首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
ABSTRACT

Soil erosion is a major socioeconomic and environmental problem in Turkey. Almost 86% of the land in Turkey has suffered various degrees of soil erosion. The objective of this study was to determine whether differences in tree species affect soil characteristics and microbial activity in degraded soils. Results from this study showed that organic C (Corg) was highest in the black locust soil at 0–20 cm depth and lowest in the bare land. Microbial biomass C (Cmic) increased in the order black locust > Scotch pine > bare land at two soil depths. One-way ANOVA demonstrated that afforested soils contain significantly higher microbial biomass C than those in the bare land soils. Microbial quotient (Cmic/Corg) of soils are positively influenced by afforestation as the bare land soils exhibited lower microbial quotient than the associated Scotch pine and black locust soils. Microbial communities in black locust soils were energetically more efficient—had a lower metabolic quotient (qCO2)—with a higher Cmic/Corg compared to those in Scotch pine soils. However, the microbial quotient in our study was still below range and cannot reach equilibrium again 15 yr after afforestation. Restoration of degraded lands could be a long-term process from microbial activity in the observed regions.  相似文献   

2.
Arora  Raavi  Sharma  Vivek  Sharma  Sandeep  Maini  Asima  Dhaliwal  S. S. 《Agroforestry Systems》2021,95(8):1479-1491

The soil biochemical properties are sensitive to change in land use systems and seasons. The variations in soil management practices and soil moisture content affect the sustainability of the systems. To study the sustainability in lower Shiwalik, a total of 144 soil samples (0–0.15 m) were undertaken to monitor the changes in the soil biochemical properties under rainfed land use systems, i.e., agri-horticulture, agroforestry, cultivated and barren system and seasons, i.e., summer, rainy and winter. Among soil biochemical properties, soil microbial biomass carbon, soil microbial quotient, dehydrogenase activities, basal soil respiration, fluorescein diacetate and urease activities ranged from 77 to 122 μg g?1, 0.023 to 0.027, 18.3 to 30.6 μg TPF g ?1 h?1, 13.2 to 22.7 μg CO2-C g?1 day?1, 1.3 to 2.2 μg g?1 and 5.83 to 6.38 μg NH4-Ng?1 h?1, respectively. Among 15 soil properties, principal component analysis specified that four major soil properties, i.e., basal soil respiration, metabolic quotient, electrical conductivity and clay content contributed 73% of the soil quality index with contribution of 44, 13, 9 and 7%, respectively. Among seasons, the values for soil biochemical properties were higher in rainy season as compared to winter and summer season. In systems, agri-horticulture followed by agroforestry was the best systems in terms of sustainability in Shiwalik foothills of northwest India.

  相似文献   

3.
Prescribed fire is a common economical and effective forestry practice, and therefore it is important to understand the effects of fire on soil properties for better soil management. We investigated the impacts of low-intensity prescribed fire on the microbial and chemical properties of the top soil in a Hungarian oak (Quercus frainetto Ten.) forest. The research focused on microbial soil parameters (microbial soil respiration (RSM), soil microbial biomass carbon (Cmic) and metabolic quotient (qCO2) and chemical topsoil properties (soil acidity (pH), electrical conductivity (EC), carbon (C), nitrogen (N), C/N ratio and exchangeable cations). Mean annual comparisons show significant differences in four parameters (C/N ratio, soil pH, Cmic and qCO2) while monthly comparisons do not reveal any significant differences. Soil pH increased slightly in the burned plots and had a significantly positive correlation with exchangeable cations Mg, Ca, Mn and K. The mean annual C/N ratio was significantly higher in the burned plots (28.5:1) than in the control plots (27.0:1). The mean annual Cmic (0.6 mg g?1) was significantly lower although qCO2 (2.5 µg CO2–C mg Cmic h?1) was significantly higher, likely resulting from the microbial response to fire-induced environmental stress. Low-intensity prescribed fire caused very short-lived changes. The annual mean values of C/N ratio, pH, Cmic and qCO2 showed significant differences.  相似文献   

4.
To explore whether litter quality could alter differences in N-dynamics between soil types, we compared spruce and beech growing on soils with parent material sandstone and limestone, and beech and hornbeam on acid marl and limestone. We measured pH, organic matter content, C:N ratio, soil respiration and net N-mineralization of the organic layer and the mineral topsoil in a laboratory incubation experiment and estimated gross N-mineralization and immobilization with a simulation model. Species effects were restricted to the organic layer, but higher mass for low-degradable species was compensated by higher process rates for high-degradable ones, so N-dynamics per square metre did not differ. Also, the mineral topsoil was not affected by litter quality, which may have been overruled by soil conditions. Forest soils formed from different parent materials, however, clearly differed in N-dynamics, although different from expectations for net N-mineralization. Sandstone showed low respiration and gross N-mineralization, but net N-mineralization was higher than expected, probably due to low microbial N-demand. In contrast, limestone, and to some extent acid marl, showed high respiration and gross N-release, but lower net N-mineralization than expected, because microbial immobilization was also high. Simulated gross N-mineralization even showed a negative instead of positive correlation with net N-mineralization, probably due to the strong increase in immobilization when gross N-mineralization is high. The shift in microbial N-demand may in turn be related to a more general shift from bacteria to fungi over pH-gradients.  相似文献   

5.
Mountain closure, considered an effective and economic measure for natural restoration of degraded forest ecosystems, has been widely carried out in the karst region of southwest China. The aim of this study was to evaluate microbial aspects of soil quality after mountain closure by analyzing soil microbial biomass, basal respiration, metabolic quotient, and relationships with basic chemical properties in Guizhou Province, a karst region of the upper Yangtze River. Soil quality was considered poor from the low levels of microbial biomass carbon (MBC), nitrogen (MBN), and microbial quotient (MBC/total C and MBN/total N), but high metabolic quotient (qCO2). Soil pH, showing marked variation from 4.1 to 7.9 in this karst region, was proved to significantly affect soil microbial biomass and activity. Soil microbial biomass, microbial quotient, and soil basal respiration declined significantly with decreasing soil pH, while qCO2 showed an apparently increasing, but not statistically significant, trend. The changes in microbial biomass and activity following the change in soil pH could possibly be because of a change in soil microbial composition, and more detailed research is necessary. Compared with soil pH, soil organic matter content was another, more important, factor that directly restricted microbial growth because of the serious loss as a result of disturbance. As a practical application based on microbial aspects, introduction of some N-fixing tree species may be an active and effective measure to improve soil fertility and thus to accelerate restoration of the forest ecosystem in the karst region.  相似文献   

6.
The objectives of the study were to investigate mineral soil profiles as a living space for microbial decomposers and the relation of microbial properties to soil acidity. We estimated microbial biomass C on concentration (g g–1 DW) as well as on volume basis (g m–2) and the microbial biomass C to soil organic C ratio along a vertical gradient from L horizon to 20 cm in the mineral soil and along a gradient of increasing acidity at five beech forest stands in Germany. Microbial biomass C concentration ranged from 17,000–34,000 g Cmic g–1 DW in the litter layer and decreased dramatically down the profile to 29–264 g Cmic g–1 DW at 15–20 cm depth in the mineral soil. This represents depth gradients of microbial biomass C concentrations ranging from a factor of 65 in slightly acidic and up to 875 in acidic soils. In contrast, microbial biomass C calculated on a volume basis (g Cmic m–2) showed a different pattern since a considerable part of the microbial biomass C was located in the mineral soils. In the soil profile 22–34% of the microbial biomass C was found in the mineral soil at strictly acidic sites and as much as 64–88% in slightly acidic soils. The microbial biomass C to soil organic carbon ratios decreased in general down from the L horizon in the forest floor to 0–5 cm depth in the mineral soils. In strongly acidic mineral soils however, the C to soil organic carbon ratio increased with depth, suggesting a positive relation to increasing pH. We conclude from depth gradients of soil pH and microbial biomass C to soil organic carbon ratio that pH affects this ratio at acidic sites. The inter-site comparison indicates that acidity restricts microbial biomass C in the mineral soils.  相似文献   

7.
Soil organic carbon (SOC) plays an important role in soil fertility and productivity. It occurs in soil in labile and non-labile forms that help in maintaining the soil health. An investigation was undertaken to evaluate the dynamics of total soil organic carbon (C tot), oxidisable organic carbon (C oc), very labile carbon (C frac 1), labile carbon (C frac 2), less labile carbon (C frac 3), non-labile carbon (C frac 4), microbial biomass carbon (C mic) and SOC sequestration in a 6-year-old fruit orchards. The mango, guava and litchi orchards caused an enrichment of C tot by 17.2, 12.6 and 11 %, respectively, over the control. The mango orchard registered highest significant increase of 20.7, 13.5 and 17.4 % in C frac 1, C frac 2 and C frac 4, respectively, over control. There is greater accumulation of all the C fractions in the surface soil (0–0.30 m). The maximum total active carbon pool was 36.2 Mg C ha?1 in mango orchard and resulted in 1.2 times higher than control. The passive pool of carbon constituted about 42.4 % of C tot and registered maximum in the mango orchard. The maximum C mic was 370 mg C kg?1 in guava orchard and constituted 4.2 % of C tot. The carbon management index registered 1.2 (mango orchard)- and 1.13 (guava and litchi orchard)-fold increase over control. The mango orchard registered highest carbon build rate of 1.53 Mg C ha?1 year?1 and resulted in 17.3 % carbon build-up over control. Among the carbon fractions, C frac 1 was highly correlated (r = 0.567**) with C mic.  相似文献   

8.
The objective of this study is to analyse the performance of Quercus ilex plantations established under semiarid conditions on different soils formed on calcareous and gypsiferous parent material. We studied eighteen 300?m2 plots in which 1?year-old seedlings had been planted after subsoiling on the contour. Plots were stratified according to aspect (north and south) and previous land use/parent material: shrubland on limestone (LM-SH), shrubland on gypsum rock (GY-SH), and cropland on colluvium (CO-AG). Soils developed on limestone and colluvium had average rooting depths of 27 and 37?cm, respectively, and mean concentrations of active lime and phosphorus (P) of 130 and 190?mg?g?1 and 10 and 19?mg?kg?1, respectively. Soils developed on gypsum had a mean rooting depth of 26?cm, and a mean gypsum concentration of 73?%. Height and diameter of trees varied significantly according to parent material/previous land use but not to slope aspect. Mean height and diameter of trees were significantly higher in CO-AG plots than in LM-SH and GY-SH plots. Soil P and depth were the main variables explaining differences in dominant height across all 18 plots. In CO-AG plots mean height was negatively related to soil pH but positively related to soil P concentration. In LM-SH plots, mean diameter and height were negatively related to active lime concentration. This study suggests that soil P is a major determinant of holm oak performance in shallow calcareous soils and highlights the importance of conducting detailed soil studies in order to assess the viability of plantations with this species.  相似文献   

9.
Extreme droughts can adversely affect the dynamics of soil respiration in tree plantations. We used a severe drought in southwestern China as a case study to estimate the effects of drought on temporal variations in soil respiration in a plantation of Eucalyptus globulus. We documented a clear seasonal pattern in soil respiration with the highest values (100.9 mg C–CO2 m?2 h?1) recorded in June and the lowest values (28.7 mg C–CO2 m?2 h?1) in January. The variation in soil respiration was closely associated with the dynamics of soil water driven by the drought. Soil respiration was nearly twice as great in the wet seasons as in the dry seasons. Soil water content accounted for 83–91% of variation in soil respiration, while a combined soil water and soil temperature model explained 90–99% of the variation in soil respiration. Soil water had pronounced effects on soil respiration at the moisture threshold of 6–10%. Soil water was strongly related to changes in soil parameters (i.e., bulk density, pH, soil organic carbon, and available nitrogen). These strongly influenced seasonal variation in soil respiration. We found that soil respiration was strongly suppressed by severe drought. Drought resulted in a shortage of soil water which reduced formation of soil organic carbon, impacted soil acid–base properties and soil texture, and affected soil nutrient availability.  相似文献   

10.
Understanding the spatial and temporal variation in soil respiration within small geographic areas is essential to accurately assess the carbon budget on a global scale. In this study, we investigated the factors controlling soil respiration in an altitudinal gradient in a southern Mediterranean mixed pine–oak forest ecosystem in the north face of the Sierra de Guadarrama in Spain. Soil respiration was measured in five Pinus sylvestris L. plots over a period of 1 year by means of a closed dynamic system (LI-COR 6400). Soil temperature and water content were measured at the same time as soil respiration. Other soil physico-chemical and microbiological properties were measured during the study. Measured soil respiration ranged from 6.8 to 1.4 μmol m?2 s?1, showing the highest values at plots situated at higher elevation. Q 10 values ranged between 1.30 and 2.04, while R 10 values ranged between 2.0 and 3.6. The results indicate that the seasonal variation of soil respiration was mainly controlled by soil temperature and moisture. Among sites, soil carbon and nitrogen stocks regulate soil respiration in addition to soil temperature and moisture. Our results suggest that application of standard models to estimate soil respiration for small geographic areas may not be adequate unless other factors are considered in addition to soil temperature.  相似文献   

11.
Few studies have analyzed how tree species within a mixed natural forest affect the dynamics of soil chemical properties and soil biological activity. This study examines seasonal changes in earthworm populations and microbial respiration under several forest species (Carpinus betulus, Ulmus minor, Pterocarya fraxinifolia, Alnus glutinosa, Populus caspica and Quercus castaneifolia) in a temperate mixed forest situated in northern Iran. Soil samplings were taken under six individual tree species (n = 5) in April, June, August and October (a total of 30 trees each month) to examine seasonal variability in soil chemical properties and soil biological activity. Earthworm density/biomass varied seasonally but not significantly between tree species. Maximum values were found in spring (10.04 m?2/16.06 mg m?2) and autumn (9.7 m?2/16.98 mg m?2) and minimum in the summer (0.43 m?2/1.26 mg m?2). Soil microbial respiration did not differ between tree species and showed similar temporal trends in all soils under different tree species. In contrast to earthworm activity, maximum microbial activity was measured in summer (0.44 mg CO2–C g soil?1 day?1) and minimum in winter (0.24 mg CO2–C g soil?1 day?1). This study shows that although tree species affected soil chemical properties (pH, organic C, total N content of mineral soils), earthworm density/biomass and microbial respiration are not affected by tree species but are controlled by tree activity and climate with strong seasonal dynamics in this temperate forest.  相似文献   

12.
The nitrogen status of most Zambian soils is inherently low. Nitrogen-fixing trees such as Faidherbia albida (F. albida) could have the potential to restore soil fertility. We conducted a study to examine the role of mature F. albida trees on the soil microbial communities and overall N fertility status in Zambia. Soil samples were collected under and outside the canopies of F. albida trees in representative fields from two sites namely; Chongwe (loamy sand) and Monze (sandy loam). To assess the long term canopy effects; total N, mineral N and soil organic carbon (Corg) content were directly measured from soils collected under and outside the canopy. Short term litter effects were assessed by subtracting concentrations of biochemical properties of non-amended controls from amended soils with F. albida litter during an 8 week incubation experiment. We also determined N mineralization rates, microbial community structure—Phospholipid fatty acids, microbial biomass carbon, and labile organic carbon (\({\text{C}}_{{{\text{org[K}}_{ 2} {\text{SO}}_{ 4} ]}}\)) during incubation. For the long term canopy effect, average N mineralization rate, Corg, total N and mineral N content of non-amended soils under the canopy were (all significant at p < 0.05) greater than soils outside the canopy on both sites. In the short term, amending soils with litter significantly increased N mineralization rates by an average of 0.52 mg N kg?1 soil day?1 on soil from Monze. Microbial biomass carbon measured after 4 weeks of incubation was on average significantly higher on amended soils by 193 and 334 mg C kg?1 soil compared with non-amended soils in Chongwe and Monze soils, respectively. After 6 weeks of incubation, the concentration of all selected biomarkers for major microbial groups concentrations in non-amended soils were significantly higher (all p < 0.05) under the canopy than outside in Monze soil. Using principal component analysis, we found that the segregation of the samples under and outside the canopy by the first principal component (PC1) could be attributed to a proportional increase in abundances of all microbial groups. Uniform loadings on PC1 indicated that no single microbial group dominated the microbial community. The second principal component separated samples based on incubation time and location. It was mainly loaded with G-positive bacteria, and partly with G-negative bacteria, indicating that microbial composition was dominated by these bacterial groups probably at the beginning of the incubation on Monze soils. Our results show that the improvement of soil fertility status by F. albida could be attributed to a combination of both long term modifications of the soil biological and chemical properties under the canopy as well as short term litter fall addition.  相似文献   

13.

Relatively few studies have documented the impacts of afforestation, particularly production forestry, on belowground carbon dioxide (CO2) effluxes to the atmosphere. We evaluated the changes in the soil CO2 efflux—a proxy for soil respiration (Rs)—for three years following a native grassland conversion to eucalypt plantations in southern Brazil where minimum tillage during site preparation created two distinct soil zones, within planting row (W) and between-row (B). We used root-exclusion and carbon (C)- isotopic approaches to distinguish Rs components (heterotrophic-Rh and autotrophic-Ra respirations), and a CO2 profile tube (1-m deep) to determine the concentration ([CO2]) and isotopic C signature of soil CO213[CO2]). The soil CO2 efflux in the afforested site averaged 0.37 g CO2 m?2 h?1, which was 56% lower than the soil CO2 efflux in the grassland. The δ13CO2 in the afforested site ranged from ? 14.1‰ to ? 29.4‰, indicating a greater contribution of eucalypt-derived respiration (both Rh and Ra) over time. Higher soil CO2 efflux and lower [CO2] were observed in W than B, indicating that soil preparation creates two distinct soil functional zones with respect to C cycling. The [CO2] and δ13[CO2] decreased in both zonal positions with eucalypt stand development. Although the equilibrium in C fluxes and pools across multiple rotations is needed to fully account for the feedback of eucalypt planted forests to climate change, we provide quantitative information on soil CO2 dynamics after afforestation and show how soil preparation can leverage the feedback of planted forests to climate change.

  相似文献   

14.
Little information is available on soil respiration and microbial biomass in soils under agroforestry systems. We measured soil respiration rate and microbial biomass under two age classes (young and old) of a pecan (Carya illinoinensis) — cotton (Gossypium hirsutum) alley cropping system, two age classes of pecan orchards, and a cotton monoculture on a well-drained, Redbay sandy loam (a fine-loamy, siliceous, thermic Rhodic Paleudult) in southern USA. Soil respiration was quantified monthly during the growing season from May to November 2001 using the soda-lime technique and was corrected based on infrared gas analyzer (IRGA) measurements. The overall soil respiration rates ranged from 177 to 776 mg CO2 m–2 h–1. During the growing season, soil respiration was higher in the old alley cropping system than in the young alley cropping system, the old pecan orchard, the young pecan orchard, and the monoculture. Microbial biomass C was higher in the old alley cropping system (375 mg C kg–1) and in the old pecan orchard (376 mg C kg–1) compared to the young alley cropping system (118 mg C kg–1), young pecan orchard (88 mg C kg–1), and the cotton monoculture (163 mg C kg–1). Soil respiration was correlated positively with soil temperature, microbial biomass, organic matter, and fine root biomass. The effect of alley cropping on soil properties during the brief history of alley cropping was not significant except in the old systems, where there was a trend of increasing soil respiration with short-term alley cropping. Over time, different land use and management practices influenced soil properties such as soil temperature, moisture, microbial biomass, organic matter, and fine root biomass, which in turn affected the magnitude of soil respiration. Our results suggest that trees in agroforestry systems have the potential to enhance soil fertility and sustainability of farmlands by improving soil microbial activity and accreting residual soil carbon.This revised version was published online in November 2005 with corrections to the Cover Date.  相似文献   

15.
杉木纯林、混交林土壤微生物特性和土壤养分的比较研究   总被引:6,自引:0,他引:6  
王清奎  汪思龙 《林业研究》2008,19(2):131-135
本文于2005年5月份,在中国科学院会同森林生态实验站选择了一块15年生的杉木纯林和两块15年生杉阔混交林作为研究对象,调查了林地土壤有机碳、全氮、全磷、硝态氮、有效磷和土壤微生物碳、氮、磷、基础呼吸以及呼吸熵,比较了纯林和混交林土壤微生物特性和土壤养分.结果表明,杉阔混交林的土壤有机碳、全氮、全磷硝态氮和有效磷含量高于杉木纯林;在混交林中,土壤微生物学特性得到改善.在0(10 cm和10(20 cm两层土壤中,杉阔混交林土壤微生物氮含量分别比杉木纯林高69%和61%.在0(10 cm土层,杉阔混交林土壤微生物碳、磷和基础呼吸分别比杉木纯林高11%、14%和4%;在10(20 cm土层,分别高6%、3%和3%.但是,杉阔混交林土壤微生物碳:氮比和呼吸熵较杉木纯林低34%和4%.另外,土壤微生物与土壤养分的相关性高于土壤呼吸、微生物碳:氮比和呼吸熵与土壤养分的相关性.由此可知,在针叶纯林中引入阔叶树后,土壤肥力得以改善,并有利于退化森林土壤的恢复.  相似文献   

16.
川滇高山栎林是川西亚高山地区地带性的灌丛群落,具有重要的生态水文功能。本文在川西巴郎山东南坡沿海拔梯度(2 551、3 091、3 549 m),研究了川滇高山栎林表土层(0 15 cm)和亚表土层(15 30 cm)的土壤微生物量碳氮、有机碳(TOC)和氮素含量的分布特征及其相互关系。结果表明:海拔3 549 m和3 091 m处两土层土壤TOC及其储量、总氮(TN)、水解氮含量无显著性差异,其含量均显著高于海拔2 551 m处;海拔3 091 m处表土层与亚表土层的铵态氮(NH4+-N)含量显著比3 549 m的高,但与2 551 m处的NH4+-N含量差异不显著;在3个海拔梯度,土壤层硝态氮(NO3--N)含量差异不显著;3个海拔梯度的总无机氮含量在表土层差异不显著,而亚表土层无机氮含量在海拔3 091 m和3 549 m处差异显著;表土层微生物量碳含量变化与有机碳含量变化特征一致,亚表土层土壤微生物量碳含量在3个海拔梯度差异显著;表土层土壤微生物量氮含量在海拔3 091 m处最高,但3个海拔梯度的差异不显著,亚表土层土壤微生物量氮含量随海拔梯度降低而减少,但差异不显著。相关分析表明:水解氮、TOC、TN和土壤微生物量氮含量之间极显著相关(P<0.01);土壤微生物量碳与水解氮、TOC和TN显著正相关(P<0.05);pH值与水解氮、TOC和土壤微生物量氮显著正相关;NH4+-N与pH值极显著负相关。  相似文献   

17.
Reducing the canopy cover (e.g., forest thinning) is one of the most commonly employed forest silvicultural treatments. Trees are partially removed from a forest in order to manage tree competition, thus favoring the remaining and often the most valuable trees. The properties of the soil are affected by forest thinning as a result of changes in key microclimatic conditions, microbial communities and biomass, root density, nutrient budgets and organic matter turnover. The aim of this study was to determine the soil microbial biomass C, N and respiration (basal respiration) in a black pine (Pinus nigra Arn. subsp. pallasiana) forest in the Mudurnu district of Bolu Province (Western Black Sea Region, Turkey). Whereas forest thinning was found to cause increases in the soil temperature, microbial biomass C and N and organic C, it was found to decrease the soil moisture, basal respiration and metabolic quotient (qCO2). As expected, soil organic C exhibited a strong impact on soil microbial biomass C, N and basal respiration. It was concluded that the influence of forest thinning on the microbial biomass and soil respiration was the combined result of changing microclimatic conditions and soil properties, such as forest litter, soil temperature, soil moisture, soil pH and soil organic matter.  相似文献   

18.
The effects of experimental site preparation treatments on soil respiration were studied in a boreal mixedwood forest. The treatments were: (1) intact forest (uncut); (2) clearcut without site preparation (cut); (3) clearcut followed by mixing of organic matter with mineral horizons (mixed); and (4) plots from which all organic matter was removed (screefed). Soil respiration was measured as carbon dioxide (CO2) evolution from surface soil once a month from June to October, 1994 in the field using infra-red gas analyzer (IRGA). In addition, soil temperature and moisture content were determined once a month during the 1994 growing season and soil organic matter content was determined once in July 1994. Mixed plots had the highest soil respiration rates (0.86 to 0.98 g m−2 h−1), followed by the clearcut (0.68 to 0.84 g m−2 h−1) and uncut plots (0.56 to 0.82 g m−2 h−1), with screefed plots having the lowest respiration rates (0.24 to 0.52 g m−2 h−1) from June to September. Soil respiration of the cut plots was not significantly different from that of the uncut control. The site preparation treatments reduced soil moisture and soil organic matter contents significantly. Changes in soil temperature within treatment at 0, 5 and 10 cm depths and between the treatments were not significant. Observed soil respiration patterns were attributed to changes in soil moisture and organic matter content associated with the various treatments. A laboratory incubation experiment elucidated the effects of organic matter, soil moisture, and temperature on soil respiration rates. Site preparation treatments in boreal mixedwood forests affect soil respiration by modifying the moisture and organic matter content of the soil.  相似文献   

19.
The aim of this study was to evaluate the response of soil amendment applications on soil and the foliage nutrient status of a Japanese cypress (Chamaecyparis obtusa Endlicher) plantation established following clear-cutting in a pine-wilt-disease (PWD)-disturbed forest. We established four soil amendment treatments [(compound fertilizer (CF), compound fertilizer + biochar (CFB), compound fertilizer + sawdust (CFS) and a non-treated control treatment] in an 8-year-old Japanese cypress plantation. Soil organic carbon (C) and total nitrogen (N) were not significantly different (P > 0.05) between the soil amendment treatments and the control treatments, whereas extractable phosphorus (P), NH4+, K+, and Mg2+ concentrations were significantly affected by the addition of biochar in CF. The mean soil CO2 efflux rates during the study period were the highest in CFB (0.79 g CO2 m?2 h?1), followed by CFS (0.71 g CO2 m?2 h?1), CF (0.62 g CO2 m?2 h?1), and the control (0.46 g CO2 m?2 h?1) treatments. Foliar N and P concentrations were significantly higher in the CFB than in the control treatments. The results suggest that the addition of biochar in CF can enhance extractable soil nutrients and foliar N and P conditions of Japanese cypress established in a PWD-disturbed forest.  相似文献   

20.
Large amounts of plant litter deposited in cacao agroforestry systems play a key role in nutrient cycling. Organic matter, nitrogen and phosphorus cycling and microbial biomass were investigated in cacao agroforestry systems on Latosols and Cambisols in Bahia, Brazil. The objective of this study was to characterize the microbial C and N, mineralizable N and organic P in two soil orders under three types of cacao agroforestry systems and an adjacent natural forest in Bahia, Brazil and also to evaluate the relationship between P fractions, microbial biomass and mineralized N with other soil attributes. Overall, the average stocks of organic C, total N and total organic P across all systems for 0?C50?cm soil depth were 89,072, 8,838 and 790?kg?ha?1, respectively. At this soil depth the average stock of labile organic P was 55.5?kg?ha?1. For 0?C10?cm soil depth, there were large amounts of microbial biomass C (mean of 286?kg?ha?1), microbial biomass N (mean of 168?kg?ha?1) and mineralizable N (mean of 79?kg?ha?1). Organic P (total and labile) was negatively related to organic C, reflecting that the dynamics of organic P in these cacao agroforestry systems are not directly associated with organic C dynamics in soils, in contrast to the dynamics of N. Furthermore, the amounts of soil microbial biomass, mineralizable N, and organic P could be relevant for cacao nutrition, considering the low amount of N and P exported in cacao seeds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号