首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Seasonal dynamics of net photosynthesis (Anet) in 2-year-old seedlings of Pinus brutia Ten., Pinus pinea L. and Pinus pinaster Ait. were investigated. Seedlings were grown in the field in two light regimes: sun (ambient light) and shade (25% of photosynthetically active radiation (PAR)). Repeated measures analyses over a 12-month period showed that Anet varied significantly among species and from season to season. Maximum Anet in sun-acclimated seedlings was low in winter (yet remained positive) and peaked during summer. Maximum Anet was observed in June in P. pinea (12 micromol m-2 s-1), July in P. pinaster (23 micromol m-2 s-1) and August in P. brutia (20 micromol m-2 s-1). Photosynthetic light response curves saturated at a PAR of 200-300 micromol m-2 s-1 in winter and in shade-acclimated seedlings in summer. Net photosynthesis in sun-acclimated seedlings did not saturate at PAR up to 1900 micromol m-2 s-1 in P. brutia and P. pinaster. Minimum air temperature of the preceding night was apparently one of the main factors controlling Anet during the day. In shade-acclimated seedlings, photosynthetic rates were reduced by 50% in P. brutia and P. pinaster and by 20% in P. pinea compared with those in sun-acclimated seedlings. Stomatal conductance was generally lower in shaded seedlings than in seedlings grown in the sun, except on days with a high vapor pressure deficit. Total chlorophyll concentration per unit leaf area, specific leaf area (SLA) and height significantly increased in P. pinea in response to shade, but not in P. pinaster or P. brutia. In response to shade, P. brutia showed a significant increase in total chlorophyll concentration but not SLA. Photosynthetic and growth data indicate that P. pinaster and P. brutia are more light-demanding than P. pinea.  相似文献   

2.
In Mediterranean climates, seedlings are frequently shaded in the nursery to avoid heat damage and save water. However, the impact of this shading on the seedling quality and transplanting performance of Mediterranean species is not well known. We studied the effect of nursery shading on pre-planting features and post-planting performance of two Mediterranean tree species: the shade-intolerant pioneer Pinus halepensis and the shade-tolerant late-successional Quercus ilex. We grew one-year-old seedlings of both species under 100, 40 and 5% full sunlight. Shade had a low impact on the morphology and physiology of Q. ilex seedlings. In pines, only the deep shade treatment produced low quality seedlings with poor root development. In both species, transference to high light at planting in autumn did not impose any additional stress than that caused by frosts, but initial root growth was impaired in the two shaded treatments in pine. Post-planting growth and survival of oak seedlings showed no difference between treatments. Pine seedlings grown in deep shade showed higher mortality and lower growth after planting than those grown in full sun and intermediate light treatments, while intermediate light only reduced growth. For the nursery culture of Q. ilex seedlings, we advise using low light levels during summer to save water without impairing field performance. In P. halepensis, seedlings should be cultured under full sunlight conditions to maximize post-planting growth, but they can be cultured under intermediate light without impairing survival.  相似文献   

3.
We compared seedling water relations of three Mediterranean Quercus species (the evergreen shrub Q. coccifera L., the evergreen tree Q. ilex L. subsp. ballota (Desf.) Samp. and the deciduous or marcescent tree Q. faginea L.). We also explored seedling potential for acclimation to contrasting growing conditions. In March, 1-year-old seedlings of the three species were planted in pots and grown outdoors in a factorial combination of two irrigation regimes (daily (HW) and alternate day watering (LW)) and two irradiances (43 and 100% of full sunlight). At the end of July, predawn and midday water potentials (Psi(pd), Psi(md)) were measured, and pressure-volume (P-V) curves were obtained for mature current-year shoots. Species exhibited similar Psi(pd) and Psi(md) values, but differed in leaf morphology and water relations. The evergreens possessed larger leaf mass per area (LMA) and were able to maintain positive turgor pressure at lower water potentials than the deciduous species because of their lower osmotic potential at full turgor. However, the three species had similar relative water contents at the turgor loss point because Q. faginea compensated for its higher osmotic potential with greater cell wall elasticity. Values of Psi(pd) had a mean of -1.12 MPa in LW and -0.63 MPa in HW, and Psi(md) had a mean of -1.13 MPa in full sunlight and -1.64 MPa in shade, where seedlings exhibited lower LMA. However, the P-V curve traits were unaffected by the treatments. Our results suggest that Q. faginea seedlings combine the water-use characteristics of mesic deciduous oak and the drought-tolerance of xeric evergreen oak. The ability of Q. coccifera to colonize drier sites than Q. ilex was not a result of higher drought tolerance, but rather may be associated with other dehydration postponement mechanisms including drought-induced leaf shedding. The lack of treatment effects may reflect a relatively low contrast between treatment regimes, or a low inherent responsiveness of these traits in the study species, or both.  相似文献   

4.
  • ? The combined effect of water stress and light on seedlings of forest species is a key factor to determine the best silvicultural and afforestation practices in the Mediterranean area.
  • ? The aims of this work was (1) to determine the optimal light level for the early development of cork oak seedlings under mild water stress and (2) to test if the combined effect of water stress and light followed the trade-off, the facilitation or the orthogonal hypothesis.
  • ? Shade reduced instantaneous photosynthetic rates and water use efficiency in cork oak. However, seedlings grown under moderate shade (15% of full sunlight) were capable to accumulate similar amount of biomass than those grown under more illuminated environments by increasing their specific leaf area. Absolute differences in net photosynthesis between light treatments were higher in well watered than in water stressed seedlings. However, the impact of both factors on overall growth was orthogonal.
  • ? We concluded that cork oak development is impaired under deep shade (5% of full sunlight) but it can be optimal under moderate shade (15% of full sunlight) even under moderate water stress. Implications of these patterns on regeneration, cultivation and afforestation of cork oak are discussed.
  •   相似文献   

    5.
    Chlorophyll fluorescence, chlorophyll content, growth, and mortality of white spruce (Picea glauca [Moench] Voss) seedlings were monitored for 2 years after planting under three scenarios of artificial shade: no-shade (control), shade in summer only, and shade all year. The shade frames allowed 50–60% light transmission, with limited effects on air temperature, relative humidity, soil temperature, and soil moisture around seedlings. Based on fluorescence yield and chlorophyll content measurements, summer-only shade reduced photoinhibition and photooxidation, especially in summer and fall; extending to all year shading did not further reduce either photoinhibition or photooxidation. Shade tended to reduce seedling diameter and mortality, but after 2 years the cumulative effect on mortality was not statistically significant. Study results support the establishment of white spruce seedlings under partial forest canopy, especially on sites with harsh environmental conditions.  相似文献   

    6.
    The relative effects of irradiance and soil water on alley-cropped herbage are poorly understood. Our objective was to determine effects of irrigation on herbage productivity when tall fescue [Lolium arundinaceum (Schreb.) Darbysh.] was grown in two sites, a meadow and a loblolly pine (Pinus taeda L.) alley (620 trees ha−1), near Booneville, Arkansas. Three tall fescue entries were space planted in the meadow and pine alley with or without irrigation. Herbage mass and nutritive value were determined at 8-week intervals for 2 years. Mean daily PAR was 33.9 (2004) and 37.5 mol m−2 d−1 (2005) in the meadow, while the pine alley received 5.6 mol m−2 d−1 (17% of the meadow) in 2004 and 4.3 mol m−2 d−1 (11% of meadow) in 2005. Effect of tall fescue entry tended to be small relative to site and irrigation. Irrigation compensated for evapotranspiration in the meadow, but not in the pine alley when summer rainfall was about normal (2004) or low (2005). Nevertheless, site (PAR) had a greater effect on herbage specific leaf weight, leaf elongation rate, tillers plant−1, mass tiller−1, and total nonstructural carbohydrate concentration than soil water. Irrigation might have had greater impact on herbage productivity if more water had been applied or if canopy cover had been less extreme. Silvicultural practices should be imposed to improve penetration of solar irradiance to the alley crop.  相似文献   

    7.
    Water stress responses of seedlings of four Mediterranean oak species   总被引:1,自引:0,他引:1  
    Effects of water stress on phenology, growth, stomatal activity and water status were assessed from April to November 1996 in 2-year-old seedlings of Quercus frainetto Ten. (Quercus conferta Kit.), Quercus pubescens Willd., Quercus macrolepis Kotschy (Quercus aegilops auct.) and Quercus ilex L. growing in containers in northern Greece. All four species developed more than 50% of their total leaf area before the beginning of June--an adaptation to arid climates. Well-irrigated plants tended to develop greater individual leaf area, number of leaves per plant, total plant leaf area, height and root:shoot ratios than water-stressed plants, but the difference between treatments was not significant for any parameter in any species. Quercus macrolepis appeared to be the most drought-tolerant of the four species. It maintained the highest number of leaves of the smallest size and increased the proportion of fine roots during drought. In all species, drought caused significant decreases in stomatal conductance and predawn and midday water potentials from mid-July until the end of August, when the lowest soil water content and highest mean daily air temperatures and midday leaf temperatures occurred; however, the responses were species-specific. Among the four species, Quercus macrolepis sustained the highest stomatal conductance despite very low water potentials, thus overcoming drought by means of desiccation tolerance. Quercus ilex decreased stomatal conductance even before severe water stress occurred, thereby avoiding desication during drought. Quercus pubescens had the highest water potential despite a high stomatal conductance, indicating that its leaf water status was independent of stomatal activity. Quercus frainetto was the least drought-resistant of the four species. During drought it developed very low water potentials despite markedly reduced stomatal aperture.  相似文献   

    8.
    9.
    10.
    为探讨遮阴对双色木番茄生长的影响,对双色木番茄幼苗在100%自然太阳光(NS,CK)、46.4%NS、11.8%NS和5.6%NS处理下的生理指标进行研究。结果表明:相对电导率和丙二醛(MDA)、游离脯氨酸(Pro)、可溶性蛋白含量均随光照强度的下降先下降后上升,在46.4%NS时出现最小值,可溶性糖含量则呈不断下降的趋势;超氧化物歧化酶(SOD)、过氧化物酶(POD)活性随光照强度的下降先下降后上升,均在46.4%NS时出现最小值;光饱和点(LSP)、光补偿点(LCP)、暗呼吸效率(Rd)、最大净光合速率(Pmax)、净光合速率(Pn)、蒸腾速率(Tr)和气孔导度(Gs)均随光照强度的下降呈不断下降趋势;表观量子效率(AQY)和水分利用效率(WUE)则表现为随光照强度的下降,先升高后降低,分别在11.8%NS和46.4%NS时最高;叶绿素含量随光照强度的下降不断上升,叶绿素a/b则逐渐下降,Fv/Fm和Fv/Fo均先上升后下降,在46.4%NS时达到最大值。双色木番茄幼苗主要通过提高Pro、可溶性蛋白和叶绿素含量,加强SOD、POD活性,降低LSP、LCP和Rd,增大AQY和WUE来适应弱光环境。将各项指标进行隶属函数分析,综合评价后得出46.4%NS下的双色木番茄幼苗生长最佳。  相似文献   

    11.
    Maintaining proper seedling nitrogen status is important for outplanting success. Fall fertilization of evergreen conifer seedlings is a well-known technique for averting nitrogen (N) dilution caused by continued seedling growth during hardening. For deciduous seedlings, this technique is much less understood, and regardless of foliage type, the interaction of N status prior to fall fertilization and the rate of fall fertilization have yet to be fully explored. Therefore, we fertilized Quercus variabilis container seedlings with either 25, 100, or 150 mg total N seedling?1, applied exponentially, during a 23-week pre-hardening regime, followed by either 0, 12, or 24 mg total N seedling?1 applied during hardening (i.e., fall fertilization) in equal aliquots for 4 weeks. For seedlings without supplemental N during hardening, N concentration in stems and roots increased significantly despite substantial growth. The absence of N dilution was attributed to N translocation from foliage to these tissues, which was independent of pre-hardening N status. Overall, 32 % of foliar N was translocated and accounted for 75 % of the total N increase in stems and roots. Final stem N status was a function of pre-hardening fertilization, whereas root N concentration was affected by the interaction of pre-hardening and fall fertilization. Roots appear to be the main site of N storage, and root N content was significantly affected by pre-hardening and fall fertilization, but not their interaction. A combination of pre-hardening and fall fertilizer at a rate of 100 and 24 mg total N seedling?1, respectively, yielded seedlings with the largest root systems.  相似文献   

    12.
    13.
    Successful regeneration of coastal montane sites harvested using alternative silvicultural systems may depend on the degree to which tree species can acclimate morphologically and physiologically to a variety of light environments. In a study to determine shade acclimation in montane conifers, one-year-old amabilis fir (Abies amabilis (Dougl.) Forbes) and western hemlock (Tsuga heterophylla (Raf.) Sarg.) seedlings were grown in a nursery under four shade treatments: full sunlight (0% shade), 60% and 30% shade using shade cloth, and 30% shade using lath slats. Shading influenced shoot development, foliar physiology and morphological characteristics of both amabilis fir and western hemlock but in general, the effects were small. Shade levels of 60% were required to induce significant acclimation, and western hemlock appeared to respond more positively than amabilis fir and therefore was considered more shade tolerant than amabilis fir. Light quality had little influence on growth and development, as indicated by a lack of significant differences in physiology or morphology between seedlings grown under shade cloth or lath slats. There were indications that adequate nutrition levels may mitigate the effects of shade on seedling morphology and physiology.  相似文献   

    14.
    We investigated susceptibility to photoinhibition in leaves acclimated to different light regimes in intermediately shade-tolerant Japanese oak (Quercus mongolica Fisch. ex Turcz. var. crispula (Blume) Ohashi) and shade-tolerant Japanese maple (Acer mono Maxim. var. glabrum (Lév. et Van't.) Hara), to elucidate adaptability to gap formation in leaves differing in shade acclimation. We hypothesized that there is a tradeoff between shade adaptation and capacity to mitigate photoinhibition associated with leaf morphology. We simultaneously measured chlorophyll fluorescence and gas exchange in seedlings that had been grown in full sunlight (open), 10% of full sun (moderate shade) and 5% of full sun (deep shade). Shade-tolerant A. mono adapted to deep shade through changes in leaf morphology, lowering its leaf mass per area (LMA), but Q. mongolica showed little change in LMA between moderate and deep shade. Photochemical quenching (qP) did not differ between species in full sunlight and moderate shade; however, in deep shade, qP of Q. mongolica was higher than that of A. mono, suggesting that Q. mongolica grown in deep shade is less susceptible to photoinhibition at gap formation. This is consistent with the finding that chronic photoinhibition 3 days after the transfer to full sunlight, indicated by the decrease in maximum photochemical efficiency, Fv/Fm, at predawn, was less in deep-shade-grown Q. mongolica than in deep shade-grown A. mono. In deep shade, the electron transport rate (ETR) of Q. mongolica was higher than that of A. mono, whereas thermal energy dissipation through photosystem II antennae, indicated by non-photochemical quenching, was lower in Q. mongolica than in A. mono. In deep shade, the greater ETR capacity in Q. mongolica in association with higher LMA and higher leaf N content could contribute to maintaining high qP and mitigating photoinhibition. These results indicate that, by maintaining a high electron transport capacity even in deep shade, the gap-dependent and intermediate-shade-tolerant Q. mongolica trades improved shade adaptation for higher growth potential when a gap event occurs.  相似文献   

    15.
    Protochlorophyllide (Pchlide) and protochlorophyll (Pchl) were found in epicotyls of 14-day-old dark-germinated seedlings and in 100-day-old dark-grown stems of red oak (Quercus rubra L.). Fluorescence spectroscopy measurements of epicotyls at 77 K showed that the majority of Pchlide and Pchl is present as a shorter wavelength-emitting monomer with a fluorescence emission maximum at 629-631 nm. A small amount of a monomeric form emitting at 635-636 nm was also present. Minor amounts of Pchlide were aggregated into larger complexes with fluorescence emission maxima at 640, 644-646 and 652-654 nm, as seen in etiolated leaves. Flash illumination transformed the 652-654-nm-emitting form to chlorophyllide, but not those forms with emission maxima at 629-631, 635-636 and 644-646 nm. These shorter wavelength-emitting forms were transformed to chlorophyllide by continuous illumination, but the process took several hours. Epicotyls and young stems were light sensitive, with exposure to full daylight causing strong pigment bleaching and tissue destruction. Complete greening took place only at low irradiances. Light sensitivity was greater at 4 degrees C than at room temperature. We conclude that the monomeric arrangement of the pigments accounted for the light and temperature sensitivity of the greening process in epicotyls and stems.  相似文献   

    16.
    Andersen  Lillie 《New Forests》2004,28(1):37-47
    Quercus petraea was undercut according to the following procedure: undercutting first year once (July, September, November), twice (July and November), or undercutting in two consecutive years (September of year 1 and either July, September or November of year 2). Undercutting decreased height and dry weight of the seedlings compared to uncut control seedlings. Undercutting in September and July in two consecutive years increased the number of first-order lateral roots. Field performance was evaluated by transplanting under two conditions, (a) competition with a mixture of grasses with no irrigation or fertilisation and (b) standard conditions with fertilisation and irrigation first year and no competition with grass. After two growing seasons under competitive conditions, seedlings undercut in September of year 1 had a significantly higher dry weight compared with that of uncut control seedlings. Numbers of lateral roots and field performance under competitive conditions was related when numbers of lateral roots were small, but not when high. Competitive conditions had limited effect on root growth after one growing season, whereas shoot growth was reduced. After two growing seasons both shoot and root growth were reduced in all treatments compared with standard conditions.  相似文献   

    17.
    Drought stress is the main cause of mortality of holm oak (Quercus ilex L.) seedlings in forest plantations. We therefore assessed if drought hardening, applied in the nursery at the end of the growing season, enhanced the drought tolerance and transplanting performance of holm oak seedlings. Seedlings were subjected to three drought hardening intensities (low, moderate and severe) for 2.5 and 3.5 months, and compared with control seedlings. At the end of the hardening period, water relations, gas exchange and morphological attributes were determined, and survival and growth under mesic and xeric transplanting conditions were assessed. Drought hardening increased drought tolerance primarily by affecting physiological traits, with no effect on shoot/root ratio or specific leaf mass. Drought hardening reduced osmotic potential at saturation and at the turgor loss point, stomatal conductance, residual transpiration (RT) and new root growth capacity (RGC), but enhanced cell membrane stability. Among treated seedlings, the largest response occurred in seedlings subjected to moderate hardening. Severe hardening reduced shoot soluble sugar concentration and increased shoot starch concentration. Increasing the duration of hardening had no effect on water relations but reduced shoot mineral and starch concentrations. Variation in cell membrane stability, RT and RGC were negatively related to osmotic adjustment. Despite differences in drought tolerance, no differences in mortality and relative growth rate were observed between hardening treatments when the seedlings were transplanted under either mesic or xeric conditions.  相似文献   

    18.
    Kooistra  C.M.  Bakker  J.D. 《New Forests》2002,23(3):225-237
    In temperate climates, conifer seedlings are often held in frozen storage (–2 °C) for extended periods and then placed in cool storage (+2 °C) so the root plug can thaw prior to outplanting. Two plug temperature treatments were used to test the hypothesis that thawing seedlings prior to outplanting may be unnecessary: seedlings were planted with frozen root plugs (frozen seedlings) and with thawed root plugs (thawed seedlings). The experiment was conducted under two watering regimes (irregular, regular) and with three conifer species (lodgepole pine [Pinus contorta var. latifolia], western larch [Larix occidentalis], interior spruce [Picea glauca × engelmannii]) to increase the generality of the results. The warming of root plugs after planting was examined. Thawed root plugs warmed to soil temperature rapidly (about 30 min) while frozen root plugs took longer (to 2 h) because ice in the plug had to melt before temperatures rose. Larger root plugs took longer to warm to soil temperature. Several aspects of seedling field performance were also assessed. For all species, variable fluorescence did not differ between frozen and thawed seedlings. Bud break was faster for thawed than frozen western larch seedlings but did not differ between frozen and thawed seedlings for either lodgepole pine or interior spruce. Height increment differed significantly between frozen and thawed seedlings that received the irregular watering regime; this effect was likely a response to the positioning of irrigation nozzles, which resulted in sporadic and non-uniform irrigation patterns. Height increment did not differ between frozen and thawed seedlings that received the regular watering regime. Root collar diameter and volume increments were not significantly affected by plug temperature treatment under either watering regime. Planting seedlings with frozen root plugs did not hinder field performance over one growing season under these watering regimes.  相似文献   

    19.
    Pedunculate oak (Quercus robur L.) seedlings were grown for 3 or 4 months (second- and third-flush stages) in greenhouses at two atmospheric CO2 concentrations ([CO2]) (350 or 700 micromol mol(-1)) and two nitrogen fertilization regimes (6.1 or 0.61 mmol N l(-1) nutrient solution). Combined effects of [CO2] and nitrogen fertilization on partitioning of newly acquired carbon (C) and nitrogen (N) were assessed by dual 13C and 15N short-term labeling of seedlings at the second- or third-flush stage of development. In the low-N treatment, root growth, but not shoot growth, was stimulated by elevated [CO2], with the result that shoot/root biomass ratio declined. At the second-flush stage, overall seedling biomass growth was increased (13%) by elevated [CO2] regardless of N fertilization. At the third-flush stage, elevated [CO2] increased growth sharply (139%) in the high-N but not the low-N treatment. Root/shoot biomass ratios were threefold higher in the low-N treatment relative to the high-N treatment. At the second-flush stage, leaf area was 45-51% greater in the high-N treatment than in the low-N treatment. At the-third flush stage, there was a positive interaction between the effects of N fertilization and [CO2] on leaf area, which was 93% greater in the high-N/elevated [CO2] treatment than in the low-N/ambient [CO2] treatment. Specific leaf area was reduced (17-25%) by elevated [CO2], whereas C and N concentrations of seedlings increased significantly in response to either elevated [CO2] or high-N fertilization. At the third-flush stage, acquisition of C and N per unit dry mass of leaf and fine root was 51 and 77% greater, respectively, in the elevated [CO2]/high-N fertilization treatment than in the ambient [CO2]/low-N fertilization treatment. However, there was dilution of leaf N in response to elevated [CO2]. Partitioning of newly acquired C and N between shoot and roots was altered by N fertilization but not [CO2]. More newly acquired C and N were partitioned to roots in the low-N treatment than in the high-N treatment.  相似文献   

    20.
    淹水胁迫对麻栎苗木生长和生理的影响   总被引:2,自引:0,他引:2  
    采用室内盆栽控制试验,研究了麻栎苗木在不同淹水处理下的生长和生理变化。结果表明,经过1个月的淹水试验,麻栎苗木未出现死亡现象,说明麻栎具有较强的耐水能力;但是不同处理之间的苗木生长和生理性状存在一定差异,主要是淹水处理后的麻栎苗木新梢生长均明显小于对照处理。经淹水处理后苗木叶片含水量、叶绿素含量以及光合速率均明显低于对照处理,但是叶片相对电导率呈相反趋势。淹水后麻栎苗木叶片中的N、P、K含量均比对照低。淹水处理会导致叶片Na含量增加,且随着淹水强度的增强而增加。  相似文献   

    设为首页 | 免责声明 | 关于勤云 | 加入收藏

    Copyright©北京勤云科技发展有限公司  京ICP备09084417号