首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Selenium (Se) is an essential element for humans but is not considered as essential for plants. However, its beneficial role in improving plant growth and stress tolerances is well established. In order to study the role of Se in cadmium (Cd) toxicity in pepper (Capsicum frutescens cv. Suryankhi Cluster), this experiment was carried out in greenhouse conditions. Treatments comprised Cd [0, 0.25, and 0.5 mM cadmium chloride (CdCl2)] and Se [0, 3, and 7 µM sodium selenite (Na2SeO3)] with three replications. The result showed that Cd decreased chlorophyll a, chlorophyll b, and carotenoids, whereas Se supplementation diminished Cd toxicity on photosynthetic pigment. Selenium at 7 µM significantly increased the leaf area in the plants grown at 0.25 mM Cd. The application of Se at 3 µM with 0.25 mM Cd and Se at 3 µM and Se at 7 µM with 0.5 mM Cd increased the activity of catalase (CAT). Selenium at 7 µM decreased the proline content of pepper leaves exposed to Cd at 0.5 mM (30%). Selenium significantly enhanced the antioxidant activity of leaves, which was diminished by Cd toxicity. In general, Se has a beneficial effect on plant growth and is an antioxidant enzyme of pepper cv. Suryankhi Cluster under Cd stress and non-stress conditions.  相似文献   

2.
Some South Dakota soils contain high levels of available selenium (Se) for crop uptake. A field study was conducted to determine if any popular wheat (Triticum aestivum) varieties demonstrate differential Se uptake. A total of 280 samples including eight winter wheat and ten spring wheat varieties were analyzed for grain Se concentration and uptake for two growing years. Soil samples were sequentially fractionated into (1) plant available (0.1?M KH2PO4 extractable) and (2) conditionally available (4?M HCl extractable) pools and analyzed separately for total Se. Selenium concentration in wheat grain had a wide variability and the mean value over two years was 0.63?µg?Se?g?1. Grain Se concentration and Se uptake were not significantly different by wheat varieties tested in this study. Grain Se concentration was significantly correlated with soil Se levels, soil pH, and orthophosphate-P content within a location, but grain Se concentration was strongly influenced by geographical location in which different amounts of soil Se bioavailability occurred.  相似文献   

3.
An experiment was established to assess the ability of selenium (Se) to reduce cadmium (Cd) toxicity when tomato was grown hydroponically. A factorial experiment was arranged in a completely randomized design with six replicates in cucumber (Cucumis sativus cv. 4200). The Se was applied at four levels [0 mg L–1 (Se0), 2 mg L–1 Se (Se1), 4 mg L–1 Se (Se2), and 6 mg L–1 Se (Se3)], whereas Cd was applied at three levels [0 µM Cd (Cd0), 5 µM Cd (Cd1), and 7 µM Cd (Cd2)]. The Se improved the dry weight of roots even when plants were exposed to Cd. Treatment Se1 improved the dry weight of shoots in Cd1 and Cd2. Treatments Se1 and Se2 improved photosynthesis in Cd1. Treatment Se1 significantly improved stomatal conductance in Cd2 at all levels of Se relative to Cd2. The greatest Cd concentration in leaves was observed in Cd2 × Se0 and while Se concentration in solution increased in response to Se1, Se2, and Se3. The greatest Se level reduced Cd uptake the most. Growth and photosynthetic attributes can be negatively affected by Cd, but Se has the ability to buffer, or improve, several attributes.  相似文献   

4.
The role of nickel (Ni) on urea metabolism of certain plants has been documented, but little is known regarding the growth and physiological response of onion to Ni nutrition, particularly when urea is used as nitrogen source. In this research study, we investigated the effects of Ni on urea metabolism and growth of two onion cultivars (Allium cepa L., cvs. Dorrcheh and Cebolla Valenciana) supplied with urea as nitrogen source. Three levels of Ni (0, 25, and 50 µM) were used in the form of NiCl2 or Ni-histidine [Ni(His)2] complex. Addition of Ni positively affected nitrogen metabolism in onion plants fed with urea and thus was correlated with increase of the bulb yield. Regardless of the plant cultivar and the applied Ni source [NiCl2 or Ni(His)2 complex], an increase in urease activity and reduction in bulb urea concentration was observed by Ni nutrition. An increase in hydrolysis of urea and production of NH4+ in the presence of Ni was correlated with higher concentration of the total amino acids (AAs) and nitrogen in onion bulbs. The efficiency of Ni(His)2 complex in improving Ni uptake and increasing activity of urease and glutamine synthetase, two enzymes involved in urea metabolism, was in general greater than NiCl2. Accordingly, higher concentration of AAs was measured in the onion plants supplied with Ni(His)2 complex than those supplied with NiCl2.  相似文献   

5.
A hydroponic experiment was conducted based on completely randomized design (CRD) to study the effects of Selenium (Se) on tomato (Lycopersicum esculentum L), cv. Foria with three replications. Treatments included 3, 5, 7, and 10 µM sodium selenite (Na2SeO3) and 0 as control. The results showed that selenium (Se) at 7 µM was beneficial to photosynthesis pigments. The highest relative water content was resulted from the 3 µM Se treatment. The membrane stability index was decreased with increasing Se concentration up to 10 µM Se. An increase in peroxidase (POD) activity occurred at the 3 µM Se level, and the catalase (CAT) activity was 80% higher than the control at the 7 µM Se level. In general, the highest root volume, leaf numbers, carotenoids content, and CAT activity were found at the 5 µM Se level, and Chlorophyll content increased at the 7 and 10 µM Se levels.  相似文献   

6.
The relationship between selenium (Se) and sulfur (S) uptake and their interaction on the pungency and quercetin contents of onion was investigated in a sand culture trial under polyhouse conditions. The results indicated that application of Se with increasing rates produced an antagonistic effect on S assimilation. An amount of 20 kg Se ha–1 drastically reduced the S content in onion bulbs. Further, the pungency and quercetin concentration also declined. Foliar application of Se at 1.0 ppm resulted in production of bulbs with lower levels of pungency and quercetin. Though Se is essential from a health point, its application up to 10 kg ha–1 was sufficient for enriching onions without much effect on the other essential bulb quality parameters.  相似文献   

7.
Selenium (Se) biofortification via crops is one of the best strategies to elevate the daily Se intake in areas where soil Se levels are low. However, Se fertilizer recovery (SeFR) is low and most of the Se taken up accumulates in non‐harvested plant parts and returns to the soil with plant residues. A pot experiment with soil was undertaken to study the efficiency of inorganic Se (Na2SeO4) and Se‐enriched plant residues for biofortification, as well as to identify the bottlenecks in Se utilization by Brassica napus L. The soil was fertilized with Na2SeO4 (0 and 7 µg Se kg?1) or with Se in stem or leaf residues (0 and 7 µg Se kg?1). A treatment with autoclaved soil was included (0 and 7 µg kg?1 as Na2SeO4) to unravel the impact of microbial activity on Se uptake. The Se‐enriched plant residues produced a lower Se uptake efficiency (SeUPE) and SeFR than did inorganic Se, and soil autoclaving enhanced Se accumulation in the plants. The time required for decomposition seems to preclude crop residues as an alternative source of Se. Furthermore, B. napus had a limited capacity to accumulate Se in seeds. The study shows that the bottlenecks in Se biofortification appear to be its low bioavailability in soil and poor loading from the silique walls to seeds. Thus, improved Se translocation to seeds would be a useful breeding goal in B. napus to increase SeFR.  相似文献   

8.
The ability of selenium (Se) to counteract salt inhibitory effects in crop plants, especially in tomato, is still poorly documented. In order to examine the impact of Se addition on the growth, some biochemical parameters related to osmotic adjustment and antioxidant defense of salt-stressed tomato, a two-factorial experiment was conducted in a greenhouse. The plants were supplied with NaCl (0, 25, or 50 mM) and Se (0, 5, or 10 μM), individually or simultaneously. The results showed that salinity had a deleterious impact on plant biomass and physiological parameters studied. The application of Se alleviated this adverse effect by improving the integrity of cell membranes and by increasing leaf relative water content under stress conditions. Moreover, the application of 10 μM Se significantly increased the photosynthetic pigments concentration under salt stress. Salt stress also caused an inhibition of catalase activity, but its activity was restored in the presence of Se. The free radical scavenging activity significantly increased in plants subjected to 25 mM NaCl and supplied with 5 µM Se, compared to NaCl-alone treatment. Both physiological and biochemical results indicate that 10 µM Se treatment can increase plant performance under salt stress, especially under high NaCl concentration.

Abbreviations: CAT: catalase; Chl: chlorophyll; DPPH: 2,2-diphenyl-1-picrylhydrazyl; DW: dry weight; FW: fresh weight; POD: peroxidase; REL: relative electrolyte leakage; RWC: relative water content; free radical scavenging activity (FRSA); TW: turgid weight  相似文献   


9.
ABSTRACT

Biofortification experiments with three winter wheat cultivars treated with sodium selenate through foliar- and soil-fertilisation were conducted at two locations in Croatia and Serbia in two consecutive years to increase the selenium (Se) concentration in bread-making wheat grain. The treatments were: (a) 5?g?ha?1 Se foliar-, (b) 10?g?ha?1 Se foliar- and (c) 10?g?ha?1 Se in soil surface-application and they were compared with (d) control. Both Se foliar- and soil-fertilisation increased the Se concentration in grains from 2.6- to 4.6-fold. The concentration in grain was highest with Se foliar-fertilisation of 10?g?ha?1 and it was increased by 29–32?µg Se kg?1 dry weight for each gram of Se applied per ha. The wheat cultivars differed in grain yield and Se uptake (g?ha?1 Se). However, on average, there were no differences between wheat cultivars with respect to Se grain concentrations. Agronomic use efficiency (by grain) was significantly higher for Se foliar- (19%) than for soil-fertilisation (13%). It can be concluded that agronomic biofortification of winter wheat can be effective in increasing Se grain concentration, where the efficiency depends on the rate of Se applied, application method and local environmental conditions rather than on cultivar differences.  相似文献   

10.
Selenium (Se), regarded as an antioxidant, has been found beneficial for plants growing under stressed conditions. To investigate whether the Se application helps to improve stress tolerance, sodium selenite (Na2SeO3 · 5H2O, 5–15 μM) was hydroponically applied to Zea mays variety OSSK-713-roots under heat and/or PEG-induced osmotic stress (25% PEG-6000) for 8 h. The individual/combined stress caused accumulation of reactive oxygen species (ROS). While only superoxide dismutase (SOD) increased with heat stress alone, the activities of SOD, catalase (CAT) and ascorbate peroxidase (APX) increased under PEG exposure. The combination of these stresses resulted in an induction of both SOD and CAT activities. Lipid peroxidation (TBARS) levels were also high in all the stress treatments, especially under the combination treatment. Addition of Se not only improved the activities of SOD, APX and glutathione reductase (GR) in stress-treated roots, but it also changed the activities of monodehydroascorbate reductase (MDHAR) and dehydroascorbate reductase (DHAR). The findings reveal that Se has a positive effect on heat and/or osmotic stress mitigation mainly by regulating the ascorbate-glutathione cycle, especially in PEG-treated plants. Under the combined stress treatment, addition of 5 µM of exogenous Se was most effective.  相似文献   

11.
Phosphorus uptake by plant roots and arbuscular mycorrhizae (AM) hyphae can be described based on morphological and physiological uptake characteristics and parameters affecting P transport in the soil to the uptake surface. The current study aimed to quantify the relative contribution of hyphae and roots to P uptake of onion and to investigate the associated mechanisms using a mechanistic simulation model. Onion was grown in a growth chamber under controlled conditions at five levels of P supply with (M) or without (NM) AM. Uptake by onion roots and AM hyphae was simulated separately using a nutrient‐uptake model, which was developed for roots. Model parameters describing P transport in the soil, as well as morphological and physiological uptake characteristics of roots and hyphae were derived from soil and nutrient‐solution experiments. The model fairly described P uptake of M and NM plants at the highest level of P supply (28 µM P in soil solution) where roots and hyphae contributed nearly equally to P uptake of M plants. However, at lower P levels (≤0.41 µM P), hyphae accounted for nearly the whole P uptake whereas roots hardly explained any uptake. The effectiveness of AM hyphae at low P supply was well explained by their favorable morphological and physiological uptake properties. Hyphae were characterized by a diameter of 3 × 10–4 cm, a Km of 0.25 µM, and a Cmin of 0.04 µM, values that are about 200, 40, and 10 times lower, respectively, compared to those of roots. Not more than 60% of the uptake at lower levels of P supply could be explained by the sum of predicted uptake of roots and hyphae suggesting that hyphae and roots may have used mechanisms additional to those described by the model to mobilize P. This work demonstrated that mechanistic models can be useful tools to study the role of AM in P uptake of plants, although reliable estimation of model parameters, especially physiological uptake properties of AM, is still limiting this approach.  相似文献   

12.
Low selenium (Se) dietary intake has encouraged the development of fortification strategies such as SeO42- application to arable land. Selenate is highly mobile in soil systems, but it is not known whether fast abiotic retention could reduce Se loss from topsoil after SeO42- fertilisation. This work explicitly aims at fast abiotic SeO42- sorption in three soils exposed to 20–1250 µg L?1 Se in a 24-h batch experiment. This study demonstrated the susceptibility of Se sorption data to distortion when inductively coupled plasma quadrupole mass spectrometry (ICP-QMS) measurements suffered from non-spectral interferences induced by concomitant elements in an aqueous soil-derived matrix. The distribution coefficient (Kd), not exceeding 2 L kg?1 at any Se level, was shown to be a useful indicator for the extent of ion competition for sorption sites depending on the SeO42- concentration employed. Sorption experiments conducted in the presence or absence of nitrate (10 mM), sulphate (0.52 mM) and phosphate (0.21 mM) allowed three phenomena explaining different SeO42- retention behaviours found even between similar Cambisols to be proposed. Finally, we showed that the co-application of sulphate or phosphate with SeO42- might decrease Se sorption from 150–170 µg kg?1 to a net release from native Se pool.

Abbreviations: 1st IP: first ionisation potential; RSD: relative standard deviation  相似文献   


13.
ABSTRACT

The influence of sulfur (S) supply and mycorrhizal colonization on the growth and pungency of spring onion (Allium fistulosum L.) seedlings grown for four months in Perlite and nutrient solution containing three levels of sulfate [0.1, 1.75, and 4 mM sulfate (SO4 2?)] were investigated. Plants were inoculated with Glomus etunicatum, Glomus intraradices, or Glomus mosseae, and uninoculated controls were included. Shoot and root dry weights of mycorrhizal and control plants supplied with 4 mM SO4 2+ were higher than with 0.1 or 1.75 mM SO4 2?. Enzyme produced pyruvic acid (EPY) and plant sulfur concentrations increased with increasing SO4 2? supply. The EPY and plant S concentrations were usually higher in mycorrhizal plants than controls irrespective of S supply, and shoot total S concentrations and EPY were strongly correlated. Arbuscular mycorrhizal colonization appeared to make a substantial contribution to the sulfur status of spring onion, and may thus have had a strong influence on its flavor characteristics.  相似文献   

14.
A study was conducted to quantify effects of soluble aluminum (Al) and gypsum (CaSO4) on initial root growth of three varieties of tall fescue (Festuca arundinacea). Experiments were performed in a growth chamber using hydroponic solutions containing Al from 0 to74 µM in combination with CaSO4 at 0 to10 mM. Seedlings were grown for 7 d, harvested, air dried, scanned, and weighed for treatment comparisons. Significant differences in root length existed between varieties in Al‐only solutions at low Al concentrations. All varieties showed reduced root growth at concentrations greater than 37 µM Al. Increased calcium (Ca2+) and sulfate (SO4 2?) at given concentrations of Al resulted in greater root growth. Relative root growth increased approximately 30% to >80% at 37 µM Al as CaSO4 increased from 2.5 to 10 mM. A simple logistic model adequately described the effects of Al and CaSO4 on root growth (r2 = 0.86, 0.95, and 0.96 for the three varieties).  相似文献   

15.
《Journal of plant nutrition》2013,36(9):1667-1686
Abstract

To study the effects of nitrogen (N) and sulfur (S) fertility on onion (Allium cepa L.) bulb pungency, bulb fresh and dry weight, nutrient uptake and accumulation in the bulb, “Granex 33” onions were greenhouse grown using nutrient solution culture. A factorial arrangement of solutions containing 1.7, 15.0, and 41.7 mg L?1 S and 10, 50, 90, and 130 mg L?1 N were used. Bulb pungency and bulb fresh and dry weight were affected by both S and N treatments. Depletion patterns for most of the macronutrients from the nutrient solutions during plant growth were affected by N and S levels, and differed depending on the N and S combination. In certain N and S combinations, magnesium (Mg) and calcium (Ca) usage were unaffected over time. Bulb N levels increased with N fertility and decreased slightly with S availability, while bulb phosphorous levels responded linearly to N fertility. Overall changes in bulb Ca and Mg levels were minor, but were influenced by N and S fertility. Bulb S content was affected by low S and N fertility, decreasing with each. Boron levels in onion bulbs decreased with increasing N and S fertility, while bulb manganese, iron, and zinc concentrations tended to increase with increasing N availability and decrease with increasing S. Potassium, copper, and molybdenum bulb concentrations were unaffected by N or S fertility. These results have the potential of being used as a reference in developing nutritional programs designed for optimal onion performance having specific flavor intensities.  相似文献   

16.
ABSTRACT

This study investigated how sequentially exposing plants to sodium chloride (NaCl) would affect growth and the flavor quality of onion (Allium cepaL.) bulbs at harvest. In a greenhouse experiment beginning 74 d before harvest, 100 mM concentrations of NaCl were applied at biweekly intervals to onions growing in nutrient solutions. At harvest, fresh weights (FW) were measured and the bulbs were analyzed for soluble solids content (SSC), bulb pungency as measured by total pyruvate (TPY), bulb sulfur (S) and sulfate (SO4 ?2) accumulation, flavor precursors, and their biosynthetic intermediates. Bulb and leaf FW decreased linearly the earlier NaCl was added during plant growth and development. While total bulb S was significantly affected by sequential addition of NaCl, bulb SO4 ?2 was unaffected. Bulb pungency was significantly reduced by NaCl, especially when NaCl was introduced during early bulb development. NaCl generally reduced flavor precursor accumulation in a quadratic response, with the greatest depression occurring when plants were exposed to NaCl beginning in the early stages of bulbing. Significant reductions in plant growth and changes in the S-compounds associated with flavor suggested that the duration and timing of NaCl exposure are important in onion.  相似文献   

17.
Abstract

Iron (Fe) deficiency is a nutritional disorder in plants. Poncirus trifoliata is susceptible to Fe deficiency, but symptoms of Fe deficiency are rare in Ceratonia siliqua, a slow-growing species. Specimens of the two species were grown in nutrient solutions containing three Fe concentrations: without Fe (0?µM), 1?µM Fe, and either 10?µM Fe (for Ceratonia) or 40?µM Fe (for P. trifoliata). Growth, the degree of chlorosis, the plant mineral composition, and the activity of the root ferric chelate-reductase (FCR) were assessed. Ceratonia plants exposed to 1?µM Fe were efficient at using Fe in the synthesis of chlorophyll. The activity of FCR was enhanced in the total absence of Fe. In Poncirus a low activity of the FCR was observed in plants with no Fe. The balance between micronutrients in the Ceratonia roots was not affected with 1?µM Fe compared with the higher Fe concentration treatments.  相似文献   

18.
Interactions between sulfur (S) and selenium (Se) uptake and accumulation in corn (Zea mays) plants were investigated in solution culture. Two concentrations (5 and 10 μ M) of Se (as selenate) and three concentrations of S (as sulfate) (0.5, 1.5, and 2.5 mM) were used. Results showed that shoot and root biomass were affected significantly by different S concentrations in solution, but not affected by Se application when S concentrations in solution were lower than 1.5 mM. Selenium concentrations as well as Se accumulation in shoots and roots on a dry weight basis increased dramatically with increasing Se concentrations in solution. At a constant Se level, increasing S in solution reduced Se concentrations. Selenium accumulation in plants was not affected by S application, except in nutrient solution with Se at a concentration of 10 μ M. Sulfur concentrations and S accumulation in shoots increased significantly with increasing Se concentrations in solution, while those in roots were unaffected by Se addition. Solution-to-shoot transfer factors and shoot-root distribution coefficients of Se and S were also discussed. These data suggest that it is necessary to manage carefully both S and Se levels in solution or in soils for supplementation of Se in plants. Results from this study indicate that human Se nutrition can be improved by supplementation of Se in crops.  相似文献   

19.
Maize (Zea mays L.) is the most widely grown crop in Bosnia and Herzegovina especially in Northwest part of the country. Considering that, the maize is extremely sensitive to micronutrient deficiency the main aim of this study was to asses: (1) micronutrient availability in soil, (2) micronutrient status in silage maize; and (3) the relationship between micronutrient soil availability and maize plant concentration. Soil samples for micronutrient availability (n?=?112) were collected from 28 farms in 7 municipalities. Plant available micro- and macro- nutrients in soil were extracted using Mehlich-3, except plant available Se was extracted using 0.1M KH2PO4. Result showed that on average there was no significant difference between different soil types regarding their potential in plant available nutrients. P deficiency was present both, in soil and plants in whole region. Soil extractable P was ranging from 0.003–0.13?g?kg?1 and total plant P was ranging from 0.79–4.95?g?kg?1. Zinc deficiency was observed in two locations both in soil (0.71?mg?kg?1; 0.79?mg?kg?1) and plant (11.5?mg?kg?1; 15.8?mg?kg?1). Potential Se soil deficiency was observed on some locations, while Se plant status is not high enough to meet daily requirements of farm animals. Extractable soil nutrients could be used as relatively good predictor of potential soil and plant deficiencies, but soil nutrient interactions and climate conditions are highly effecting the plant uptake potential.  相似文献   

20.
Selenium (Se) is an essential micronutrient for humans and animals and can be toxic when present in high concentrations in soil and water. Many soils in Gunnison and Uncompahgre River Basins in West-Central Colorado are formed from deposits derived mainly from weathered Mancos shale that have high concentration of Se and salts. Elevated concentrations of Se and salts were detected in streams and rivers in this area. The objectives were to determine the amount and distribution of different forms of Se and relationships with physical and chemical properties for soils derived from Se-rich Mancos shale. The information may help to improve land management practices and minimize the environmental impact on natural water resources. A total of 48 topsoil samples and soils from horizons in 9 pedons were investigated. The total and water-soluble Se and other elements as well as physical and chemical properties were determined in soils. The total Se ranged from 330 to 5,673 µg/kg with a mean of 2,224 µg/kg. The water-soluble Se ranged from a minimum of 4.95 µg/kg to a maximum of 2,415 µg/kg and a mean of 338 µg/kg. A highly significant correlation was detected between the total and water-soluble Se in soils. Both the total organic carbon (TOC) and CaCO3% had significant positive correlations with the total Se. A highly significant correlation was also found between the water-soluble Se and electric conductivity (EC), as well as with the water-soluble chloride, sulfate, nitrate, molybdenum, and sodium in soils. For the pedons tested, in general, both the total and water-soluble Se increased with depth. However, the water-soluble Se concentrations were greater in shallow than deep pedons where most Se was removed from soils with drainage water. It could be concluded that Se leaching from topsoils and that dissolving from Se-rich parent materials would be a major source of elevated Se concentrations in streams/rivers for the West-Central Colorado area. To minimize the impact on water quality, an appropriate land/water management practices should be followed to minimize Se leaching from soils derived from Mancos shale.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号