首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
施氮量对小麦氮代谢相关酶活性和子粒蛋白质品质的影响   总被引:5,自引:1,他引:5  
在2003~2004年和2004~2005年小麦生长季,以强筋小麦济麦20为材料,分别设置N 0、96、168、240、276 kg/hm2 5个施氮量处理和0、96、168、240 kg/hm2 4个施氮量处理,研究不同施氮量对小麦氮代谢相关酶活性和子粒蛋白质品质的影响。两年度的试验结果均表明,在一定施氮量范围内,随施氮量增加,公顷穗数、穗粒数、蛋白质含量、子粒产量和蛋白质产量均显著升高;继续增加施氮量子粒产量显著降低,公顷穗数、穗粒数、蛋白质产量降低或无显著差异。其中2004~2005年生长季,在0~168 kg/hm2施氮量范围内,随施氮量增加,旗叶谷氨酰胺合成酶(GS)活性、开花21d后的旗叶內肽酶(EP)活性、旗叶游离氨基酸含量、子粒醇溶蛋白含量、高分子量谷蛋白亚基(HMW-GS)和低分子量谷蛋白亚基(LMW-GS)含量、HMW-GS / LMW-GS比值、子粒蛋白质含量、公顷穗数和穗粒数、子粒产量均显著升高,面团形成时间和稳定时间延长;继续增加施氮量至240 kg/hm2,GS活性无显著变化,但开花21 d后的EP活性、-醇溶蛋白、-醇溶蛋白、HMW-GS、LMW-GS和子粒蛋白质含量仍显著提高,面团稳定时间继续延长,子粒产量显著降低。说明施氮过多对小麦氮素同化和产量无益;提高开花后旗叶GS活性和灌浆后期旗叶EP活性,有利于HMW-GS和LMW-GS的积累及HMW-GS/ LMW-GS比值的提高。适量施氮不仅提高了子粒灌浆所需氮源的供给能力,而且显著增加公顷穗数和穗粒数,扩大了单位面积库容,增加了单位面积上的氮素和光合产物在子粒中的贮存,这是适量施氮实现子粒品质和产量同步提高的生理原因。本试验条件下高产优质高效的施氮量为168~240 kg/hm2。  相似文献   

2.
Heat stress is a major environmental stress limiting wheat productivity in most cereal growing areas of the world. The objective of this study was to evaluate heat stress tolerance in durum wheat (Triticum turgidum var. durum) genotypes. For this purpose, 45 genotypes were grown during two growing seasons (2012–2013 and 2013–2014) under non-stress (normal sowing) and heat-stress (late sowing) conditions. The heat tolerance indices were calculated based on grain yield under normal sowing (Yp) and late sowing (Ys) conditions. Results of combined analysis of variance showed the significant influences of heat stress on grain yield as well as significant differences among genotypes for grain yield and the indices. Results of correlation coefficients and multivariate analyses revealed that the stress tolerance index (STI), geometric mean productivity and mean productivity (MP) indices were the most profitable criteria for selection of heat tolerant and high yielding genotypes. Using STI, GMP and MP, the genotypes G29, G41 and G10 were found to be the best genotypes with relatively high yield and suitable for both normal and heat stressed conditions. Based on biplot analysis using Yp, Ys and the indices, it was possible to identify superior genotypes across the conditions.  相似文献   

3.
The response of wheat to elevated carbon dioxide concentration (e[CO2]) is likely to be dependent on nitrogen supply. To investigate the underlying mechanism of growth response to e[CO2], two wheat cultivars were grown under different carbon dioxide concentration [CO2] in a chamber experimental facility. The changes in leaf photosynthesis, C and N concentration, and biomass were investigated under different [CO2] and N supply. The result showed an increase in photosynthesis under e[CO2] at all N level except the one with the lowest N supply. Furthermore, a significant decrease in gs and Tr for both the cultivars was also observed under e[CO2] at all N levels. A considerable increase in WUEi was observed for both the cultivars under e[CO2] at all N levels except for the lowest concentration one. Therefore, the study shows that a stimulation of plant growth under e[CO2] to be marginal at higher N supply.  相似文献   

4.

In order to study the effects of seed nitrogen content and biofertilizer priming on germination indices of wheat seeds under salinity stress, a factorial experiment based on a completely randomized design with four replications was conducted in 2009. Experimental factors consisted of: (1) the application of different nitrogen fertilizer rates (0, 55, 110 and 165 kg ha?1 N) on parent plants; (2) priming of achieved seeds by biofertilizers (Nitragin, Biophosphorus and distilled water); and (3) different levels of salinity produced by NaCl (0, ?0.4, ?0.8 and ?1.2 MPa). Germination percentage, germination rate, mean germination time, germination index, radicle and plumule length, radicle and plumule dry weight and radicle number per seedling were measured. Nitrogen application increased seed nitrogen content in parent plants. All germination indices decreased with increasing in salinity levels. Biofertilizer priming, especially Nitragin, had a positive effect on germination percentage, radicle number and radicle and plumule length in most salinity levels. The highest values for germination factors were related to achieved seeds from parent plants that were treated with 110 kg ha?1 N. Overall, application of middle levels of N fertilizer (55 and 110 kg ha?1 N) on parent plants combined with seed priming with Nitragin biofertilizer improved the germination indices of wheat under salinity stress.  相似文献   

5.
Thirty-four durum wheat cultivars representing the Tunisian durum (Triticum durum Desf.) wheat collection and seven wild species of wheat relatives (Triticum turgidum L., T. dicoccon Schrank., T. dicoccoides (Körn) Schweinf., T. araraticum Jakubz., T. monococcum L., Aegilops geniculata Roth, and Aegilops ventricosa Tausch) were analysed with amplified fragment length polymorphism (AFLP) and microsatellite (SSR) markers. Both marker systems used were able to differentiate durum wheat cultivars from the wild relatives and to specifically fingerprint each of the genotypes studied. However, the two marker systems differed in the amount of detected polymorphisms. The 15 SSR markers were highly polymorphic across all the genotypes. The total number of amplified fragments was 156 and the number of alleles per locus ranged from 3 to 24 with an average of 10.4. Two SSR markers alone, Xwms47 and Xwms268, were sufficient to distinguish all 34 durum wheat genotypes. The five AFLP primer pair combinations analysed yielded a total of 293 bands, of which 31% were polymorphic. The highest polymorphic information content (PIC) value was observed for SSRs (0.68) while the highest marker index (MI) value was for AFLPs (7.16) reflecting the hypervariability of the first and the distinctive nature of the second system. For durum wheat cultivars, the genetic similarity values varied between 31.3 and 81% for AFLPs (with an average of 54.2%), and between 3.6 and 72.7% for SSRs (with an average of 19.9%). The rank correlation between the two marker systems was moderate, with r = 0.57, but highly significant. Based on SSR markers, highest genetic similarity (GS) values were observed within the modern cultivars (37.3%), while the old cultivars showed a low level of GS (19.9%). Moreover, the modern cultivars showed low PIC and MI values. UPGMA Cluster analysis based on the combined AFLP and SSR data separated the wild wheat species from the durum wheat cultivars. The modern cultivars were separated from the old cultivars and form a distinct group.  相似文献   

6.
Abstract

Effects of silicon (Si) priming at 0, 0.5, 1.0, and 1.5?mM on germination, ion balance, and root structure of two durum wheat cultivars at 0, 100, and 200?mM sodium chloride (NaCl) was conducted in a laboratory. An aliquot of 200?mM NaCl with 1.5?mM Si improved Behrang cultivar germination from 54 to 88%, but in Yavaros only from 49 to 85%. In Behrang, the control root length at 200?mM NaCl increased from 5.07 to 7.11?mm when treated with 1.5?mM Si, but Yavaros only increased from 3.18 to 4.09?mm. Behrang accumulated less sodium (Na+) and more potassium (K+). For mean diameter of central and peripheral metaxylem cells, Behrang benefitted more from Si amelioration than Yavaros. Salinity affected the diameter of central and peripheral metaxylem cells to a greater degree compared to vessel number. Si soil application (1.0 and 1.5?mM Si) may help to establish durum wheat seeds grown under saline conditions.  相似文献   

7.
The genetic relationships were assessed for the first time in Turkish durum wheat cultivars using AFLP markers. In the analysis, 18 AFLP primer combinations resulted in a total of 189 polymorphic loci. All of the selective primers used are Eco and Mse primers with three nucleotide extentions on the 3 ends. The number of polymorphic markers per primer combination ranged from 4 to 24. The relationships, among nine winter and six spring type durum wheat cultivars, obtained with various algorithms are in accordance with the known pedigree information of the cultivars. Based on `Nei72' genetic distance analysis, the most distant two cultivars are `Berkmen-469' (winter type) and `Diyarbakìr-88' (spring type), and the closest two are `Selçuklu-97' and `Sofu', with the values of 0.793 and 0.115, respectively. The closest two winter type cultivars are `Akbasak-073-44' and `Kunduru-414-44' (0.128).  相似文献   

8.
Durum wheat (Triticum turgidum L. var durum) is a species that accumulates cadmium (Cd). Durum wheat cultivars differ in their absorption ability of Cd; therefore, identifying and selecting genetic material with low Cd accumulation reduces human exposure to this toxic element. In the present study, Cd concentration was evaluated in three Chilean durum wheat cultivars (Llareta-INIA, Corcolén-INIA, and Lleuque-INIA) grown in four Chilean locations with varying concentrations of Cd in soils. The objective of this study was to evaluate the response of these durum wheat cultivars to different doses of cadmium in terms of grain yield; Cd concentration in different plant tissues (grain, straw, roots); soil Cd concentration was also evaluated. Results show that grain yield was not affected by soil Cd; differences in Cd concentration in plant tissues were generally associated with location, cultivar, and soil Cd concentration. Grain Cd concentration in all three cultivars was classified in the low accumulation category for this metal; ‘Lleuque-INIA’ noted as having a very low accumulation.  相似文献   

9.
在田间试验条件下,以强筋品种济麦20和弱筋品种山农1391为材料,研究了不同施磷水平对2类型品种小麦旗叶氮代谢关键酶活性和子粒蛋白质积累的效应。结果表明,在P2O5 0~135 kg /hm2范围内,施磷明显提高济麦20灌浆前期旗叶硝酸还原酶(NR)和谷氨酰胺合成酶(GS)活性;但却降低山农1391旗叶NR、GS活性。强筋品种济麦20在灌浆中、后期旗叶内肽酶(EP)、羧肽酶(CP)活性和蛋白质含量因施磷而提高;而弱筋品种山农1391的EP、CP活性和子粒蛋白质含量则降低。施磷使济麦20子粒清蛋白、醇溶蛋白和谷蛋白的含量提高,球蛋白含量有所降低;但弱筋品种山农1391子粒球蛋白、醇溶蛋白和谷蛋白的含量因施磷而降低,清蛋白含量未见显著变化。说明小麦施磷应考虑不同品质类型品种氮代谢及子粒蛋白质含量对施磷的反应。  相似文献   

10.
氮及相关的酶活性对小麦根际施肥的反应   总被引:1,自引:0,他引:1  
In the present experiment,wheat seedlings(Trticucum aestivum L.)were grown on a purple soil with various fertilizer treatments in order to investigate the responses of nitrogen and related enzyme activities in the rhizosphere,The results revealed the increments of both organic matter and total N in the soil with the proximity to the growing roots,especially in treatment of supplying pig manure in combination with chemical fertilizer,suggesting that they could ome from root and microorganism exudation which could be intensified by inorganic-organic fertiliztion,being of benefit to improving the physical and bilogical envi-ronment in the rhizosphere of wheat.Much more inorganic N was observed in the fertilized soils surrounding wheat roots than in the CK treatment ,indicating ,the improvement of crop N supply in the rhizosphere of wheat by fertilization. The activities of invertase,urease and protease in the root zone were greatly enhanced as compared to those in the other parts of soil except that the urease activities were similar in the rhizospher and nonrhi-zosphere of the CK and pig manure treatments,indicating that invertase and protese could be produced by growing roots and rhizosphere microorganisms,in contrast to urease which could be stimulated by urea,Also,significant increment of chemical fertilizer combined with pig manure,suggested that fertilization not only accelerated the renewal of organic matter bu also enhanced bioavailability of organic N in that soil zone .This could be the reason why the total amount of inorganic N available for plants was increased more obviously in the rhizosphere of wheat of the fertilizaton treatments than in taht of the CK treatment.  相似文献   

11.
ABSTRACT

The effectiveness of plant–soil synergies is largely modulated by interaction between cultivar and rhizosphere microbiome. We evaluated the agronomic performance of six durum wheat cultivars, in two semi-arid locations in Tunisia that differed in their irrigation water salinity: S1 (6 dS m?1) and S2 (12 dS m?1). The two-consecutive-year field experiments assessed the effects of the microbial biomass carbon (MBC), leaf phosphorus (LP) and rhizosphere phosphorus (P) on the grain yield (GY) and yield components at tillering and flowering stages. Overall, in saline conditions, cultivars differed in above- and below-ground traits, particularly, with tolerant cultivars presenting relatively greater MBC, P and LP. Furthermore, in S2, GY positively correlated with MBC (r = 0.69), LP (r = 0.80) and P (r = 0.79). Additionally, in S2, MBC positively correlated with P (r = 0.87) and LP (r = 0.85) at flowering. This result was further confirmed by multiple linear regression (step-wise) analysis, which revealed that MBC and LP were the determinant components of GY variability under S2. The present study demonstrates that LP and soil P are mandatory for improving the management of durum wheat. Salinity tolerance was largely affected by the cultivars’ rhizosphere MBC.  相似文献   

12.
为研究长期施用不同有机物料氮替代部分无机氮对黑垆土氮素转化及酶活性的影响,在陇东旱塬上进行了连续12年的大田定位试验,研究了用生物有机肥、农家肥、小麦秸秆替代部分无机氮肥后0~10和10~20 cm土壤不同形态氮素和相关酶活性的变化特征。结果表明:与长期单施化肥相比,长期用3种有机物料氮替代部分无机氮均可提高土壤不同形态氮素含量和相关酶活性,其中施用生物有机肥的处理不同形态氮素含量和酶活性均最高;除硝酸还原酶外,铵态氮、硝态氮和微生物生物量氮含量以及脲酶、荧光素二乙酸酯水解酶活性均为上层土壤高于下层土壤。因此,生物有机肥是陇东旱塬黑垆土农业区替代部分无机氮的首选有机物料。  相似文献   

13.
控释肥对夏玉米碳、氮代谢的影响   总被引:8,自引:1,他引:8  
以夏玉米杂交种豫单998为材料,研究3种控释肥对夏玉米碳、氮代谢的影响。结果表明,在等养分量条件下,与常规施肥技术相比,3种控释肥均能有效协调吐丝期至成熟期植株体碳、氮代谢,叶片可溶性蛋白的含量增加2.20%1~0.39%,硝酸还原酶(NR)活性提高3.22%3~2.10%,植株叶片和茎鞘可溶性总糖分别增加6.78%4~6.71%和1.26%3~5.99%,全氮含量分别增加0.50%1~0.69%和1.09%4~1.92%;而可溶性总糖和氮素转运率均小于常规施肥。说明控释肥能较好满足夏玉米在吐丝期至成熟期生长需要,协调其碳、氮代谢,其中以硫加树脂包膜控释肥效果较好。  相似文献   

14.
不同氮效率小麦品种的光合碳同化特性   总被引:2,自引:0,他引:2  
不同氮效率小麦品种的子粒产量和氮效率在缺氮条件(-N)下均以氮高效品种(H)最高,中效品种(M)次之,低效品种(L)最低。在-N下,不同氮效率品种相比,旗叶各测定期的光合速率(Pn)、叶肉导度(Gm)、碳酸酐酶(CA)活性、可溶性蛋白含量(SP)和RuBPcase活性均以H最高,M次之,L最低;叶绿素含量(Chl)、气孔导度(Gs)、Ca2+-ATPase活性和Mg2+-ATPase活性在不同氮效率品种之间的表现规律较差。结果还表明,光合作用底物CO2在液相中较强的传导能力和较强的暗反应活性,是氮胁迫条件下氮高效小麦品种具有较强光合碳同化能力和物质生产能力的重要生理基础。-N下的旗叶叶源量(LSC)、光合速率高值持续期(PAD)、叶绿素含量缓降期(RSP)、叶面积(LA)和平均光合速率值以H最大,M次之,L最低;丰氮条件(+N)下,子粒产量、氮效率和旗叶光合生理参数大体以M较好,H次之,L较差,与-N下不同氮效率品种上述性状或参数的表现规律有所不同。  相似文献   

15.
不同氮利用效率小麦氮代谢相关基因的表达特征   总被引:1,自引:0,他引:1       下载免费PDF全文
深入理解小麦氮利用效率基因型差异的分子生物学机理对于氮高效小麦的分子育种具有重要指导意义。本试验选用两个不同氮利用效率的小麦基因型,设置不同氮水平,分别在小麦的5个生育期收获采样,研究不同氮利用效率小麦基因型中5个氮代谢相关基因的表达特征。研究结果表明,在氮利用方面,无论是在低氮还是高氮条件下,氮利用高效小麦XY107的籽粒氮利用率均高于氮利用低效小麦LM1;在基因表达方面,在低氮条件下,小麦地上部谷氨酰胺合成酶基因(TaGS1c)、丙氨酸转氨酶基因(TaAlaAT)和丙酮酸磷酸双激酶基因(TaPPDK)的表达水平在抽穗期以后均显著增强,且在氮高效小麦XY107中的表达水平显著高于在氮低效小麦LM1中的表达水平;而在高氮条件下,只有基因TaPPDK的表达水平在抽穗期以后显著增强,且在氮高效小麦XY107中的表达水平显著高于在氮低效小麦LM1中的表达水平。本研究发现,TaGS1c、TaAlaAT和TaPPDK 3个基因在决定小麦氮利用效率的基因型差异方面发挥着重要作用。  相似文献   

16.
潮土小麦碳氮含量对长期不同施肥模式的响应   总被引:3,自引:0,他引:3  
【目的】以潮土21年长期定位试验为基础,分析不同施肥模式下冬小麦不同生育期的地上部生物量、碳氮含量、碳氮比及碳氮积累量,探讨冬小麦碳氮含量对不同施肥模式的响应规律。【方法】试验包括不施肥(CK)、单施氮肥(N)、施氮磷肥(NP)、施氮钾肥(NK)、氮磷钾配施(NPK)、氮磷钾肥配施有机肥(NPKM)、施氮磷钾肥及玉米秸秆还田(NPKS)7个处理。在2011 2012年冬小麦生长季,分别采集越冬、拔节、灌浆、成熟四个生育时期地上部植株样品,利用Euro Vector EA3000型元素分析仪对小麦植株样品的全碳、全氮含量进行测定。【结果】NPK、NPKM和NPKS处理均能显著提高各生育期小麦地上部干重,其中NPKM处理小麦地上部干重在越冬、拔节、灌浆、成熟期分别比CK提高了111%、194%、238%、206%,除越冬期外,等量氮肥条件下,NPK、NPKM和NPKS 3个处理间小麦同一生育期地上部干重无显著差异,说明与氮磷钾配施相比,有机无机配施与秸秆还田这两种措施并不能显著提高小麦地上部生物量;小麦地上部碳含量受不同施肥影响很小,不同生育期小麦地上部碳含量平均值为410 g/kg;小麦成熟期地上部氮含量以N和NK处理最高,分别达到19.4和18.1 g/kg,其中N处理小麦地上部氮含量分别比NPKM和NPKS处理高52%和66%。随着生育期的推移,各处理小麦氮含量逐渐降低,总体表现为越冬期拔节期灌浆期≥成熟期;在整个生育期中各施肥处理碳含量基本保持不变而氮含量呈逐渐下降趋势,这就使得各施肥处理地上部分C/N比随生育期的推移呈逐渐增加趋势;不同施肥下小麦碳积累量差异性和地上部干物质重差异性规律一致,而不同施肥下地上部氮积累量差异性不同于干物质重的差异性,以NP处理最高,达545 kg/hm2,分别比NPKM和NPKS处理高61%和68%。【结论】施肥方式不能显著改变小麦碳含量但能影响氮含量,因此小麦生物量大小决定了其碳的积累量,相应地,C/N比大小则由氮含量决定。氮磷钾配施、有机无机配施及秸秆还田处理下,小麦具有较高的生物量从而具有较高的碳氮积累量,这有利于增加农田系统碳、氮积累,提升土壤碳、氮肥力。  相似文献   

17.
以20年塿土小麦玉米轮作体系长期肥料定位试验为平台,探讨不同施肥模式下土壤化学肥力要素、微生物量碳氮及酶活性的响应。试验包括不施肥(CK)、单施氮肥(N)、氮磷(NP)、磷钾(PK)、氮磷钾(NPK)、NPK+秸秆(SNPK)以及不同量有机肥+NPK(M1NPK、M2NPK)等8种施肥模式。结果表明,与CK相比,长期施用NP提高土壤有机碳含量达34.0%、全氮34.0%、全磷58.5%、速效磷608.9%、微生物量碳23.3%、微生物量氮54.0%、蔗糖酶53.9%、脲酶132.6%、碱性磷酸酶29.9%以及脱氢酶40.9%。长期施用NPK与NP效果相似,钾素效果甚微。作物秸秆还田配合氮磷钾化肥与氮磷钾相比没有明显影响土壤有机碳、氮和磷水平,但是显著提高微生物量碳的含量(29.5%)、碱性磷酸酶(23.0%)和脱氢酶(26.9%)的活性。有机肥配合氮磷钾与其它施肥处理相比,显著提升土壤化学肥力要素、微生物量碳氮和酶活性,特别是引起了磷素的大量富集(速效磷含量大于150 mg/kg)。因此,塿土不施有机物情况下,氮磷配合可以提高土壤化学和生物肥力,作物秸秆还田配合氮磷钾化肥的培肥效果优于氮磷钾化肥配合,而合理的有机无机肥配合是塿土提升化学肥力和保证生物健康的最佳施肥模式。  相似文献   

18.
The nitrogen (N) utilization efficiency in hydroponically grown durum wheat was dissected during nitrate depletion at post‐flowering stage. Feeding plants with low nitrate dose after anthesis lowered photosynthetic activity, triggered senescence, but induced N remobilization from vegetative parts. At harvest, tissue N concentration was 50% and 80% less important in leaves and culms, respectively, but similar in grains of N‐deficient plants compared with control ones.  相似文献   

19.
树冠微域环境对茶树碳氮代谢的影响   总被引:1,自引:0,他引:1  
【目的】树冠微域环境对植物的生长有着显著影响,改善植物树冠环境可提升收获对象的品质。因此茶树的生长特别是其碳氮代谢及茶叶品质可能会受到树冠微域环境影响,本文拟通过覆盖遮荫的方式人为改变茶树树冠微域环境,以探明树冠微域环境对茶树碳氮代谢等的影响。【方法】采用田间小区试验,通过在茶树树冠面上分别覆盖光热透过性能不同的三种遮荫材料,人为改变茶树树冠面的微域环境,以不覆盖为对照,比较不同树冠微域环境条件下树冠面空气温度、空气湿度、光照等环境因子的变化及光合速率等的差异,并通过氨基酸组分分析及高效液相色谱等方法对不同季节茶树新梢中碳氮初级代谢产物进行分析,以比较树冠微域环境变化对茶树碳氮代谢及茶鲜叶品质等的影响。【结果】茶树树冠面经三种光热透过性能不同的遮阳网在蓬面直接覆盖后,茶树新梢的生长小环境及碳氮代谢均发生了变化: 1)树冠面的光照强度、空气温度及叶片温度均得到了不同程度的降低,空气相对湿度得到了不同程度的提高。其中覆盖隔热网的降温效果最好,降温幅度最高可达3.1℃;覆盖银色网在早晚有较好的降温效果,降温幅度可达1.6℃,但在12时、14时和16时未有明显的降温效果。而覆盖黑网后早晨的树冠面空气温度与叶片温度却显著高于其他各处理,且随着外界温度的升高,黑网下的两种温度与不覆盖比表现出了波动现象。2)茶树被覆盖后,其净光合速率表现出显著的降低趋势,其中黑网覆盖处理与不覆盖处理均在中午12点左右出现一个低谷,出现了午睡现象,而银色网与隔热网覆盖处理没有表现出午睡现象;覆盖后茶树叶片胞间CO2浓度较不覆盖表现出升高趋势,其中以隔热网处理为最高。3)在高温强光季节对茶树进行适度遮荫覆盖,能在一定程度上促进茶树氮代谢,减弱茶树碳代谢,改善各季茶树新梢的品质。主要表现为茶新梢的叶绿素含量、氮磷钾等养分含量、游离氨基酸总量显著增加;氨基酸组分如茶氨酸、谷氨酸、天冬氨酸等也均表现出显著增加趋势;茶新梢中总碳含量及茶多酚等碳水化合物含量降低;总碳、C/N、茶多酚含量等显著降低,儿茶素组分降低但儿茶素品质指数增加、苦涩味指数降低;三种茶树微域环境中,隔热网覆盖的树冠环境对茶叶品质提升方面效果最明显。4)与不覆盖相比,茶树新梢产量表现出了降低的趋势。【结论】通过遮荫覆盖等方式调控茶树树冠微域环境会影响茶树碳氮代谢等生理活动、提高茶鲜叶品质,但茶鲜叶的产量表现出降低的趋势。  相似文献   

20.
Summary A set of 109 durum wheat accessions, selected from a world collection for their adaptation to dry environments, were further evaluated under moisture-limiting conditions. The entries were subdivided into 9 gene pools based on their country of origin. Data are presented to assess the phenotypic variation and distinctiveness of these pools for some spike and grain features. Analysis of variance revealed highly significant differences among materials of diverse origin for all traits except protein content. Within-country variation was generally wide as regards spike length and 1000-kernel weight. The Ethiopian germplasm presented a remarkable variability and distinctiveness. Entries with interesting values for breeding purposes were detected in most country gene pools. In general, selection of germplasm adapted to harsh environments did not result in a loss of variability for the considered traits, with the possible exception of protein content. Ethiopian entries presented the highest number of significant pairwise character correlations. The two most important traits in a discriminant analysis by country of origin were spike density and 1000-kernel weight. Diversity among gene pools was further assessed by a canonical analysis. The first three canonical variables explained 90% of the total variance. The gene pools of Ethiopia, Greece, Egypt and Jordan appeared clearly distinct from the other germplasm subsets studied. Geographically distinct patterns emerging from this study could be the result of the combined effect of natural and human selection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号