重分别增加17.53%和15.14%。OA10和OA40处理籽粒氮素吸收量较对照分别增加63.90%和35.27%,OA10处理籽粒氮素分配比例和氮素吸收效率分别增加21.57%和33.33%。上述差异均具有统计学意义(P<0.05)。综上,增氧地下滴灌可显著提高作物根区溶解氧浓度,促进作物生长,提高产量及氮素吸收利用,以OA10处理效果最为显著。本研究结果为增氧灌溉技术在实际生产中的合理利用提供了理论依据。  相似文献   

14.
臧明  雷宏军  刘鑫  潘红卫  徐建新 《核农学报》2020,34(5):1070-1078
为研究土壤氧气扩散速率(ODR)和作物养分利用对不同增氧灌溉方式的响应,以地下滴灌为供水方式,设置循环曝气(VAI)、H2O2(HP30、HP3K)和常规水对照(CK)4种灌溉处理,通过盆栽冬小麦试验,系统分析ODR、作物产量和养分利用规律。结果表明,VAI和HP30处理后48 h内20 cm土层深度的ODR较CK均有明显改善,拔节期、抽穗期和灌浆期经VAI处理后的ODR分别提高60.45%、73.77%和87.88%(P<0.05),拔节和抽穗期经HP30处理的ODR分别提高21.37和23.61%(P<0.05)。VAI和HP30处理后的产量、水分利用效率分别较CK显著提高了36.27%、38.98%和23.37%、21.47%。增氧灌溉促进了作物养分的利用,与CK相比,VAI冬小麦的N、P、K吸收总量分别提高了53.23%、107.41%和72.94%(P<0.05),HP3K冬小麦的P、K吸收总量提高了39.51%、56.19%(P<0.05),HP30冬小麦的N、P吸收总量提高了50.32%、29.63%(P<0.05);VAI和HP30冬小麦N的养分吸收效率较CK提高了43.64%和34.55%(P<0.05),VAI和HP3K籽粒的N素分配率较CK增加了8.33%和6.94%(P<0.05)。相关性分析表明,ODR与冬小麦的N、P吸收总量呈显著正相关;VAI和HP30籽粒的N吸收量和产量呈显著正相关。综上,增氧灌溉改善了ODR,提高了作物的产量和水分利用效率,促进了作物对养分的吸收利用,VAI效果最为显著。本研究结果为增氧灌溉技术提供了理论依据和技术支撑。  相似文献   

15.
自适应滴灌灌水器的水力性能试验   总被引:2,自引:2,他引:0  
为检验自适应滴灌灌水器的流量自动调节效果,根据自适应滴灌灌水器的工作原理,利用负压吸气泵模拟土壤负压,进行了AD-1型自适应滴灌灌水器在流量补偿、流量自适应2种工作模式的流量均匀性、供水压力-流量关系、模拟土壤负压-流量关系等水力性能试验与研究,并分析了其适宜的工作压力。结果表明:AD-1型自适应滴灌灌水器增添的滴水状态控制结构,不仅保留了常规滴灌灌水器的流量补偿特点,还增添了感知土壤水分含量、智能化控制灌溉和流量自动调节的多重使用功效。在流量补偿模式下,灌水器在额定供水压力100kPa时的平均流量为14.71L/h,且流量均匀度高,流量偏差系数为9.79%;在流量自适应模式下,灌水器的流量均匀度基本不变,在供水压力30kPa和土壤负压最小值20kPa的共同作用时即可开始正常工作,并确定出最小、最大的适宜供水压力分别为30、50kPa。在适宜供水压力30~50kPa范围内,灌水器能根据土壤实际水分状况在0~11.22L/h之间实时、自动调节滴水流量,改变了常规灌水器被动出水的工作方式,真正实现作物、土壤的按需主动连续取水,明显地提高了节水灌溉设备的精准灌溉水平,既保证了作物正常生长的适宜土壤水分,又促进了灌溉系统应用模式向智能化、自动化方向的进一步发展。  相似文献   

16.
水肥耦合对加气滴灌加工番茄产量及品质的影响   总被引:4,自引:6,他引:4  
为探求北疆地区水肥耦合对加气灌溉加工番茄产量、品质及水肥利用效率的影响,该研究设置2个灌溉水平分别为4 950和4 050 m3/hm2、4个施氮梯度分别为280、250、220和190 kg/hm2以及2个加气水平分别为掺气比例15%和0%进行完全组合设计。结果表明,加气灌溉使加工番茄产量显著提高2.32%~10.02%,灌溉水分利用效率与氮肥偏生产力分别提高6.12%和6.19%。加气提高了加工番茄可溶性糖、有机酸、维生素C、可溶性固形物含量,基于主成分分析对各品质指标进行综合评价,得出最优处理为灌水4 050 m3/hm2,施氮250 kg/hm2。研究可为提高新疆加工番茄水肥利用率提供理论依据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号