首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract

Efficient nutrient and water use are two important considerations to obtain good harvests of wheat. This necessitates the development of an effective nutrient management technique that not only increases yield, but simultaneously can save nutrient and water use. In this context, a field experiment was conducted at Indian Agricultural Research Institute, New Delhi, India to evaluate the residual effect of sesbania and rice bean (in-situ), subabul (ex-situ) green manuring and Zinc (Zn) fertilization, using chelated Zn-ethylenediaminetetraacetic acid (Zn-EDTA) on nutrient use, yields and water productivity of wheat under rice–wheat cropping system. Among residual effects of green manure crops and Zn fertilization, sesbania and foliar spray of 0.5% chelated Zn-EDTA at 20, 40, 60 and 80 days after sowing (DAS) recorded significantly higher nutrient content and uptake and yields than other green manure crops and Zn treatments. Residual effect of sesbania saved about 46.5?×?103 and 30.5?×?103 L irrigation water per tonne of wheat over subabul and rice bean, respectively. Foliar spray of 0.5% chelated Zn-EDTA at 20, 40, 60 and 80 DAS saved about 55.5?×?103, 47?×?103 and 13?×?103 L irrigation water per tonne wheat over residual effect of 5?kg Zn ha?1 through chelated Zn-EDTA as soil application, 2.5?kg Zn ha?1 through chelated Zn-EDTA as soil application + 1 foliar spray of 0.5% chelated Zn-EDTA at flowering and foliar spray of 0.5% chelated Zn-EDTA at active tillering?+?flowering?+?grain filling, respectively. Correlation analysis showed positive correlation between Zn uptake and grain yield.  相似文献   

2.
Micronutrient and amino acid (AA) foliar fertilization has generally been sprayed onto plants to increase the crop yield. The experiment had the aim of evaluating the foliar boron (B) and AA application on grain yield (GY), physiological characteristics, nutritional status, and yield components in wheat (Triticum aestivum L.) and soybean [Glycine max (L.) Merrill] intercropping in a non-tillage system (NTS). The experiment was set up as a randomized block design with eight treatments and four replicates. The treatments had the following boron (B) rates: [0, 1, 2, 4, and 8 kg ha?1, source: boric acid (H3BO3)] + AAs (2 L ha?1) applied by foliar spraying and the additional treatments [(Control - without B and AAs), 2 kg ha?1 B, 2 L ha?1 AAs and 2 kg ha?1 B + 1 L ha?1 AAs] applied at the end of the elongation and spike beginning of wheat plants and development growth stage (V5) of soybean for two growing seasons. Boron and AAs had no influence on the physiological and yield components and had no increases in the foliar and grain B content in wheat and soybean. No matter the dose, the foliar B + AAs (2 L ha?1) application did not increase the GY in wheat-soybean under a rotational NTS in loamy soil with suitable available B.  相似文献   

3.
Abstract

To investigate the effect of foliar application of nano-chelates of iron, zinc, and manganese subjected to different irrigation conditions on physiological traits, and yield of soybean (cultivar M9), a split plot experiment was conducted in a completely randomized block design with three replications in two crop years (2016–2017). The main plot included four levels of irrigation (I): full irrigation (I 1), irrigation withhold at flowering stage (I 2), irrigation withhold at podding stage (I 3), and irrigation withhold during the grain filling period (I 4). Also, the subplot included eight levels of foliar application with Fe, Zn, Mn, Fe?+?Zn, Fe?+?Mn, Zn?+?Mn, Fe?+?Zn?+?Mn nano-chelates, and distilled water (control). The results of combined analysis of variance suggested that the effect of irrigation and foliar application of nano-chelate was significant on all traits. Water deficit stress significantly reduced the grain yield. The minimum numbers of pods per plant, number of grains per plant, 100-seed weight per plant, leaf area index, leaf chlorophyll concentration, total dry weight of plant, and the grain yield were obtained by irrigation withhold at podding stage. Foliar application of combined nano-chelates increased the soybean resistance against water shortage more considerably than the separate consumption of these elements. Under drought stress in podding stage, the application of Fe?+?Zn led to the highest yield with a mean of 2613.84?kg ha?1 where this increase was 61.1% higher than control.  相似文献   

4.
Foliar fertilization may be a viable strategy to boron supply in irrigated cropping systems with common beans (Phaseolus vulgaris), since it prevent B leaching. The aim of this work was to evaluate the economic viability and physiological parameters of the common beans production in irrigated cropping systems using sources and increasing foliar boron doses. A field experiment was carried out using an experimental block design in a factorial scheme 2?×?5?×?3, with two sources of B (boric acid and borax) and five doses: 0 (control), 2, 4, 6 e 8?kg?ha?1, with three repetitions. Foliar B applications were performed at 40 days after seeds germination, in pre-flowering stage. Physiological process (transpiration, stomatal conductance, CO2 internal concentration, net photosynthesis, and relative chlorophyll index), B level in leaves and grain yield were measured. These data were used to determine the economic viability of B fertilization in common beans. Both boric acid and borax increased B levels in common beans leaves. Borax affected some physiological process reducing stomatal conductance and increasing net photosynthesis. Using borax, the highest net photosynthesis was observed at a rate of 4?kg?ha?1, while the boric acid increased net photosynthesis linearly after increasing B doses application. An enhance of 311?kg?ha?1 in the grain yield was observed using borax related to the control (without B application); however, grain yield decreased linearly after application of increasing B doses, as boric acid. Comparing the economic viability of sources and doses of B, the highest profitability is obtained using borax at a rate of 4?kg?ha?1, which promoting a differential profit of US$534.44 per hectare compared to common beans cropping without B.  相似文献   

5.
Yield‐response correlations with old and improved soil extraction methods for boron (B) are needed. Russet Burbank potato (Solanum tuberosum L.) was grown with two, four, and six B treatments applied in 2004, 2005, and 2006, respectively. Zero and 1.1, 2.2, or 3.4 kg B ha?1 soil and 0.22 or 0.28 kg B ha?1 foliar treatments were applied. Boron fertilization did not significantly increase tuber yield or quality despite initially low hot‐water‐extractable B (0.34–0.50 mg kg?1), although postseason B for unfertilized treatments increased (0.51–0.57 mg kg?1). Soil‐applied B generally reflected B application relative to the untreated control and the low foliar rates in all three years for the four soil extractions utilized [hot water, pressurized hot water, diethylenetriaminepentaacetic acid (DTPA)–sorbitol, and Mehlich III]. Boron content of potato petiole did reflect application of B in 2 years, but tuber and peel tissues did not consistently reflect application of B.  相似文献   

6.
Scientific management of nutrients along with several other crop management practices are required for sustainable production of maize (Zea mays L.). Zinc (Zn) status of maize grown in Potohar plateau, Pakistan was monitored. A two-year field study was conducted at two sites to assess the yield of maize cultivars, i.e., hybrid (cv. NARC-2704) and local (cv. Agaiti-2002) and Zn requirement of leaves and grain using various Zn application methods. Zinc was applied by three ways, i.e., broadcast and band placement each at 3, 6 and 9 kg Zn ha?1; and foliar at 0.5, 1.0 and 1.5 kg Zn ha?1 along with recommended basal fertilization. Cultivars' response varied to Zn rates, application techniques and sites. The maximum increase in grain yield (two-year mean) at NARC site was: broadcast – hybrid, 17% and local, 13%; band placement – hybrid, 18% and local, 16%; and foliar – hybrid, 15% and local, 13%. Corresponding response at Pindi Gheb site was: broadcast – hybrid, 20% and local, 16%; band placement – hybrid, 21% and local, 17%; and foliar – hybrid, 17% and local, 15%. Zn concentration in leaves and grain of both cultivars also increased to varying extent as a result of applied Zn rates and techniques. Fertilizer Zn requirement for near-maximum grain yield (kg ha?1) was: broadcast – hybrid, 4.6 and local, 1.9; band placement – hybrid, 1.8 and local, 1.5; and foliar – hybrid, 0.28 and local, 0.26.  相似文献   

7.
Field studies were conducted to assess boron (B) requirement, critical concentrations in diagnostic parts based on yield response curves and genotypic variation by growing three peanut (Arachis hypogaea L.) cultivars (‘Golden’, ‘BARD-479’, ‘BARI-2000’) on two B-deficient calcareous soils. Boron application significantly increased pod yield of all the cultivars over control. Maximum pod yield increases were: ‘Golden’, 16?23%; ‘BARD-479’, 21?27%; and ‘BARI-2000’, 25?31%. The cultivars varied in B efficiency and cv. ‘Golden’ was the most B efficient (81?86%) while cv. ‘BARI-2000’ was the least efficient (76?80%). Boron requirements for near-maximum (95%) dry pod yield were 0.65 kg ha?1 for ‘Golden’, 0.75 kg ha?1 for BARD-479 and 0.80 kg ha?1 for BARI-2000. Critical B concentrations in shoots and seeds were: ‘Golden’, 33 mg kg?1 and 26 mg kg?1; ‘BARD-479’, 38 mg kg?1 and 31 mg kg?1; and ‘BARI-2000’, 42 mg kg?1 and 33 mg kg?1.  相似文献   

8.
The present study is based on the hypothesis that different methods of supplying boron (B) may have different effects on the yield and quality performance of tobacco crop. A field experiment was conducted to study the effect of different methods of B fertilization on the yield, quality, and leaf composition of flue-cured Virginia tobacco (cv. K-399) in 2007 at the Pakistan Tobacco Research Station, Mansehra. Three different methods (i.e., foliar spray, soil application, and root dipping at the rates of 0.25 kg ha–1, 1 kg ha–1, and 0.5 mg B L–1, respectively) in the form of boric acid along with a control (where no B was applied) were used in a randomized complete block design and replicated four times. Results revealed that different methods of B application significantly affected tobacco yield, quality, and nutrient uptake compared to the control. Maximum leaf area of 707 cm2, green leaf yield of 18553 kg ha–1, cured leaf yield of 2314 kg ha–1, grade index of 79%, nicotine content of 2.54%, and sugar content of 18.35% were noted in the treatment plot where B was applied as a foliar spray; however, in a few cases, there was no significant difference found among different methods of B application. Chloride and potassium contents were not significantly affected by any method of B fertilization. The B fertilization increased the concentration of this element in tobacco leaf, and a maximum concentration of B 48.55 mg kg–1 was noted in the foliar spray treatment. Moreover, fertilizer-use efficiency for different methods of B application revealed that foliar spray is more efficient as compared to soil application and root-dipping methods. Nutrient ratios to B such as potassium (K) / B and chloride (Cl) / B considerably decreased in tobacco leaf with increases in the concentration of B in leaves. These ratios provided some indication of the interrelationship of B with these nutrients in tobacco plants. Results also revealed that K/B and Cl/B ratios closely correlated with the grade index of tobacco leaf, and good grades of tobacco were found to be at a K/B ratio of 682 and a Cl/B ratio of 148 under the experimental conditions. The overall results indicated that the B foliar spray at the rate of 0.25 kg ha–1 significantly increased the yield, quality, and the nutrient uptake by the tobacco crop under the prevailing conditions and was more effective than other methods of B application.  相似文献   

9.
Abstract

In order to evaluate the effects of water deficit stress and foliar application of zinc (Zn) and iron (Fe) nanoparticles on physiological characters and seed yield of pinto bean, an experiment was designed as a split factorial design based on randomized complete blocks with three replications in two growing seasons (2016–2017 and 2017–2018). Treatments were included water deficit stress (normal irrigation and water deficit stress in 50% flowering), foliar application of nano-fertilizers (control, nano-Zn (1.5?g L?1), nano-Fe (2?g L?1) and combination of nano-Zn and nano-Fe) and four cultivars of pinto bean (Sadri, Coosha, Cos16, and Ghaffar). The results showed that the soluble sugars and proline content was increased under water deficit. Water deficit stress through decreasing chlorophyll and relative water content of leaves as well as the iron and zinc content of seeds, decreased seed yield and quality. The application of nano-fertilizers of zinc and iron enhanced antioxidant enzymes activity, proline and soluble sugars content as well as leaf area. Also applied nano-fertilizers improved seed quality in terms of protein content. According to obtained results the effect of foliar spray of nano-fertilizers on iron and zinc content of seeds regards to bean cultivars was different. It was concluded that the foliar application of iron combined zinc nano-fertilizers can be useful in pinto bean cultivars under water deficit stress. In both normal and water deficit Cos16 cultivar showed the better amount of studied characteristics compared to other cultivars. The results of cluster analysis of these cultivars confirmed the superiority of Cos16 cultivar.  相似文献   

10.
Abstract

Granular application of potassium (K) in soils testing high is generally not recommended. However, the effect of foliar K on rainfed wheat (Triticum aestivum L.) under these soil conditions is largely unknown. The objective of this work was to identify the effect of K fertilizer on K use efficiency (KUE), grain yield and yield components of wheat. The data were collected until 2017 in an ongoing trial established in 2007 with eight treatments; two granular K rates (0 and 50?kg K ha?1); two foliar N rates (0 and 3?kg N ha?1); and two foliar K rates (0 and 3?kg K ha?1) in a split-split plot arrangement. Treatments were applied to the same plots each season. Treatment with foliar K resulted in the highest KUE response but the effect size varied according to the accumulated precipitation during the reproductive stage. On average, KUE was enhanced in crop seasons with water constrains (<179?mm) during the growth period but the converse was true as the amount of precipitation increased. In contrast, granular K had no effect on KUE irrespective of precipitation conditions. Application of foliar K increased grain yield as compared to granular K from 2988 to 3089?kg ha?1. This enhancement was attributed to an increased number of grains per head. Therefore, foliar K application to wheat is suitable in a soil testing high K to enhance KUE and grain yield, overall in crop seasons with water constrains.  相似文献   

11.
Abstract

Muskmelon (Cucumis melo L. cv. ‘Polidor’) were grown under field conditions to investigate the effects of different nitrogen (N) levels (0, 40, 80, and 120 kg ha? 1) on plant growth, water use efficiency, fruit yield and quality (weight, sizes, and water-soluble dry matter), leaf relative water content, and macro nutrition under three different irrigation regimes. Irrigation was applied based on cumulative class A pan evaporation (Ep). Plant treatments were as follows: (1) well-watered treatment (C) received 100% replenishment of Ep on a daily basis, (2) water-stressed treatment (WS) received 75% replenishment of Ep at three-day intervals, and (3) severely water-stressed (SWS): treatment received 50% replenishment of Ep at six- day intervals. Plants grown under C at 120 kg N ha? 1 produced significantly higher biomass (175.6 g plant? 1), fruit yield (36.05 t ha? 1), fruit weight (2.25 kg fruit? 1), and leaf relative water content (93.5%) under increasing N levels than did the two deficit irrigation treatments. The WS or SWS treatments caused reductions in all parameters measured except water-soluble dry matter (SDM) concentrations in fruits compared with those receiving unstressed (C) treatment. The WS irrigation regime with 80 kg ha? 1 N significantly improved the fruit yield and size, plant dry matter, leaf area, and IWUE compared with the SWS regime. Increased N significantly enhanced foliar N in the unstressed plants. Increasing N rate in the SWS treatment did not increase fruit yield with the same trend found in the WS and C treatments with increasing N levels. The yield reduction under severe water shortage was much more severe at high N rates. Water use (ET) at the C treatment at 120 kg ha? 1 N ranged between 160 and 165 cm, while SWS reduced ET to 90 cm at 0 and 40 kg ha? 1 N. Nitrogen supply modified water use at C and WS irrigation regimes. Muskmelon yield response to N rate was quadratic and differed with the level of irrigation. This moderate water deficit (SW) may be an alternative irrigation choice with a suitable N application rate for muskmelon growers in arid and semi-arid regions if the goal is to irrigate an agricultural area with limited water supply for more growers, but not if it is maximizing economic yield. Growers should accept a significant yield reduction in exchange for water conservation.  相似文献   

12.
Boron (B) deficiency is a common factor in light-textured soils causing poor pod filling and yield in large seeded peanut. Field trials were conducted in soils having 0.20–0.45 mg kg?1 available B to find out the effectiveness of commercial-grade B sources in large seeded peanuts. B application induced early flowering, increased pods, yield and yield attributes, shelling and 100-seed weight. Soil application of 2.0 kg B ha?1 as commercial-grade Agricol, Solubor and Borosol increased these parameters to a similar degree as obtained by borax, but were superior over their foliar applications. Similarly, the responses of foliar applications of 1.0 kg B ha?1 as Chemiebor, Solubor and Borosol were more effective in humid areas. However, foliar applications led to scorching of peanut leaves during dry weather. Thus, soil application of 2.0 kg B ha?1 is essential to enhance productivity and pod filling in large seeded peanut.  相似文献   

13.
Abstract

Maize (Zea mays L.) plays an important role in the global food security, but its production is threatened by climate change, especially drought stress. Potassium (K) and zinc (Zn) are considered useful to mitigate the negative consequences of drought stress in plants. Therefore, the objective of this two-year study was to identify the best combination of K and Zn application to improve the water relations, photosynthetic pigments, yield, irrigation water use efficiency (IWUE) and grain quality of maize sown under mild and severe drought stress conditions. The consisted of three drought stress levels viz. 1) well-watered as control (WW), 2) mild drought (MD) with 25?mm of potential soil moisture deficit (PSMD), 3) severe drought (SD) with 50?mm of PSMD and six K-Zn treatments: i.e. 125, 100 and 150?kg ha?1 K with 0 and 12?kg ha?1 Zn. The results indicated that K-Zn application improved the water relations and chlorophyll contents, biological yield and grain quality, irrespective of water stress treatment. The combined application of K-Zn under mild drought stress produced statistically same biological yield and grain quality as under well-irrigated without K-Zn fertilization and also produced compratively higher IWUE, biological yield and grain quality under sverer drought stress. Hence, the application of K at 150?kg ha?1 in combination with Zn at 12?kg ha?1 might be useful to improve the maize production and grain quality under drought stress. As IWUE was low in WW conditions, therefore, irrigation scheduling must be re-evaluated for optimum water use efficiency.  相似文献   

14.
Rising soil salinity has been a major problem in the soils of Egypt in recent decades. Potassium fertilization and salicylic acid (SA) play an important role in promoting plants to tolerate salt stress and increased the yield of sugar beet crop. A field experiment on sugar beet (Beta vulgaris L.) grown on saline soil was carried out during 2014 growing season in Port Said Governorate, Egypt, to study the effect of potassium fertilization of the soil at applications of 0, 100, 150, and 200 kg potassium (K) ha?1 and foliar spray of SA by solution of 1000 mg L?1, twice (1200 L ha?1 each time) on yield and nutrient uptake. Application of 200 kg K ha?1 in combination with salicylic foliar spray gave the highest root length, root diameter, shoot and root yield, sucrose, juice purity percentage, gross sugar yield, and white possible extractable sugar, nitrogen (N), phosphorus (P), and potassium (K) content, and uptake of sugar beet. The highest increase in sucrose (20%) as well as white possible extractable sugar (184%) was obtained by 200 kg K ha?1 in combination with salicylic foliar spray compared with untreated soil with potassium fertilization and without salicylic foliar spray.  相似文献   

15.
Boron (B) deficiency frequently occurs on soils that are low in organic carbon (C) (<1.0% organic C), pH (soil pHCa <5.0), and clay content (<5% clay). Acid sands with these soil properties are common in south-western Australia (SWA). Moreover, hot calcium chloride (CaCl2) extractable B levels are commonly marginal in the acid sands of SWA. This study examined the effects of soluble and slow release soil-applied B fertilizer and foliar B sprays on crops most likely to respond to B fertilizer on these soils, canola (oil-seed rape, Brassica napus L.) and lupin (Lupinus angustifolius L.).

At 25 sites over three years, canola was grown with (0.34 kg ha-1) or without B applied as borax [sodium tetraborate decahydrate (Na2B4O7·10H2O) 11% B], and this was followed by nine experiments with B rates [0, 0.55, 1.1 kg ha?1, applied as borax or calcium borate (ulexite, NaCaB5O6(OH)6·5(H2O), 13% B] and foliar sprays (0.1% solution of solubor, 23% B) in 2000–2001. A further five sites of B rates and sources experiments were carried out with lupin in 2000–2001. Finally, foliar B sprays (5% B w/v as a phenolic complex) at flowering were tested on seven sites in farmers’ canola crops for seed yield increases. No seed yield increases to soil-applied B were found while foliar B application at flowering increased canola seed yield in only one season across seven locations. By contrast, borax fertilizer drilled with the seed at sowing decreased canola seed yield in nine of 34-farm sites, and decreased lupin yield in two of five trials. Toxicity from drilled boron fertilizer decreased yield could be explained by decreases in plant density (by 22–40%) to values lower than required for optimum seed yield. Seedling emergence was decreased by borax applied at sowing but less so by calcium borate. Foliar B spray application never reduced seed yield due to toxicity effects.

Boron fertilizer drilled with the seed increased the B concentration in plant dry matter at early to mid-flowering. Boron application decreased the oil concentration of grain of canola at four sites. The oil yield of canola was significantly decreased at seven sites.

Notwithstanding the marginal B levels on acid sands of the SWA region, care needs to be taken on use of borax fertilizer as toxicity was induced in canola and lupin; with 0.34 to 1 kg B ha?1(3-10 kg borax ha?1) at sowing depressing seed yield, mostly by decreasing plant density. Rather than making general recommendation for B fertilizer application based on 0.01M CaCl2 soil extractable B, soil and plant analysis should be used to diagnose B deficiency and B fertilizer use limited to calcium borate or foliar borax rather than soil-applied borax on low B sands.  相似文献   

16.
Abstract

A two-year field experiment was conducted to investigate the impact of short crop rotation and organic amendments on rapeseed yield under weed competition conditions. The primary experimental plots consisted of either triticale or pea as a prior crop, consisting of four subplots with either 25 tons of composted cattle manure (CCM), 150?kg urea N ha?1 (N), 25 tons composted cattle manure + 75?kg urea N ha?1 (CCM?+?N), or no urea N or manure added as the control (C0). Rapeseed seed yield was not significantly affected by previous crops, except for rapeseed grown after pea which had slightly higher seed yield (2058?kg ha?1) than those grown after triticale (1942?kg ha?1). Plants that received CCM?+?N produced the highest amount of seed yield (2447?kg ha?1), but were not significantly different from plants that received just urea N (2218?kg ha?1). Weeds gained more biomass when the previous crop was pea compared to those whose previous crop was triticale. Weeds in plots that received CCM?+?N produced the greatest biomass, followed by N, and CCM plots, respectively.  相似文献   

17.
Abstract

A field experiment was conducted at Al Malak Valley Farm, El-Sharkeya Governorate-Egypt (30°–51° N; 32°–53° E) using 15 years old productive mango (Mangifera indica L.) trees cv. Zebda. The experiment was repeated for two successive seasons (2014/2015) and (2015/2016). The trees were planted 8×8 meters apart in sandy soil under drip irrigation system using the Nile water. Treatments included three concentrations of boron (0.0, 250, 500?mg L?1) and three concentrations of nitrogen (1000, 1250, 1500?g nitrogen/tree/year). Boron was applied as foliar spray of boric acid and nitrogen was applied to the soil as ammonium sulfate. Treatments were arranged in a factorial Completely Randomized Block Design with three replicates for each treatment. Results show that boron application has improved mango tree nutritional status. Leaf nitrogen, phosphorus, potassium and boron concentrations significantly increased as the boron application rate increased. In addition, boron application resulted in significant increase in leaf total chlorophyll, total carbohydrates, total sugars, carbon/nitrogen (C/N) ratio and decrease in total phenol content. Boron showed higher impact than nitrogen on all tested parameters. The interaction treatment of 250?mg L?1 boron and 1500?g/tree nitrogen proved to be the best treatment.  相似文献   

18.
Abstract

Plant nutrition and disease suppression are among the most important management tools for producers of hard red winter wheat (Triticum aestivum L.) in the central and southern Great Plains. This study was conducted to examine the effects of phosphorus (P) (0, 15, and 30 kg ha?1) and potassium (K) (0, 37, and 74 kg ha?1) fertilization, foliar fungicide application, and cultivar disease tolerance on wheat yield, yield components, and severity of leaf rust (Puccinia triticina Eriks.). Compared with no P, fertilizing with P increased yield by as much as 60% (>1.3 Mg ha?1 increase). Yield of cultivars susceptible to leaf rust was nearly 0.6 Mg ha?1 less without K than with K fertilization. Fungicide application resulted in mean yields of 4.8 Mg ha?1 for both resistant and susceptible cultivars, however, yield of susceptible cultivars was suppressed more than yield of resistant ones without fungicide. Although P fertilization had a moderately suppressive effect on leaf rust, the increased yield was primarily due to production of about 50% more heads m?2 apparently from more prolific tillering. Similarly, K fertilization appeared to reduce leaf rust severity and improve yield by increasing kernel weight, but this response may have been related partially to chloride (Cl) in the KCl fertilizer. Correlations suggested that improving dry matter production and N, P, and K uptakes at the boot stage by P and K fertilization can reduce leaf rust severity later in the growing season and increase wheat grain yield. These results indicate that especially P fertilization, but also K fertilization and fungicide application, are important management tools for reducing disease and increasing winter wheat yield.  相似文献   

19.
Plant analysis can be a useful tool in determining the general nutritional status of crops during the growing season. For this reason, a field experiment was conducted in the Fars province of Iran during 2008 season to evaluate the concentrations of nitrogen (N), phosphorus (P) and potassium (K) in maize leaf as affected by zinc sulfate and boric acid. Treatments were arranged in a randomized complete block design with two factors and three replications. Factor one included four levels of B (0, 3 and 6 kg ha?1 B added to the soil and B foliar spray with a 0.3% concentration); factor two consisted of five levels of zinc (Zn) (0, 8, 16 and 24 kg ha?1 Zn added to the soil and Zn foliar spray with a 0.5% concentration). The results of this work showed that the main effect of Zn and B levels and interaction of Zn–B on the leaf N and P concentrations was insignificant. A synergism was seen between Zn and K and also between B and K. The presence of a high amount of Zn or B in the soil prevented from increase of leaf K content, by B or Zn application, respectively.  相似文献   

20.
Abstract

Foliar fertilization with micronutrients and amino acids (AAs) has been used to increase the grain yield and quality of different crops. The aim of the present study was to evaluate the effects of Zn and AAs foliar application on physiological parameters, nutritional status, yield components and grain yield of wheat-soybean intercropping under a no-till management. We used a randomized block experimental design consisting of eight treatments and four replicates. The treatments were five Zn rates (0, 1, 2, 4 and 8?kg ha?1) and 2?L ha?1 of AAs and three additional treatments: a control (without the Zn or AA application), 2?kg ha?1 Zn and 2?kg ha?1 Zn + 1?L AA. The treatments were applied by spraying during the final elongation stage and at the beginning of pre-earing for the wheat and in growth stage V6 for the soybean for two crop years in a Typic Oxisol (860?g kg?1 clay). Zinc foliar fertilization increased the wheat grain Zn concentrations. The Zn rates and AA foliar fertilization in soil with did not affect the physiological parameters, nutrient status or yield components. The AA application at the different concentrations tested changed the soybean grain yield and the leaf N concentration. The results suggest that Zn and amino acids application increases the grains Zn concentration in the wheat, being an important strategy to agronomic biofortification.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号