首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Manganese (Mn) deficiency limits wheat productivity on sandy loam, calcareous and alkaline soils cropped with rice. Variation of wheat genotypes to sustain production and Mn use from Mn deficient condition was investigated to screen efficient genotypes. Forty-seven diverse wheat genotypes were evaluated on Mn sufficient (0.195 µM) and Mn deficient (0 µM) nutrient solution to elucidate physiological basis of Mn deficiency tolerance and to develop manganese deficiency tolerance index (MDTI). Shoot dry weight and mean Mn accumulation was 136.7% and 76.5% enhanced when Mn nutrition was improved, respectively. Efficient genotypes under limited Mn had lower root length/shoot weight ratio but higher relative shoot growth rate with higher shoot demand on root which reflected higher Mn influx. Genotypes were classified as tolerant (>0.66), semi-tolerant (0.33–0.66) and sensitive (<0.33) on the basis of MDTI (0–1 scale). Manganese efficient genotypes are most desirable for sustainable production of wheat under low Mn.  相似文献   

2.
植物铝毒害机理的研究   总被引:10,自引:0,他引:10  
本文综述了植物铝毒害机理的研究概况,包括铝毒害症状、铝的吸收、转运和信号传递、铝毒害机理等方面,提出了植物铝毒害机理研究中存在的问题。  相似文献   

3.
植物耐铝机理研究进展   总被引:13,自引:7,他引:13  
铝毒是酸性土壤上作物生产的主要限制因子,植物耐铝机理以及与耐铝有关基因的研究是近十多年来研究的热点。本文对植物耐铝的生理、遗传及分子机理的研究进展作了综述。明确了目前取得的突破性进展已使通过植物遗传育种及生物技术手段提高粮食作物耐铝性成为可能;同时,本文对今后的研究方向作了简要的讨论。  相似文献   

4.
根伸长受抑制是植物受铝毒害的主要症状,铝诱导的细胞壁组成物质的变化是其主要原因。本文主要对铝胁迫下植物根尖细胞壁组成物质如木质素、 胼胝质、 纤维素、 半纤维素、 果胶、 细胞壁多糖蛋白及相关代谢酶类在铝胁迫下的变化对根伸长的影响及生理机理的研究进展进行了综述,明确了铝胁迫诱导的植物根尖细胞壁组成物质含量、 比例及结构的变化导致细胞壁刚性降低,从而抑制细胞伸长,最终抑制根伸长。本文还指出,鉴于缺乏对同一植物甚至同一个种类的植物根尖细胞壁各主要组成物质铝胁迫下变化的系统研究,不能对造成该植物根伸长受抑制的原因做出全面合理的解释,所以今后应侧重于铝胁迫下各细胞壁组分变化在抑制根伸长中的贡献率的研究,尤其要针对主要粮食作物进行系统研究,以有效解决铝胁迫造成的产质量降低。  相似文献   

5.
Effect of Si on alleviation of Mn toxicity of barley (Hordeum vulgare L.) seedlings was investigated with special reference to the effect on Mn microdistribution and peroxidase activity. Manganese treatment was conducted by growing the seedlings in nutrient solutions containing different concentrations of Mn. Silicon treatment was conducted by growing the seedlings in the solutions with or without Si supply. Silicon supply alleviated the necrotic browning in the leaves but did not affect the chlorosis caused by Mn toxicity. Silicon treatment did not appreciably alter the uptake of Mn by the plants. Electron probe X‐ray microanalysis revealed that Mn accumulated in high concentration around the necrotic brown spots and that Si supply prevented the uneven distribution of Mn in the tissues. Increase in the level of Mn supply caused an increase in peroxidase activity in the tissues, and Si supply prvented the increase in peroxidase activity.  相似文献   

6.
Barley plants were grown hydroponically at two levels of K (3.0 and 30 mm) and Fe (1.0 and 10 μm) in the presence of excess Mn (25 μm) for 14 d in a phytotron. Plants grown under adequate K level (3.0 mm) were characterized by brown spots on old leaves, desiccation of old leaves, interveinal chlorosis on young leaves, browning of roots, and release of phytosiderophores (PS) from roots. These symptoms were more pronounced in the plants grown under suboptimal Fe level (1.0 p,M) than in the plants grown under adequate Fe level (10 μm). Plants grown in 10 μm Fe with additional K (30 mm) produced a larger amount of dry matter and released less PS than the plants grown under adequate K level (3.0 mm), and did not show leaf injury symptoms and root browning. On the other hand, the additional K supply in the presence of 1.0 μM Fe decreased the severity of brown spots, prevented leaf desiccation, and increased the leaf chlorophyll content, which was not sufficient for the regreening of chlorotic leaves. These results suggested that the additional K alleviated the symptoms of Mn toxicity depending on the Fe concentration in the nutrient solution. The concentration (per g dry matter) and accumulation (per plant) of Mn in shoots and roots of plants grown in 10 μm Fe and 30 mm K were much lower than those of the plants grown in 10 μm Fe and 3.0 mm K, indicating that additional K repressed the absorption of Mn. The concentration and accumulation of Fe in the shoots and roots of the plants grown in 10 μm Fe and 30 mm K were higher than those of the plants grown in 10 μm Fe and 3.0 mm K, indicating that the additional K increased the absorption of Fe under excess Mn level in the nutrient solution. The release of PS, chlorophyll content, and shoot Fe concentration were closely correlated.  相似文献   

7.
Barley (Hordeum vulgare L.) plants were grown hydroponically in a greenhouse for 14 d under Fe-deficient conditions before treatment for 3 h with excess Mn (25 µM) and equimolar amounts of plant-borne (phytosiderophores, PS) or synthetic (ethylene diamine tetraacetic acid, EDTA) metal chelators. The xylem sap was collected for 3 h and analyzed for PS, Fe, Mn, Zn, Cu, and citrate concentrations. Excess Mn in the feeding medium decreased the concentrations of PS, Fe, Zn, and Cu in the xylem sap. Addition of 25 µM Mn and an equimolar amount of PS to the feeding medium increased the concentrations of PS, Fe, and Cu in the xylem sap, while EDTA decreased the concentrations of PS and the above nutrients. Excess Mn in the feeding medium increased the Mn concentration in the xylem sap and this increase was more pronounced with the addition of PS to the feeding medium, while EDTA had a depressing effect. These findings suggested that the roots of Fe-deficient barley plants can enhance the absorption and/or translocation of both Mn2+ and a PS-Mn complex. Addition of excess Mn to the feeding medium, irrespective of chelators, did not affect the xylem citrate concentration, indicating that citrate may not contribute to the translocation of metal micronutrients. In the xylem sap of Fe-deficient barley plants, the concentrations of metal micronutrients were positively correlated with the concentrations of PSG  相似文献   

8.
Selenate is chemically similar to sulfate and can be taken up and assimilated by plants. Although selenium (Se) has not been shown to be essential for higher plants, Se is toxic to many crops in excess. To obtain better insights into the effects of the possible mechanism of how plants alleviates the toxicity of selenate-Se stress, the growth, Se subcellular distribution of fresh leaves, antioxidant enzyme activities and photosynthetic traits of flue-cured tobacco (FCT) through a hydroponic experiment were studied. Results revealed that the growth of FCT reduced remarkably, meanwhile the content of proline and malonaldehyde (MDA) enhanced significantly with selenate-Se stress. Selenium was mainly stored in the cytoplasm and the cell wall in fresh leaves. Cell membrane of lipid peroxidation was aggravated, and it stimulated the improvement of the activities of superoxide dismutase (SOD) and catalase (CAT), and reduced the activity of peroxidase (POD) with the selenate-Se stress. The net photosynthetic rate (Pn), stomatal conductance (Gs), transpiration rate (Tr), and intercellular CO2 concentration (Ci) of FCT were significantly reduced with selenate-Se treatments; whereas chlorophyll a, chlorophyll b, and total chlorophyll contents (chlorophyll a + b) were not significantly difference between the treatments. The above declared that it had inhibitory effect on physiological characteristics and photosynthesis of FCT with selenate-Se stress. It was inferred that the reasons of photosynthesis reduction were the main limiting factors of stomatal closure and supplying of CO2 deterioration of FCT with selenate-Se stress. Meanwhile, synthesized protein or/and amino acids storage in cytoplasm and fixed by cell wall of Se were the important methods to alleviate the toxicity and enhance the tolerance of selenate-Se stress to FCT.  相似文献   

9.
铝和镉胁迫对两个大麦品种矿质营养和根系分泌物的影响   总被引:7,自引:0,他引:7  
A hydroponic experiment was carried out to study the effect of aluminum (Al) and cadmium (Cd) on Al and mineral nutrient contents in plants and Al-induced organic acid exudation in two barley varieties with different Al tolerance. Al- sensitive cv. Shang 70-119 had significantly higher Al content and accumulation in plants than Al-tolerant cv. Gebeina, especially in roots, when subjected to low pH (4.0) and Al treatments (100 μmol L^-1 Al and 100 μmol L^-1 Al +1.0 μmol L^-1 Cd). Cd addition increased Al content in plants exposed to Al stress. Both low pH and Al treatments caused marked reduction in Ca and Mg contents in all plant parts, P and K contents in the shoots and leaves, Fe, Zn and Mo contents in the leaves, Zn and B contents in the shoots, and Mn contents both in the roots and leaves. Moreover, changes in nutrient concentrations were greater in the plants exposed to both Al and Cd than in those exposed only to Al treatment. A dramatic enhancement of malate, citrate, and succinate was found in the plants exposed to 100 μmol L^-1 Al relative to the control, and the Al-tolerant cultivar had a considerable higher exudation of these organic acids than the Al-sensitive one, indicating that Al-induced enhancement of these organic acids is very likely to be associated with Al tolerance.  相似文献   

10.
Aluminum (Al) and chromium (Cr) stresses often occur simultaneously in agricultural soils, and pose a great damage to crop growth, yield formation and product safety. In the current study, the influence of combined Al and Cr stresses on plant biomass, metal and nutrient contents was determined in comparison with that of Al or Cr stress alone. A hydroponic experiment was conducted to investigate the effect of pH, Al and Cr in the medium solution on the uptake of mineral elements as well as Al and Cr in the two barley genotypes differing in Al tolerance. Aluminum sensitive genotype Shang 70-119 had significantly higher Cr and Al contents in plants than Al-tolerant genotype Gebeina. Barley roots had much higher Al and Cr contents than above-ground plant parts. Chromium contents were much higher in the solution with pH 4.0 than in that with pH 6.5. Aluminum stress reduced phosphorus (P), calcium (Ca), magnesium (Mg), sulfur (S), copper (Cu), manganese (Mn), zinc (Zn) and boron (B) contents in roots and restrained potassium (K) and iron (Fe) from being translocated into shoots and leaves. Chromium stress resulted in reduced P, K, Mg, S, Fe, Zn and Mn contents in roots at pH 6.5 and P, K, Ca, Mg, S, Zn and Mn contents at pH 4.0. Translocation of all nutrients from roots to upper parts of plants was inhibited except Ca in pH 6.5 with Cr addition. Lower contents of all nutrients were observed at pH 4.0 as compared to pH 6.5. Combined stress of Cr and Al, on the whole, caused further reduction in mineral content in all plant parts of the two barley genotypes as compared to Al or Cr stress alone. Moreover, the reduction was more pronounced in Al sensitive genotype Shang 70-119.  相似文献   

11.
通过水培试验,探讨了铅对生长在含过量锰溶液中的水稻生长及某些营养指标的影响。结果表明:铅对水稻锰毒有明显的拮抗作用,它能促进受锰毒害的水稻长高和分蘖,并提高水稻的生物产量;铅能促进受锰毒害的水稻对铁的吸收,提高稻叶铁、叶绿素含量以及过氧化氢酶活性,降低过氧化物酶活性;铅也会抑制水稻对氮、磷、钾等营养元素的吸收,降低体内的含量。  相似文献   

12.
Productivity of cereal crops growing in acid soils of Southern Chile have adversely being affected by acidification and aluminum phytotoxicity. For overcoming such constraints, farmers need to apply heavy amounts of lime and/or use AI-tolerant plants especially with AI-sensitive crops, as barley is. The objectives of this study were to determine the degree of Al tolerance of . three barley cultivars commonly grown in volcanic soils by using two shortterm screening methods and to relate their rankings with field experiments. Additionally, the amounts of citric and malic acids exuded from roots were determined for studying the mechanism involved in Al tolerance. Relative root length (RRL) was the criterion used to evaluate Al tolerance both in nutrient solution and in soil-based culture and yield for field experiments. Results showed a close relationship between the RRL values obtained with the three barley cultivars by applying the two short-term screening methods. Barley yields obtained in field experiments carried out in two soils differing in Al contents agreed well with the ranking observed in the laboratory suggesting that the short-term screening methods could be a useful tool for knowing Al tolerance of cereals habitually cropped in our acidic volcanic soils. Citric and malic acids were detected mainly in the exudates from the most AI-tolerant barley which could indicate a chelation mechanism implied in such a tolerance.  相似文献   

13.
Granulometric and clay mineralogical analyses were performed on soil types differing in their genesis which had been formed on the raised coral limestone terraces and plateaux under the perhumid subtropical maritime climate of the Ryukyu Islands. The amount of clay fraction in Rendzina-like soil on the lower terrace was relatively small (8-34%) and decreased with depth, while those in Terra fusca-like soils on the middle terraces and in Terra rossa-like soil on the plateau were very large (45–78%) suggesting the occurrence of clay migration.

Rendzina-like soil mainly contained illite and metahalloysite with a moderate amount of mixed layered mineral consisting of illite and vermiculite, and a small amount of vermiculite, Al-vermiculite, goethite, and quartz. Clay mineral composition of Terra fusca-like and Mottled Terra fusca-like soils was similar to that of Rendzina-like soil except that the content of illite was lower in these soils. Terra rossa-like soil, on the other hand, mainly contained Al-vermiculite, metahalloysite, and gibbsite, indicating a highly advanced stage of hydroxyaluminium interlayering. Differences in clay mineral composition from that of Rendzina, Terra fusca, and Terra rossa soils in the European countries were recognized, in that mont-morillonite was absent and hydroxyaluminium interlayering actively proceeded in the soils studied here. This finding is considered to reflect the rapid alteration and intense hydroxyaluminium interlayering of clay minerals under the perhumid subtropical conditions.  相似文献   

14.
采用营养液培养方法,以改良毛粉802F1番茄为材料, 研究外源一氧化氮(NO,SNP为供体)对铜(Cu)胁迫下番茄幼苗铁(Fe)、 锌(Zn)、 锰(Mn)吸收分配的影响。结果显示, 50 mol/ L的 Cu2+ 胁迫下,番茄幼苗的生物量和株高显著降低了33.7% 和23.1%,外施100 mol/L SNP可显著缓解这种抑制作用, 提高Cu 胁迫下番茄幼苗根系、 茎中Fe、 Mn含量及叶柄、 叶片中Fe、 Zn含量,降低茎中Zn含量及叶柄、 叶片中Mn含量; 根系、 茎、 叶柄、 叶片Fe、 Zn及根系和茎中Mn的累积相应增加; 根系吸收的Fe、 Zn、 Mn向地上部的转运降低。Cu 胁迫下, 外源NO可显著提高番茄液泡、 细胞器的Fe、 Zn 含量, 降低根系和叶片细胞壁Fe、 Zn、 Mn含量。在作为转运组织的茎和叶柄中,Mn主要分布在细胞壁上,而在叶柄和叶片液泡、 细胞器中也有增加。表明外源NO可以调控番茄幼苗各部位及亚细胞中Fe、 Zn、 Mn的合理分布,维持胞质离子稳态和矿质营养元素平衡,缓解铜胁迫,保证番茄幼苗正常的生理代谢。  相似文献   

15.
超高产栽培条件下冬小麦对锰的吸收、积累和分配   总被引:1,自引:0,他引:1  
20042~006年冬小麦生长期间,通过田间取样研究了超高产(≥9000 kg/hm2)栽培条件下冬小麦对锰的吸收、积累和分配特点。结果表明,地上部不同器官的含锰量为11.51~37.7 mg/kg(干重)。叶片的含锰量在生育期间始终最高,开花后穗部和子粒的含锰量也较高。小麦各器官对锰的积累量,生育前期以叶片中最高,生育后期以子粒最高。各品种全株的锰积累量均随生育进程而增加,在开花后10 d到成熟期达到最大值865.51~350.0 g/hm2。冬前、开花期和成熟期对锰的累进吸收百分率分别约为12%、80%和100%。小麦吸收的锰在孕穗期前主要分配在叶片中,达50%以上;成熟期锰在整个穗部(颖壳和子粒)的分配达50%以上。全生育期小麦对锰的阶段吸收量和日吸收量均为双峰曲线,第一个峰在冬前,第二个峰在起身到开花期。说明冬前和生育中期是超高产冬小麦吸收锰的关键阶段,应通过播种前浸、拌种与生育中期叶面喷施相结合,保证关键吸收阶段充足的锰供应。  相似文献   

16.
枯草芽孢杆菌菌株B 11对广泛的植物病原真菌和细菌都具有拮抗作用。以柯斯质粒pW EB∷TNC为载体构建了枯草芽孢杆菌菌株B 11的基因文库,文库含9 000个克隆。文库克隆中插入的DNA片段平均为42.1 kb,该文库含有菌株B 11基因组中任一基因的概率为99.99%。采用平板活性检测法筛选文库,筛选到1个对茄青枯假单胞菌菌株P 13具有拮抗活性的文库克隆GXN 9527,该克隆的重组质粒pGXN 9527含有50 kb的菌株B 11的DNA。文库克隆对革兰氏阴性植物病原细菌如水稻黄单胞菌水稻变种也具有拮抗活性,而对革兰氏阳性细菌如地衣芽孢杆菌和植物病原真菌如尖孢镰刀菌西瓜专化型、立枯丝核菌、水稻稻灰梨孢菌则没有拮抗活性。分别含有pGXN 9527的18、12、9、8 kb B amHⅠ片段的亚克隆对P 13均没有拮抗活性,说明编码该拮抗物质的生物合成基因很可能成簇存在。  相似文献   

17.
Tolerance to aluminium and manganese toxicity at the seedling stage for 72 maize accessions was examined in solution culture. 0.22 mM Al and 2.0 mM Mn gave better genotypic separation for aluminium and manganese tolerance assessed on the basis respectively of relative root length, and visual symptoms of leaf chlorosis and necrosis. There was considerable variability among accessions for tolerance to aluminium and to manganese. Three accessions, Bozm 1335, Bozm 1337, and Bozm 1536 showed tolerance to Al, while 4, Chzm 01009, Champ, Bozm 0715, LG 20.80 exhibited tolerance to Mn. Accession, Zea 769 was tolerant to both metals. A significant Al x Mn interaction was found when five accessions were grown in a mixture of 0.22 mM aluminium and 2.0 mM manganese. Root length inhibition in Al alone was slightly ameliorated when the accessions were grown in the Al + Mn solution. Tolerance to aluminium and manganese does not necessarily coincide, different mechanisms being involved in tolerance to the two metals.  相似文献   

18.
淹水还原条件下红壤中葡萄糖及腐殖酸对铁锰形态的影响   总被引:2,自引:0,他引:2  
通过设置不同的葡萄糖/腐殖酸配比模拟还原性土壤体系,考察长期(约74 d)淹水培养过程中铁锰元素在土壤溶液/矿物相中的分布形态演变。结果表明:在淹水培养初期,葡萄糖的添加可以促进铁锰离子的还原溶出,同时土壤中可交换态和酸可提取态铁、以及可交换态锰的含量也会随之增加;而腐殖酸的添加则会促进土壤中可氧化态铁/锰含量的升高。随着培养时间的增加,铁锰离子浓度及各个土壤提取形态的铁锰含量大多呈现降低趋势,铁锰元素逐渐转化成提取性更低的矿物形态。因此,淹水环境中铁锰还原溶出-分布形态演变受到土壤中有机物质种类和含量的显著影响,呈现出不同的金属移动性和生物有效性。  相似文献   

19.
Acid soils are widespread and limit global plant production. Aluminum(Al)/manganese(Mn) toxicity and phosphorus(P) deficiency are the major limiting factors affecting plant growth and productivity on acid soils. Plants, however, have evolved various strategies to adapt to these stresses. These strategies include using both external and internal mechanisms to adapt to Al toxicity, regulating Mn uptake, translocation, and distribution to avoid Mn toxicity, and orchestrating a set of P transport me...  相似文献   

20.
KCl, CaCl2, NH4Cl, NaCl, K2SO4 and KF solutions were used for studying the effects of cations and anions on the dissolution of aluminum and the distribution of aluminum forms respectively. Power of exchanging and releasing aluminum of four kinds of cations was in the decreasing order Ca2+ >K+ >NH4+ >Na+. The dissolution of aluminum increased with the cation concentration. The adsorption affinity of various soils for aluminum was different. The aluminum in the soil with a stronger adsorption affinity was difficult to be exchanged and released by cations. The Al-F complexes were main species of inorganic aluminum at a low concentration of cations, while Al3+ became major species of inorganic aluminum at a high concentration of cations. The results on the effect of anions indicated that the concentrations of total aluminum, three kinds of inorganic aluminum (Al3+, Al-F and Al-OH complexes) and organic aluminum complexes (Al-OM) when SO42- was added into soil suspension were lower than those when Cl- was added. The dissolution of aluminum from soils and the distribution of aluminum forms in solution were affected by the adsorption of F- on the soil. For soils with strong affinity for F-, the concentrations of the three inorganic aluminum species in soil solution after addition of F- were lower than those after addition of Cl-; but for soils with weak affinity for F-, the concentrations of Al3+ and Al-OM were lower and the concentrations of Al-F complexes and total inorganic aluminum after addition of F- were higher than those after addition of Cl-. The increase of F- concentration in soil solution accelerated the dissolution of aluminum from soils.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号