首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Field experiments were conducted to investigate the effects of irrigation regimes and N levels on assimilate remobilization of two barley cultivars (Yousefsix-rowed and Nimrouztwo-rowed) in 2011 and 2012. There were three levels of water regimes (full irrigation (I100), 75% and 50% of I100: I75 and I50, respectively) in 2011. Rain-fed treatment (I0) was included in 2012. Three N levels (0, 60, and 120 kg ha?1) were used. Grain yield and assimilate remobilization decreased by severe water stress (I0), however, the reduction of them were intensified by N fertilizer application. The N remobilization was negatively affected by N fertilization and water stress. The two-rowed showed higher N remobilization (10.7%) and contribution of N remobilized to N content of grain (5.8%) than the six-rowed. The two-rowed cultivar showed significantly higher assimilate remobilization and grain yield than the six-rowed under I50 (26.3% and 6.5%, respectively) and I0 (48.7% and 17.1%, respectively), while the six-rowed had similar or higher performances in terms of these traits under I100 and I75. This study showed that optimizing irrigation and N rates (decrease N level with increasing water stress) and selection of the suitable cultivars (Nimrouztwo-rowed) might increase assimilate remobilization and consequently grain yield under drought stress conditions.  相似文献   

2.
To investigate the effects of irrigation regimes on assimilate remobilization, water use efficiency (WUE), relative water content (RWC), photosynthesis and yield of five wheat cultivars, a field experiment was conducted at Shiraz University during the 2008 and 2009 growing seasons. The experimental design was a randomized complete block and treatments were arranged as split-plot in three replicates. There were four levels of water regime including well-watered [irrigation based on 100% field capacity (FC)], excess watered (125% FC), mild drought (75% FC) and severe drought (50% FC) stress, and four bread wheat cultivars (Shiraz, Bahar, Pishtaz and Sistan) and a durum wheat (Yavaros). In all cultivars, progressed leaf senescence at 30 days after anthesis (DAA), was associated with a reduction in chlorophyll content. The reduction was more pronounced in Shiraz and Yavaros than Pishtaz and Sistan. With increasing temperature and remobilization of assimilate to grain, net photosynthesis and stomatal conductance were decreased significantly at 18 DAA compared with 8 DAA. Sistan and Pishtaz cultivars maintained higher RWC than sensitive cultivars of Shiraz and Yavaros under drought stress. The higher WUE in Pishtaz and Sistan was attributed to the effectiveness of a small amount of water in alleviating severe stress during the sensitive stages of growth. Under mild drought stress, controlled soil drying could enhance remobilization efficiency of assimilates in Pishtaz and Sistan and under severe drought, these cultivars had the highest grain yield compared with the other cultivars. Reduction of assimilates remobilization to the grain and 1000-grain weight, caused lower grain yield in Shiraz under severe drought. Overall, controlled soil drying in Sistan and Pishtaz might result in better mobilization of pre-stored assimilates to the grain in arid areas, where a rapid depletion of water resources is threatening crop production.  相似文献   

3.
水分胁迫度及时期对设施延迟栽培葡萄耗水和产量的影响   总被引:4,自引:3,他引:4  
为研究水分胁迫对葡萄耗水规律和产量的影响,2012—2014年在甘肃省张掖市水务局灌溉试验站连续开展3 a设施栽培葡萄水分胁迫试验,将葡萄划分为萌芽、新梢生长、开花、果实膨大、着色成熟5个生育阶段,各生育期分别设1个土壤含水率下限为55%的田间持水率(field water holding capacity,FC)供水水平(中度水分胁迫)和1个土壤含水率下限为65%FC的供水水平(轻度胁迫),以下限为75%FC为对照,研究3种供水水平下葡萄日耗水强度、产量、水分利用效率等的变化。结果表明:1)3个试验年度设施栽培葡萄在果实膨大期日耗水强度均达到最高值,该阶段为设施葡萄需水临界期。2)水分胁迫对葡萄各生育期耗水强度有明显的影响,萌芽期中度水分胁迫降低该阶段耗水强度,但随后复水后耗水量迅速恢复并出现复水补偿增长效应;开花期时间较短,中度水分胁迫对耗水的影响在随后生育期(果实膨大期)才体现出来;着色成熟期中度水分胁迫也显著降低葡萄在胁迫时段的耗水强度;新梢生长期轻度水分胁迫显著影响葡萄日耗水强度。3)2012年萌芽期中度胁迫能提高葡萄产量、水分利用效率,提高效应随胁迫年度持续逐渐减小,2013和2014年产量与充分供水处理差异不显著。研究可为深入理解设施栽培葡萄的耗水特性和设施葡萄节水高效生产提供依据。  相似文献   

4.
Abstract

This study was conducted to investigate the effects of two irrigation regimes (55 and 85% of soil available water depletion) and two nitrogen levels (0 and 112.5?kg ha?1) on yield as well as water and nitrogen use efficiencies of two millet cultivars (namely, Bastan and Pishahang) planted at two sowing dates during 2015 and 2016. Growth parameters and nitrogen use of the millet cultivars were found affected by drought, nitrogen level, and sowing date as well as their interactions. Nitrogen application was found to improve not only nitrogen uptake, chlorophyll content, and irrigation water use efficiency (IWUE) but also grain and biological yields; more positive effects were, however, observed under the control irrigation regime. Nevertheless, nitrogen uptake (NUpE), utilization (NUtE), and use (NUE) efficiencies decreased as a result of nitrogen application. The increases in grain yield (16 versus 7%) and IWUEg (17 versus 6%) due to nitrogen application were more pronounced in the drought-tolerant Bastan cultivar than in the drought-sensitive Pishahang. However, nitrogen application decreased NUpE in both cultivars. Although water stress increased soil N residual with all the sowing dates, the increase was greater with the early ones. The results of the experiment suggest that the application of higher nitrogen levels is not the proper strategy for compensating for the reduced yield under drought conditions. Rather, late sowing dates, due to the lower drought effects associated, might be the proper alternative for achieving higher yields as well as improved IWUE and NUE in areas plagued with water shortage.  相似文献   

5.
不同水氮水平冬小麦干物质积累特征及产量效应   总被引:13,自引:3,他引:13  
为了阐明灌水施氮对冬小麦干物质积累和产量形成的影响机制,通过2012-2014年在关中平原进行的3个灌水水平、4个施氮水平的田间试验,采用Richards生长曲线对干物质积累过程进行拟合,定量分析了干物质积累过程的动态特征和产量效应。结果表明灌越冬水和拔节水均能显著延长干物质积累的总时间,使最大干物质量由雨养下的10 831提高到灌两水条件下的13 813 kg/hm~2。氮肥显著提高了干物质积累过程的平均速率和最大速率,缩短了达到最大速率的时间,使最大干物质量由8 001(不施氮)提高到14 112 kg/hm~2(施氮210 kg/hm~2)。年份主要通过控制进入快速生长期和达到最大速率的时间来影响干物质量积累过程。灌水的产量效应年际变异较大,在2013和2014年分别通过增加千粒质量和每平方米粒数来影响产量,2013年千粒质量由雨养下的35.8提高到灌两水下的41.7 g,2014年每平方米粒数由雨养下的13 833增加到灌两水条件下的15 749粒/m~2。氮肥主要是通过增加每平方米粒数来提高产量,由不施氮下的10 414增大到施氮210 kg/hm~2条件下的15 911粒/m~2,继续增施氮肥对产量及产量构成要素影响不大。产量和每平方米粒数均与干物质积累过程的平均速率和最大速率呈显著正相关性,表明在该研究地区小麦产量主要受氮肥限制。该研究为干旱半干旱地区合理调控水肥措施,实现作物高产高效提供科学依据。  相似文献   

6.
In this investigation, a model was developed to predict dry matter, seed yield and other crop parameters of rapeseed under deficit irrigation and salinity by using soil water and salt budget and other simple plant physiological relationships. Two-year experimental data were used. In calibration and validation of the presented model, results indicated that the model was able to estimate evapotranspiration, soil water content, leaf area index, evaporation, crop transpiration, dry matter and seed yield of rapeseed properly. The advantage of this model is its simplicity and easy calibration in other areas and climate conditions and it can be used to estimate yield and other crop parameters with common measurable data in the field. Prediction of crop yield by this model can be used for better management of agronomic systems to reduce administrative costs and in different environmental conditions. Finally, under scarce data, arid and semi-arid environments, this model is proposed to be used by irrigation managers and agricultural advisors.  相似文献   

7.
水氮耦合对膜下滴灌马铃薯产量、品质及水分利用的影响   总被引:21,自引:3,他引:21  
该文通过田间试验,研究在西北旱区对膜下滴灌条件下水氮耦合效应及其对马铃薯产量、品质和水分利用效率的影响,从而确定马铃薯适宜的水氮用量,以求达到节水、节肥和高产优质的目的。试验设置2个土壤湿润比水平:40%(P1)和70%(P2),5个施氮水平:90(N1)、135(N2)、180(N3)、225(N4)、270kg/hm2(N5),共10个处理。试验结果表明:相同水分条件下,马铃薯块茎质量、块茎淀粉含量、块茎维生素C含量、耗水量、产量和水分利用效率都随施氮量的增加而呈抛物线趋势变化,块茎蛋白质含量随施氮量的增加呈增加趋势。相同氮肥条件下,湿润比P2处理的马铃薯块茎质量、块茎淀粉含量、块茎维生素C含量、块茎蛋白质含量均高于湿润比P1,湿润比P2处理的耗水量比湿润比处理P1高11%,湿润比P2处理的产量比湿润比处理P1高5%,但是湿润比P1处理的水分利用效率比湿润比P2处理高5.4%。其中,P2N3处理的马铃薯单株块茎质量、块茎维生素C含量表现最好,P1N5处理的马铃薯块茎蛋白质含量最高,P2N2处理的马铃薯块茎淀粉含量和产量表现最优,产量最高为54187kg/hm2,P1N2处理的水分利用效率最高为12.86kg/m3。P2N3处理的马铃薯高产优质,且水分利用效率较高,是西北旱区膜下滴灌条件下马铃薯生产中适宜的水氮组合。  相似文献   

8.
在膜下滴灌条件下,设3个氮素水平和2个水分水平,研究了水氮耦合对棉花干物质积累、氮素吸收及产量、水氮利用效率的影响。结果表明,增加水分或氮素供应,花铃期根冠生物量和氮素吸收增加; 增加灌水量,吐絮期地上部干物质和氮素积累量增加,根干物质积累量在低氮或高氮下增加,中氮降低; 产量和氮素利用效率增加,水分利用效率下降。水分胁迫条件下,增加氮素的供应吐絮期地上部干物质、氮素积累量、产量差异不大,根干物质积累量以N276处理最高,氮素利用率下降,水分利用率增加。水分充分条件下,增加氮素的供应吐絮期根干物质下降,地上部干物质、氮素积累、产量和水氮利用效率以N276处理最高。水分不足或高氮限制了干物质在花铃期至吐絮期的积累、导致棉花提早衰退,引起产量下降。  相似文献   

9.
Water stress is one of the major environmental stresses that affect agricultural production worldwide, especially in arid and semi-arid regions. This research investigated the effect of water deficit, induced by PEG-6000 on wheat genotypes (GA-2002, Chakwal-97, Uqab-2000, Chakwal-50 and Wafaq-2001) grown in modified MS medium solution. Osmotic stress caused a more pronounced inhibition in leaf relative water content and leaf membrane stability more sensitive (index in Wafaq-2001 and Uqab-2000) genotypes compared with the tolerant (Chakwal-50, GA-2002 and Chakwal-97) genotypes. Upon dehydration, an incline in proline, total soluble sugar, total soluble protein, superoxide dismutase, peroxidase, catalase and malondialdehyde activity content were evident in all genotypes, especially at osmotic stress of ?8 bars. The observed data showed that status of biochemical attributes and antioxidant enzymes could provide a meaningful tool for depicting drought tolerance of wheat genotypes. The present study shows that genotypic differences in drought tolerance could be likely attributed to the ability of wheat plants to induce antioxidant defense under drought conditions. In order to develop genotypes with stable, higher yields in dry farming conditions, it is necessary to characterise genetic resources based on drought adaptation, determine suitable genotypes, and then use them in breeding programmes.  相似文献   

10.
Water use efficiency (WUE) is considered as an important component of adaptation to drought stress. This study was conducted to determine the effect of drought stress on gas exchange parameters and selected physiological properties, and also its relations with WUE in summer squash seedlings (Cucurbita pepo L.). Plants were grown in pots under different irrigation levels (D0: 100%, D1: 67% and D2: 33% of the water required to reach the field capacity) in controlled greenhouse. The results show that drought treatments significantly decreased the leaf chlorophyll reading values (LCRV), leaf relative water content (LRWC), stomatal conductance (gs), photosynthetic rate (PN), transpiration rate (Tr), fresh weight (FW) and dry weight (DW) of squash seedlings by 7, 42, 69, 62, 62 63 and 82%, respectively, in D2 treatment compared to D0. However, electrolyte leakage (EL) values increased 72% with severe drought treatments (D2). The highest WUE was obtained by D0 treatment as 0.26 g mm?1. The relationship between PN and WUE is the strongest one among all leaf gas exchange parameters. Together with Tr, the linear relation with WUE was considerably higher compared to other measured parameters.  相似文献   

11.
根系分区不同灌水上下限对茄子生长与产量的影响   总被引:2,自引:1,他引:1  
为了探明根系分区交替灌溉不同灌水上、下限对作物生长状况、气体交换与产量的影响,以指导节水灌溉,通过玻璃土箱试验,选取常规滴灌(conventional drip irrigation,CDI)和根系分区交替滴灌(alternate partial rootzone drip irrigation,APRDI)2种灌水方式,研究其在3种灌水上、下限水平下(CDI处理:植株两侧根区土壤含水率控制在田间持水率(Fc)的85%~100%;APRDI85-50处理:植株一侧根区土壤含水率维持在Fc的85%~100%,另一侧维持在Fc的50%~85%,当任意一侧根区土壤含水率<50%Fc时即进行交替灌水;APRDI70-30处理:根区一侧含水率保持在Fc的70%~100%,另一侧控制在Fc的30%~70%,当其中一侧根区土壤含水率<Fc的30%时即进行交替灌水)作物生长、产量及水分利用效率的差异。结果表明:与CDI相比,2种APRDI处理叶水势降低了19.0%和26.4%,气孔导度和蒸腾速率也显著下降,但APRDI85-50的光合速率增加了14.7%而APRDI70-30与CDI差异不明显,蒸腾效率比CDI分别提高了26.1%(APRDI85-50)和5.1%(APRDI70-30)。APRDI处理刺激了根系生长,显著增加了根干质量和根密度,有效控制了植株营养生长,使APRDI85-50的灌水利用效率比CDI提高了43.4%,产量增加10.8%,而CDI的灌水量比APRDI85-50处理增加了29.4%,说明交替滴灌下的APRDI85-50处理是一种经济可行的灌溉方式。  相似文献   

12.
This experiment was carried out in both pot and field conditions to assess the effects of three native potassium solubilizing bacteria (KSB: including Pantoea agglomerans, Rahnella aquatilis and Pseudomonas orientalis which were isolated from paddy fields) on grain yield (GY), dry matter remobilization (DMR) and translocation (DMT), dry matter translocation efficiency (DME) and contribution of pre-anthesis assimilates (CA) from the leaves and leaves plus stem to the grain in rice (Oryza sativa L). The results indicated that the KSBs significantly increased GY around 20–38% in the pot and 20–52% in the field, especially when half of the recommended potassium fertilizer was applied (K2So4, 44% K2O) as compared to the control. Results also showed that the KSB inoculations and chemical fertilizers had a significant effect on DMR, DMT, DME and CA. In conclusion, these KSBs can be utilized as bio-inoculants for half reduction of K chemical fertilizer consumption in rice production systems.  相似文献   

13.
为了探讨喷灌和液膜覆盖对玉米生产的调控作用,在大田喷灌条件下,分析了3个土壤水分灌溉下限对液膜覆盖玉米生长发育过程的影响。通过对比试验,研究了液体地膜盖对玉米产量结构和水分利用效率(WUE)的影响。结果表明,高、中、低水分处理(灌水量分别为51.8、35.0、31.4 mm)生物累积量分别达到16 699.99、14 216.38和 13 239.14 kg/hm2,液膜覆盖高水分处理有利于干物质的累积,玉米的干物质累积曲线呈“慢-快-慢”趋势。液膜覆盖显著提高了玉米的百粒质量,  相似文献   

14.
针对水分胁迫对水稻生育和产量的综合影响很难直观判断的问题,该文提出了评价水稻综合指标的投影寻踪方法,该方法可以依据样本自身的数据特性寻求最佳投影方向,利用最佳投影方向判断各评价指标对综合评价目标的贡献大小。采用实码加速遗传算法进行PPC建模,简化了投影寻踪技术的实现过程,克服了投影寻踪技术计算复杂、编程实现困难的缺点。评价结果表明,拔节期受旱对生育综合指标影响较大,分蘖期受旱由于时间较长,生育综合指标也较差。水稻生育期连旱对生理指标以及产量影响最为严重。应用RAGA算法的PPC模型评价水稻水分胁迫情况下生育综合指标排序结论比较可靠,这对制定水稻调亏灌溉制度具有应用价值。  相似文献   

15.
Abstract

This experiment carried out as split plot factorial based on a randomized complete block design with three replications during two consecutive years (2015–2016). The main plot consisted of drought stress: complete irrigation, irrigation withholding at R1 stage, irrigation withholding at R2 stage and subplots included foliar application of micronutrients: distilled water (control), zinc sulfate, manganese sulfate and zinc sulfate?+?manganese sulfate and cultivar as: Williams and Zan elite. The results showed that proline and linoleic acid were increased significantly, but chlorophyll a and b, seed yield, protein percentage, oleic and linolenic acids were decreased significantly by irrigation withholding. Also, the maximum values of chlorophyll b, protein percentage and linolenic acid were achieved by Williams. The significant increasing effect of zinc was found on the maximum root and stem proline, chlorophyll b, and oleic, linolenic and linoleic unsaturated fatty acids, meanwhile the maximum leaf proline was obtained by manganese sulfate.  相似文献   

16.
Sustainable vegetable production especially during the dry season requires adequate conservation of soil water. This study was conducted to evaluate the sole and interactive effects of mulching (M) and poultry manure (PM) application on soil temperature (ST), crop evapotranspiration (ETc) and water use efficiency (WUE) of okra. The experiment was a Randomized Complete Block Design (RCBD) with three replicates. The treatments were M at 0 and 6 t ha−1 and PM at 0, 10 and 20 t ha−1. Soil temperature was measured using digital thermometer while ETc was determined by water depletion method using a Time Domain Reflectometer. Irrigation at field capacity was applied manually at 2-day intervals. Independent application of mulch significantly lowered ST while joint application of 20 t ha−1 PM (PM20) and M significantly (p ≤ 0.05) reduced ST at 5 cm and 10 cm soil depth compared with the unmulched plots in both seasons. Application of 10 t ha−1 PM (PM10) without M recorded the highest ETc (43.7 mm), while joint application of PM20 and M reduced ETc by about 93% compared with PM10 only. Okra used water most efficiently when PM20 was applied under mulched plot. There was 62.2% increase in WUE under mulched plots compared with the control while the residual effect of PM10 and M significantly increased WUE by 65.5%. It was evident that M alongside application of PM is a good strategy for regulating ST, moderating ETc and increasing okra WUE, especially during dry season farming.  相似文献   

17.
为明确播期、播量和施氮量对小麦产量形成的影响,于2016—2017年和2017—2018年两个小麦生长季,采用3因素裂区试验设计,以播期为主区[10月12日播种(适播, ST)和11月12日播种(晚播, LT)],播量为裂区[2.25×10~6株·hm~(-2)(M1)、3.00×10~6株·hm~(-2)(M2)和3.75×10~6株·hm~(-2)(M3)],每个播量设置3个施氮量[纯N150 kg·hm~(-2)(N1)、225kg·hm~(-2)(N2)和300kg·hm~(-2)(N3)],研究播期、播量和施氮量对小麦干物质积累、转运和分配及产量的影响。结果表明,播期、播量和施氮量3因素互作显著影响了小麦产量及其构成要素、氮素利用效率、干物质积累量、花前干物质转运、花后干物质积累以及成熟期干物质在各器官中的分配。其中,ST处理显著提高了开花期群体干物质量、成熟期干物质量、花后干物质积累量及其对籽粒的贡献率;小麦穗数、穗粒数、千粒重和产量显著高于LT处理。在ST和LT处理条件下,M2和M3处理有效穗数、开花期干物质量和成熟期干物质量显著高于M1,M2处理穗粒数、花后干物质量及其对籽粒的贡献率、单茎中籽粒重量及其在单茎中所占比例较高,显著高于M1和M3。N3处理的有效穗数、开花期群体干物质量、成熟期干物质量和花后干物质量及其对籽粒的贡献率显著高于N1和N2。在ST处理条件下M1、M2处理和LT处理条件下所有播量处理均以N3的穗粒数、千粒重和单茎籽粒干重及其在单茎中所占比例较高。本试验条件下,增施氮肥和适当增大播量有利于小麦产量的提高。小麦‘安农大1216’在10月12日播种,播种密度3.00×106株·hm~(-2)、施氮量为300 kg·hm~(-2)时可以获得较好的产量。  相似文献   

18.
水分亏缺对滴灌柑橘光合和产量及水分利用效率的影响   总被引:6,自引:8,他引:6  
为揭示滴灌水分亏缺对柑橘叶片光合特性、产量与水分利用效率的调控效应,以7 a生"不知火"柑橘为试材,在果实膨大期(Ⅲ)、果实成熟期(Ⅳ)各设置4个亏水处理,即轻度亏水(LD)、中度亏水(MD1)、偏重度亏水(MD2)和重度亏水(SD)处理,并设置1个对照处理(CK),分析柑橘叶片光合特性、产量及水分利用效率对滴灌水分亏缺的响应规律。结果表明:与CK相比,Ⅲ-LD处理叶片气孔导度显著降低(P0.05),羧化速率、净光合速率均无显著差异(P0.05),Ⅳ-LD处理蒸腾速率显著降低(P0.05)且叶片瞬时水分利用效率提高36.61%(P0.05);与CK相比,Ⅲ期、Ⅳ期叶片气孔限制值随亏水度加剧增大;与CK相比,Ⅲ期、Ⅳ期各亏水处理的耗水量随亏水度加剧降低。Ⅲ-LD、Ⅳ-LD处理的产量与CK无显著差异(P0.05),但水分利用效率提高13%、9.5%,WUEI提高11%和6.87%(P0.05)。因此,滴灌柑橘Ⅲ期、Ⅳ期轻度亏水处理在保证产量条件下,可节约灌溉用水且提高水分利用效率,是柑橘适宜的滴灌水分亏缺模式。  相似文献   

19.
Drought is an important limiting factor which can cause major loss in barley productivity. A field experiment was conducted to investigate the effects of irrigation regimes on assimilate remobilization and photosynthetic characteristics of five barley cultivars in 2012 and 2013. There were four levels of irrigation including well-watered [soil moisture content in root depth kept at 100% field capacity (FC)], mild drought (75% FC), severe drought (50% FC), and very severe drought (25% FC). Results showed that Karoon and Valfajr cultivars had the maximum net photosynthetic rate (Pn) ranged from 16.3 to 19.3 µmol CO2 m?2 s?1 under very severe drought. Stomatal conductance (gs) was affected by drought so that Karoon and Valfajr had the lowest gs under severe and very severe drought. By improving the drought, remobilization efficiency in Karoon and Valfajr increased from 18.3% in well-watered to 54.1% under severe drought. In both years under severe and very severe drought, maximum 1000-grain weight and grain yield was obtained in Valfajr and Karoon. Overall, in arid areas, applying suitable irrigation regimes such as mild or severe drought can control soil drying, so that suitable cultivars such as Karoon and Valfajr can rehydrate overnight, and yield might not be inhibited severely.  相似文献   

20.
A 2-year field experiment (2012–2013) was conducted to evaluate the yield and water use efficiency (WUE) response of maize (Zea mays L.) to different soil water managements at different sowing dates. The experiment included three sowing dates (22 June, 6 July and 21 July) and four irrigation regimes based on maximum allowable depletion (MAD) of the total available soil water (TAW). The irrigation treatments were marked by I1 to I3 as 40%, 60% and 80% MAD of TAW, respectively, and with no irrigation. The results showed that grain yield reduced when planting was delayed in both years, ranging from 6105 to 4577 kg ha?1 in 2012 and from 7079 to 5380 kg ha?1 in 2013. However, WUE increased when planting was delayed from 22 June until 21 July. Also the highest grain yield was observed in the first irrigation treatment (MAD = 40%) in both years, and the highest WUE was obtained in the second irrigation treatment (MAD = 60%) with 1.64 and 1.61 (kg m?3) in 2012 and 2013, respectively. These findings suggest that delay in planting date and the use of MAD = 60% treatment in Mediterranean-type region such as Golestan, Iran, can be useful in saving water that is highly important in such regions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号