首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We measured the heat flux, temperature distribution and water content of an unsaturated Ando soil under a constant temperature gradient and reduced air pressure to investigate the mechanism of latent heat transfer in the soil and its relationship to the distribution and circulation of soil water. As the air pressure decreased, the heat flux increased for the soil samples with an initial volumetric water content ( θ ini) greater than 0.30 m3 m−3, but did not change for θ ini less than 0.20. While the temperature gradient of the sample did not change for θ ini greater than 0.30 m3 m−3, it did increase on the hotter side of the sample and decreased on the colder side for θ ini less than 0.20. The water content did not change, and a homogeneous distribution of water content was observed for θ ini greater than 0.30 m3 m−3. For θ ini less than 0.20, the water content decreased on the hotter side and increased on the colder side, forming a large water content gradient. The large transfer of latent heat was caused by the circulation of water vapour and liquid water, which resulted in the homogeneous water distribution. We concluded that the soil functions as a heat pipe through a series of micro-heat pipes centred on the soil pores. Our experimental results will help to explain the transfer mechanism of latent heat in soil as a heat pipe phenomenon.  相似文献   

2.
Abstract. This paper describes a study of 37 farms in the Batinah region of Oman where fodder crops and date palms are grown using saline irrigation water. Soil water salinities (εs) range from 2 to 50 dS m–1. Soil water salinity depends on irrigation water quality and management factors such as the amount and frequency of irrigation and the area of the irrigation basin relative to the vegetation canopy. An irrigation management model for soil salinity control IMAGE has been developed, based on the salt balance of the profile assuming that the εs is in equilibrium with the irrigation water. The input parameters required to run the model include the annual water application, irrigation interval, soil textural class, potential evaporation, the ratio of crop canopy to irrigation basin area and the salinity of irrigation water. Verification of the model using rather uncertain data from a survey of the farms showed that this simple approach predicted εs to within 2.5 dS m–1 in 82% of cases. The model showed that εs was highly sensitive to the size of irrigation basin and the amount and scheduling of irrigation, and so provides a tool for optimizing salinity management.  相似文献   

3.
The numerical density, Nv , of the pore structure of soil is the number of disjoint networks of pores per unit volume of soil. A method is described for estimating Nv of patterns of cracks that dominate in many clay subsoils. The cracks are photographed from numerous close-spaced parallel sections and skeletonized; by comparing the skeletonized photographs sequentially, individual networks are tracked from one section to another and counted. The average number of networks that appears or disappears per section in the sequence is a measure of the numerical density and is obtained by regressing the counts on the volume of soil spanned by the sections. The regressions for appearances and disappearances converge on one another and stabilize within 10 to 20 sections, so that Nv can be estimated for a sample of soil with moderate effort.
Estimates of Nv for cracks wider than 60 μm in subsoil of the Windsor series, sampled at two nearby sites and 5 years apart in time and determined from sections at 50 μm intervals, were approximately 32 cm−3 and 36cm−3. That of Nv in the Swanwick series subsoil nearby was about 75 cm−3.  相似文献   

4.
The number of sensor types available for measuring soil water content has increased but investigations to compare their performance in saline soils needs clarification. In this study the performance of commercially available, low-cost soil moisture sensors [time domain reflectometry (TDR), PR1 and WET], all measuring changes in the dielectric constant of the soil water, was evaluated under laboratory conditions in a saline sandy soil. The three sensors were also tested in the same sandy soil growing drip irrigated sorghum ( Sorghum bicolor L. cv. Moench) in a greenhouse. Plants were irrigated daily with either saline water (ECw: 9.4 dS/m) or fresh water (0.11 dS/m). The volume of irrigation was equivalent to 100% of the pan evaporation. The results showed that measurement accuracy was strongly dependent on the salinity of the soil. The PR1 sensor overestimated volumetric water content ( θ ) when the salinity level exceeded 4 dS/m [root mean square of the standard error (RMSE) = 0.009 cm3/cm3]. The WET sensor significantly overestimated θ irrespective of the salinity level (RMSE = 0.014 cm3/cm3). The TDR sensor estimated θ with more accuracy (RMSE = 0.007   cm3/cm3) and thus can be considered as more reliable than the other two sensors. The calibrations were strongly affected by the salinity level of the water, so we recommend that calibration equations are modified to take account of salinity.  相似文献   

5.
Abstract. Hydraulic properties of soils after rice cropping are generally unfavourable for wheat cultivation. Poor drainage, delayed planting and oxygen stress in the root zone may adversely affect the wheat crop after lowland rice cultivation. We studied long-term effects of lantana ( Lantana spp. L.) residue additions at 10, 20 and 30 t ha−1 yr−1 (fresh biomass) on physical properties of a silty clay loam soil under rice–wheat cropping in northwest India. At the end of ten cropping cycles, soil water retention, infiltration rate, saturated hydraulic conductivity and drying rate of soil increased significantly with lantana additions. The available water capacity (AWC), on volume basis, declined at rice harvest (from 22.0 to 18.8–20.9%), but increased at wheat harvest (from 12.9 to 13.4–15.0%) after lantana treatment. The volumes of water transmission (>50 μm) and storage pores (0.5–50 μm) were greater, while the volume of residual pores (<0.5 μm) was smaller in lantana-treated plots than in controls at both rice and wheat harvest. Infiltration rate in the lantana-treated soil was 1.6–7.9 times that of the control (61 mm d−1) at rice harvest, and 2–4.1 times that of the control (1879 mm d−1) at wheat harvest. Thus lantana addition improved soil hydraulic properties to the benefit of the wheat crop in a rice–wheat cropping sequence.  相似文献   

6.
Peat land has been considered as an alternative type of land for agricultural development especially in the tropics. In the present study, the N-supplying capacity, one of the most important soil properties in terms of crop production, of peat soils was examined. Ten peat soil samples were collected from Indonesia, Malaysia, and Japan. Gross N mineralization in the soil samples was estimated using a zero-order model, and kinetic parameters of mineralization were determined using a simple type model. Soil organic matter composition was investigated using 13C CPMAS NMR. Mineralization potential ( N 0), apparent activation energy ( E a), and mineralization rate constant ( k ) ranged between 571–2,445 mg kg−1, 281–8,181 J mol−1, and 0.009–0.020 d−1, respectively. Although none of the parameters showed a significant correlation with the soil C/N ratio, a negative correlation was observed between the k value and the ratio of the proportion of alkyl C in total C to that of O -alkyl C estimated by 13C CPMAS NMR. The latter suggested that the k values were higher in the peat soils relatively rich in readily decomposable organic matter including carbohydrates.  相似文献   

7.
Abstract. There is increasing evidence that phosphorus has been accumulating in the surface horizons of agricultural soils to the extent that some soils represent a potential diffuse source of pollution to surface waters. The relationships between equilibrium phosphorus concentration at zero sorption (EPC 0) of soil and a number of soil physicochemical variables were investigated in the surface layers of arable and grassland agricultural soils sampled from the Thame catchment, England. Soil EPC0 could be predicted from an equation including soil test (Olsen) P, soil phosphate sorption index (PSI) and organic matter content (OM) (R2=0.88; P <0.001) across a range of soil types and land use. The simple index Olsen P/PSI was found to be a good predictor of EPC0 (R2=0.77; P <0.001) and readily desorbable (0.02 m KCl extractable) P (R2=0.73; P <0.001) across a range of soil types under arable having soil organic matter contents of <10%.  相似文献   

8.
Relative gas diffusivity (D/D0) was measured in peat cores equilibrated to set moisture tensions between zero and - l0 kPa, using the radioactive gas 85Kr. A relationship between relative diffusivity and the air filled porosity was obtained, which showed lower values of D/D0 at air-filled porosities above about 0.13m3m−3, and higher values at porosities below about 0.10m3m−3 than some of those found in the literature for mineral soils. The likely effects of shrinkage behaviour on drying in the field, on the relationship between D/D0 and air-filled porosity, are discussed.  相似文献   

9.
Abstract. We studied the effects of red deer grazing and fence-line pacing on soil losses of contaminants (suspended sediment, Escherichia coli , phosphorus) and nitrogen species (ammonia, nitrate) via overland flow and soil physical properties (macroporosity, bulk density, saturated hydraulic conductivity, K sat) soon after (1 day) and 6 weeks after grazing on a Pallic pastoral soil in southern New Zealand. Fence-line pacing decreased the soil volume occupied by water, macroporosity and K sat, while increasing suspended sediment (to 0.226 g 100 mL−1), total P (to 2.0 mg L−1), mainly as particulate P (up to 90% of total P), and E. coli (to 3.52 log10 c.f.u. 100 mL−1) concentrations in overland flow at 1 day after grazing compared with soils from the rest of the paddock (0.148 g 100 mL−1, 0.86 mg L−1 and 2.86 log10 c.f.u. 100 mL−1, respectively). Although concentrations in overland flow were less at 6 weeks after grazing than at 1 day after grazing, losses of P, especially in fence-line soils, were still above recommended limits for surface water quality. Compared to P, losses of N species would be unlikely to have a significant impact on downstream water quality. Management strategies should be directed towards minimizing the occurrence of fence-line pacing to prevent contaminant loss and maintain water and soil quality.  相似文献   

10.
Abstract. Agricultural soils are important sources of the tropospheric ozone precursor NO and the greenhouse gas N2O. Emissions are controlled primarily by parameters that vary the soil mineral N supply, temperature and soil aeration. In this field experiment, the importance of soil physical properties on emissions of NO and N2O are identified. Fluxes were measured from 13 soils which belonged to 11 different soil series, ranging from poorly drained silty clay loams to freely drained sandy loams. All soils were under the same soil management regime and crop type (winter barley) and in the same maritime climate zone. Despite this, emissions of NO and N2O ranged over two orders of magnitude on all three measurement occasions, in spring before and after fertilizer application, and in autumn after harvest. NO emissions ranged from 0.3 to 215 μg NO-N m–2 h–1, with maximum emissions always from the most sandy, freely drained soil. Nitrous oxide emissions ranged from 0 to 193 μg N2O-N m–2 h–1. Seasonal shifts in soil aeration caused maximum N2O emissions to switch from freely drained sandy soils in spring to imperfectly drained soils with high clay contents in autumn. Although effects of soil type on emissions were not consistent, N2O emission was best related to a combination of bulk density and clay content and the NO/N2O ratio decreased logarithmically with increasing water filled pore space.  相似文献   

11.
Abstract. The behaviour of potassium (K) in a range of arable soils was examined by plotting the change in exchangeable K of the topsoil (Δ Kex) at the end of a 3–5 year period against the K balance over the same period (fertilizer K applied minus offtake in crops, estimated from farmers' records of yield and straw removal). Based on the assumption that values for offtake per tonne of crop yield used for UK arable crops MAFF 2000) are valid averages, 10–50% of Δ Kex was explained by the balance, relationships being stronger on shallow/stony soils. Excess fertilizer tended to increase Kex and reduced fertilization decreased it, requiring between 1.2 and 5.4 kg K ha−1 for each mg L−1Δ Kex. However, merely to prevent Kex falling required an extra 20 kg K ha−1 yr−1 fertilizer on Chalk soils and soils formed in the overlying Tertiary and Quaternary deposits, despite clay contents >18%. Whereas, on older geological materials, medium soils needed no extra K and clays gained 17 kg K ha−1 yr−1. It is unlikely that the apparent losses on some soil types are anomalies due to greater crop K contents. Theory and the literature suggest leaching from the topsoil as a major factor; accumulation in the subsoil was not measured. Recommendations for K fertilization of UK soils might be improved by including loss or gain corrections for certain soil types.  相似文献   

12.
Abstract. We examined the effect on soil nutrient status and sustainability of water percolation through an irrigated paddy field in Japan, to the depth of drainage (40 cm). The difference between amounts of nutrients leached by percolation and those supplied by irrigation indicated that 25–130 kg ha−1 Ca, 8–24 kg ha−1 Mg, from −1 to 9 kg ha−1 K, and 8–17 kg ha−1 Fe, respectively, were lost each year from the 0–40 cm soil layer during rice cultivation, when the supply from fertilization and rainfall and the loss in grain harvest were not accounted for. When the supply of K from rainfall and the loss in grain harvest were taken into account, a total K loss of about 10 kg ha−1 was estimated. The electrical neutrality of inorganic ions in the percolating water was always maintained. From these results we estimate that the amounts of exchangeable Ca and Mg in the soil to a depth of 40 cm would decrease by 50% within 50–260 and 30–100 years, respectively, if similar management were continued without fertilization. The total amount of carbon dioxide (ΣCO2) leached in percolating water during the period of rice cultivation was 120–325 kg C ha−1, which corresponded to 0.47–0.94% of the soil organic carbon to 40 cm depth.  相似文献   

13.
The nodulation tendency of indigenous soybean bradyrhizobia on Rj -genotype soybean cultivars was investigated using approximately 260 bradyrhizobia isolated from an Andosol with 13 soybean cultivars of five Rj -genotypes (non- Rj , Rj 2 Rj 3, Rj 3, Rj 4 and Rj 2 Rj 3 Rj 4). A dendrogram was constructed based on restriction fragment length polymorphism analysis of the polymerase chain reaction products (PCR-RFLP) of the 16S–23S rDNA internal transcribed spacer (ITS) region. Bradyrhizobium USDA strains were used as a reference. The dendrogram indicated nine clusters based on similarities among the reference strains. The ratio of beta diversity to gamma diversity ( H' β/ H' γ), which represents differences in the bradyrhizobial communities by pair-wise comparison between each cultivar, was obtained from Shannon–Wiener diversity indices. The results showed that bradyrhizobial communities among the same Rj -genotype cultivars were similar to each other, whereas bradyrhizobial communities between the Rj 2-genotype and non- Rj , Rj 3 or Rj 4-genotype cultivars were significantly different. These results suggest that the Rj 2-gene might not only affect the nodulation compatibility between Rj -genotype soybeans and bradyrhizobia, but also the nodulation tendency of the bradyrhizobia.  相似文献   

14.
Five soil pedons–two aquic and two udic Haplustalfs and one petrocalcic Natrustalf–from the Indo-Gangetic alluvial plain of Western Uttar Pradesh were investigated to evaluate the pedogenetic processes. Sand/silt ratios indicate that parent material discontinuities are insignificant. Higher K content and lower SiO2/R2O3 ratios of the non-clay fractions in Bt, rather than in the A, horizons suggest maximum weathering at or near the surface.
An almost linear relationship between decrease in molar SiO2/R2O3 and % increase in clay to about 100cm depth in all the pedons, presence of clay argillans in Bt horizons (where % clay, fine/coarse clay ratio and bulk density values are greatest), all indicate that the development of argillic horizons in these soils was due, at least partly, to lessivage of clay. Fe in clay fractions decreases with depth whilst Al increases, but in the fine earth both increase steadily with depth. This, together with crystalline iron concretions in the lower Bt horizons, suggests that in Haplustalfs these horizons are gaining clay by neoformation/ reorganization of illuviated constituents, especially A12O3.  相似文献   

15.
Emissions of nitrous oxide (N2O) and nitrogen gas (N2) from denitrification were measured using the acetylene inhibition method on drained and undrained clay soil during November 1980-June 1981. Drainage limited denitrification to about 65% of losses from undrained soil. Emissions from the undrained soil were in the range 1 to 12 g N ha–1 h–1 while those from the drained soil ranged from 0.5 to 6 g N ha–1 h–1 giving estimated total losses (N2O + N2) of 14 and 9 kgN ha–1.
Drainage also changed the fraction of nitrous oxide in the total denitrification product. During December, emissions from the drained soil (1.8±0.6 gN ha–1 h–1) were composed entirely of nitrous oxide, but losses from the undrained soil (2.7 ± 1.1 g N ha–1 h–1) were almost entirely in the form of nitrogen gas (the fraction of N2O in the total loss was 0.02). In February denitrification declined in colder conditions and the emission of nitrous oxide from drained soil declined relative to nitrogen gas so that the fraction of N2O was 0.03 on both drainage treatments. The delayed onset of N2O reduction in the drained soil was related to oxygen and nitrate concentrations. Fertilizer applications in the spring gave rise to maximum rates of emission (5–12g N ha–1 h–1) with the balance shifting towards nitrous oxide production, so that the fraction of N2O was 0.2–0.8 in April and May.  相似文献   

16.
Phosphorus (P) losses from intensively farmed dairy pastures can impair surface water quality. One of the first steps in mitigating this loss is to determine where in a field the potential for P loss is greatest. This study compared P export in overland flow from grazed pasture with areas that receive elevated P inputs and stock traffic (e.g. gateway, water trough, stream crossing and cattle lane). Intact soil blocks were removed, simulated rainfall applied and overland flow analysed for P fractions and suspended sediment (SS). Soil bulk density, hydraulic conductivity, porosity, Olsen P and water soluble P were also measured. P loss from the sites was in the order: trough > crossing > gateway > pasture. Total P losses from the trough averaged 4.20 mg P/m2 while the pasture exported 0.78 mg P/m2. In addition, runoff from lane soil was measured with total P averaging 5.98 mg P/m2, however the method used was different from the other soils. Using stepwise linear regression, Olsen P or H2O-P, % bare ground and % saturation were the most commonly occurring variables to predict P loss among the sites. This suggests that locating and minimizing the size of these areas in fields has the potential to significantly decrease P loss to surface waters.  相似文献   

17.
Abstract. The saline–sodic soils of the dryland Songnen Plain in northeast China are only slowly permeable to fresh water because of their large content of montmorillinite clay and sodium bicarbonate. Use of slightly saline groundwater containing adequate dissolved calcium and magnesium for leaching and reclamation can potentially prevent dispersion of the clay soil particles during treatment. Amelioration was evaluated using shallow, mildly saline groundwater to irrigate sorghum–corn rotations in a two-year field experiment. After two growing seasons during which a total of 400 mm of leaching water was applied, in addition to some supplemental irrigation water, the average electrical conductivity (ECe) of the top 1.2 m of the soil profile decreased from 14.5±3.5 to 2.7±0.2 dS m−1, and the sodium absorption ratio (SARe) decreased from 35.3±4.1 to 10.1±2.5 (meq L−1)0.5. The soil physical properties were improved: infiltration rate with mildly saline groundwater increased from 12.1 to 42 mm h−1. Salinity changes in the top 1.2 m of soil layers after 700 mm of leaching produced no further improvement. Crop yields produced on plots undergoing amelioration increased by 64–562% compared with the rainfed control. The improved soil conditions after leaching resulted in 59–548% greater crop yields.  相似文献   

18.
Abstract. This paper describes the development and application of a simple empirical model describing differences in water movement through a cracking clay soil at Brimstone Farm, Wiltshire, UK. An extended data set comprising readings of soil water tension has been collected from an area of 9 m2 instrumented with 4 nests each of 3 tensiometers. The cracks are responsible for considerable differences both in water pathway and flow magnitude. Variations in water flow suggested by changes in soil-water tension are described by a model developed using 'ModelMaker' and applied separately to each profile nest. The model envisages water flow to occur through three soil layers, and to be partitioned into matrix and macropore flow components. Water is lost via drainage to clay tile drains at 60 cm depth. Water flow between layers is described as a function of the hydraulic gradient using Darcy's Law, with additional drainage from structural voids within the soil. Differences in the effective hydraulic conductivity describing slow and rapid flow components equate to macro and matrix flow for each tensiometer profile. The results illustrate heterogeneous patterns of flow through a soil block and demonstrate that a comparatively simple model is able to represent satisfactorily water flow dynamics through a cracking clay soil.  相似文献   

19.
Determination of the gas diffusion coefficient D s of peat soils is essential to understand the mechanisms of soil gas transport in peatlands, which have been one of major potential sources of gaseous carbons. In the present study, we aimed at determining the D s of peat soils for various values of the air-filled porosity a and we tested the validity of the Three-Porosity Model (Moldrup et al. 2004) and the Millington-Quirk model (1961) for predicting the relative gas diffusivity, the ratio of D s to D 0, the gas diffusion coefficient in free air. Undisturbed peat soil cores were sampled from aerobic layers in the Bibai mire, Hokkaido, Japan. The MQ model reproduced the measured D s/ D 0 curves better than the TPM. The TPM, a predictive model for undisturbed mineral soils, overestimated the D s/ D 0 values for peat soils, implying that in the peat soils the pore pathways were more tortuous than those in the mineral soils. Since the changes in the D s/ D 0 ratios with the a values of a well-decomposed black peat soil tended to be more remarkable than those of other high-moor peat soils, the existence of a positive feedback mechanism was assumed, such that peat soil decomposition itself would increase the soil gas diffusivity and promote soil respiration.  相似文献   

20.
Abstract. The effect of eight years of applications of five rates (0, 134, 269, 538 and 1075 m3 ha−1 a−1) of pig slurry on the soil strength two years later were studied in a field experiment. Soil strength in the 0–150 mm depth was measured on five occasions in winter using a hand-held recording cone penetrometer. On one occasion the penetration resistance at some depths greater than 100 mm was significantly ( P < 0.001) decreased by adding more than 269 m3 of slurry ha−1 a−1. On three occasions different amounts of slurry caused significant differences in the rate of increase of penetration resistance with depth. Large applications of slurry may decrease penetration resistance because they increase organic matter, thereby increasing the water retention of the soil.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号