首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
病毒来源的免疫刺激RNA寡聚核苷酸(ORN)及其类似物是一类重要的病原相关分子模式(PAMPs),通过TLR7/8激活机体的免疫系统释放一系列干扰素和炎性细胞因子,发挥天然抗病毒免疫。ORN及其类似物可作为免疫调节剂或疫苗佐剂预防和治疗病毒病、自身免疫病和肿瘤。论文就ORN及其类似物的天然抗病毒活性和临床应用等研究进展进行综述。  相似文献   

2.
The immune stimulatory effects of synthetic CpG DNA, on porcine peripheral blood mononuclear cells (PBMC) have been reported, but little is known about CpG-induced responses in other lymphoid tissues of pigs. We investigated innate immune responses induced by CpG DNA in cells from blood, lymph nodes (LN) and spleens of pigs. Porcine PBMC and lymph node cells (LNC) were stimulated in vitro with three classes (A-, B- and C-class) of CpG oligodeoxynucleotides (ODNs), and a non-CpG control ODN. All three classes of CpG ODNs induced significant production of IFNalpha, TNFalpha, IL-1, IL-6 and IL-12 in PBMC. In contrast, in LNC, only IL-12 was stimulated by all three classes of CpG ODNs, while IFNalpha, and IL-6 were induced by A- and C-class ODNs. No TNFalpha was induced in LNC by any of the ODNs. Significant lymphocyte proliferation was induced in PBMC by all three classes of CpG ODNs and non-CpG control. However, in LNC, B- and C-class ODNs induced significant proliferation, while no proliferation was seen with A-class and non-CpG control ODN. All three classes of ODNs induced NK-like cytotoxicity in PBMC and spleen cells, but were less effective in inducing NK cytotoxicity in LNC. We then investigated the reasons for the relatively poor CpG-induced responses in LNC. Our investigations revealed that LNC had a lower frequency of IFNalpha-secreting cells and expressed low levels of TLR9 mRNA compared to PBMC. We conclude that the lower number of IFNalpha-secreting cells and receptor expression may contribute to the attenuated responses in LNC following stimulation with CpG ODN.  相似文献   

3.
4.
Synthetic agonists of TLR9 containing novel DNA structures and R'pG (wherein R=1-(2'-deoxy-beta-d-ribofuranosyl)-2-oxo-7-deaza-8-methyl-purine) motifs, referred to as immune modulatory oligonucleotides (IMOs), have been shown to stimulate T(H)-1-type-immune responses and potently reverse allergen-induced T(H)-2 responses to T(H)-1 responses in vitro and in vivo in mice. In order to investigate the immunomodulatory potential of IMOs in dogs, canine peripheral blood mononuclear cells (PBMC) from healthy dogs were stimulated with three different IMOs and a control IMO, alone or in combination with concanavalin A (ConA). Lipopolysaccharide (LPS) was used as a positive control for B lymphocyte activation. Carboxyfluorescein diacetate succinimidyl ester and phenotype staining was used to tag proliferating T and B lymphocytes (CD5(+) and CD21(+)) by flow cytometry. Real-time PCR and ELISA were processed to assay cytokine production of IFN-gamma, IL-10, TGF-beta, IL-6 and IL-10. Like LPS, IMOs alone induced neither proliferation of CD5(+) T cells nor CD21(+) B cells, but both LPS and IMO had the capacity to co-stimulate ConA and induced proliferation of B cells. In combination with ConA, one of the IMOs (IMO1) also induced proliferation of T cells. IMO1 also significantly enhanced the expression of IFN-gamma on the mRNA and protein level in canine PBMC, whereas expression of IL-10, TGF-beta and IL-4 mRNAs was not induced by any of the IMOs. These results indicate that in canine PBMC from healthy dogs, IMO1 was able to induce a T(H)-1 immune response including T- and B-cell proliferation.  相似文献   

5.
ABSTRACT: At birth, the immune system is still in development making neonates more susceptible to infections. The recognition of microbial ligands is a key step in the initiation of immune responses. It can be mimicked to stimulate the immune system by the use of synthetic ligands recognising pattern recognition receptors. In human and mouse, it has been found that neonatal cytokine responses to toll-like receptor (TLR) ligands differ in many ways from those of adults but the relevant studies have been limited to cord blood and spleen cells. In this study, we compared the responses in neonate and adult sheep to CpG oligodeoxynucleotides (ODN), a TLR9 ligand, in both a mucosal and a systemic organ. We observed that in response to CpG-ODN more IL-12 was produced by neonatal than adult sheep cells from mesenteric lymph nodes (MLN) and spleen. This higher IL-12 response was limited to the first 20 days after birth for MLN cells but persisted for a longer period for spleen cells. The major IL-12-producing cells were identified as CD14+CD11b+. These cells were poor producers of IL-12 in response to direct stimulation with CpG-ODN and required the cooperation of other MLN cells. The difference in response to CpG-ODN between neonates and adults can be attributed to both a higher proportion of CD14+CD11b+ cells in neonate lambs and their higher capacity to produce IL-15. The IL-15 increases IL-12 production by an amplifying feedback loop involving CD40.  相似文献   

6.
Natural killer (NK) cells are one of the main cellular components of the innate immune system. They play an important role in the immune response against infections as well as tumour cells and therefore have two major properties: production of immune regulatory cytokines and chemokines as well as cytolytic destruction of particular target cells. The existence of NK cells in swine is well known as well as the phenotype of resting NK cells, but their response following activation by cytokines is still poorly understood. Therefore, we tested the influence of the immune regulatory cytokines IL-2, IL-12 and IL-18 on cytolytic activity, phenotype, IFN-gamma production and the accumulation of perforin in cytoplasm of peripheral blood mononuclear cells (PBMC) as well as purified NK cells. NK cells were enriched from PBMC using a magnetic cell separation (MACS) strategy with monoclonal antibodies against CD3, CD21 and SWC3, thereby removing T-, B- and myeloid cells. Respective fractions were used in flow cytometry (FCM) based cytolytic assays with the human tumour cell line K562 as target. After stimulation with the cytokines described above, the NK cell enriched CD3(-)CD21(-)SWC3(-) fraction showed an evident increase in the cytolytic activity compared to PBMC. This enhanced cytolytic activity was accompanied by a strong enrichment of IFN-gamma producing cells when a combination of all three cytokines (IL-2/IL-12/IL-18) was used; as determined in ELISPOT assays and intracellular staining of IFN-gamma in FCM. Also, the combination of these three cytokines led to an accumulation of perforin in the cytoplasm and an up-regulation of CD25 compared to control cultures incubated in medium without cytokines. The experiments performed clearly indicate a stimulatory role and strong synergistic effects of the investigated cytokines in the activation of porcine NK cells in vitro, inducing IFN-gamma, perforin production and cytotoxicity against target cells.  相似文献   

7.
Mycobacterium avium subspecies paratuberculosis (MAP) is an intracellular pathogen that survives in the host's intestinal macrophages and causes chronic enteritis in ruminants. The subclinical stage of MAP infection is accompanied by loss of pro-inflammatory T(H)1 response, and a predominant, but ineffective, antibody-mediated T(H)2 response. How MAP interacts with the bovine immune system and suppresses T(H)1 responses is unclear. Studies carried out in our lab and others indicate that when peripheral blood mononuclear cells (PBMCs) from subclinical MAP-infected cattle are stimulated with MAP-antigen, IL-10 is up-regulated and leads to suppression of IFN-gamma expression in MAP-antigen-reactive effector T cells. IL-10 up-regulation and reduction in IFN-gamma would favor MAP survival and proliferation in macrophages. Depletion studies in PBMCs from MAP-infected cattle also revealed that the MAP responsive T-cell population that produces IL-10 is CD4(+) and CD25(+). Therefore, we hypothesize that cattle infected with MAP develop regulatory T (Treg) cells capable of producing IL-10 that in turn limits peripheral and tissue-specific T(H)1 immune responses. The aim of this review is to summarize current thinking regarding Treg cells and provide preliminary evidence that infection of cattle with MAP may lead to development of Treg cells.  相似文献   

8.
Two experimental approaches were used to investigate the immunological responses of chickens to a commercial killed Salmonella enteritidis (SE) vaccine. In the first, the effects of host age on antigen-specific proliferative responses and cytokine production were examined. Compared with non-vaccinated controls, 4-wk-old vaccinated chickens showed higher proliferation to SE LPS and flagella. The lymphoproliferation responses to these antigens of 8-mo-old vaccinated chickens were not different compared to the non-vaccinated controls. Increased production of interferon-gamma (IFN-gamma) and interleukin-2 (IL-2) by antigen-stimulated splenocytes following vaccination were, in general, more often observed in 4-wk-old compared with 8-mo-old chickens, whereas serum levels of these cytokines were consistently higher in the vaccinated birds compared with controls regardless of age. The second set of experiments were designed to determine the effects of SE vaccination on mitogen- or antigen-induced splenocyte proliferation and serum nitric oxide (NO) and cytokine levels. Splenocytes from vaccinated chickens stimulated with SE flagella showed significantly increased numbers of TCRgammadelta+ cells at 7 days post-vaccination compared with non-vaccinated birds. In contrast, no differences were noted with CD4+, CD8+, or TCRalphabeta+ cells at any time points examined. Higher levels of NO production were observed following stimulation with SE flagella at 4, 7, 11, and 14 days after SE vaccination while serum levels of IFN-gamma, IL-1, IL-6, and IL-8 were elevated only at day 7 post-vaccination. In conclusion, younger chickens mounted a more robust antigen-specific immune response to the SE vaccine compared with older birds and vaccination induced not only T-cell-mediated responses but also host innate and pro-inflammatory responses.  相似文献   

9.
Mammalian toll-like receptor 5 (TLR5) senses flagellin of several bacterial species and has been described to activate the innate immune system. To assess the role of bovine TLR5 (boTLR5) in the cattle system, we cloned and successfully expressed boTLR5 in human embryonic kidney (HEK) 293 cells, as indicated by quantitative PCR and confocal microscopy. However, in contrast to huTLR5-transfected cells, exposure of boTLR5-transfected cells to flagellin neither activated nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) nor CXCL8 production. Subsequent comparison of the flagellin response induced in human and bovine primary macrophages revealed that flagellin did not lead to phosphorylation of major signalling molecules. Furthermore, the CXCL8 and TNFα response of primary bovine macrophages stimulated with flagellin was very low compared to that observed in human primary macrophages. Our results indicate that cattle express a functional TLR5 albeit with different flagellin sensing qualities compared to human TLR5. However, boTLR5 seemed to play a different role in the bovine system compared to the human system in recognizing flagellin, and other potentially intracellular expressed receptors may play a more important role in the bovine system to detect flagellin.  相似文献   

10.
Interleukin-10 (IL-10) terminates inflammatory immune responses and inhibits activation and effector functions of T-cells, monocytes, macrophages and dendritic cells. IL-10 has also been found to be a key cytokine expressed by subpopulations of regulatory T-cells. In this report, we describe the generation and characterization of three monoclonal antibodies (mAbs) to equine IL-10. The antibodies were found to be specific for equine IL-10 using different recombinant equine cytokine/IgG fusion proteins. Two of the anti-equine IL-10 mAbs were selected for ELISA to detect secreted IL-10 in supernatants of mitogen stimulated equine peripheral blood mononuclear cells (PBMC). The sensitivity of the ELISA for detecting secreted IL-10 was found to be around 200pg/ml. The production of intracellular IL-10 was measured in equine PBMC by flow cytometry. PBMC were stimulated with phorbol 12-myristate 13-acetate (PMA) and ionomycin in the presence of the secretion blocker Brefeldin A. All three anti-IL-10 mAbs detected a positive population in PMA stimulated lymphocytes which was absent in the medium controls. Around 80% of the IL-10(+) cells were CD4(+). Another 15% were CD8(+) cells. Double staining with IL-4 or interferon-gamma (IFN-gamma) indicated that PMA and ionomycin stimulation induced 80% IL-10(+)/IFN-gamma(+) lymphocytes, while only 5% IL-10(+)/IL-4(+) cells were observed. By calculation, at least 60% of the IL-10(+)/IFN-gamma(+) cells were CD4(+) lymphocytes. This expression profile corresponds to the recently described T regulatory 1 (T(R)1) cell phenotype. In summary, the new mAbs to equine IL-10 detected native equine IL-10 by ELISA and flow cytometry and can be used for further characterization of this important regulatory cytokine in horses.  相似文献   

11.
Dendritic cells (DC) represent a heterogeneous cell family of major importance for innate immune responses against pathogens and antigen presentation during infection, cancer, allergy and autoimmunity. The aim of the present study was to characterize canine DC generated in vitro with respect to their phenotype, responsiveness to toll-like receptor (TLR) ligands and T-cell stimulatory capacity. DC were derived from monocytes (MoDC) and from bone marrow hematopoietic cells cultured with either Flt3-ligand (FL-BMDC) or with GM-CSF (GM-BMDC). All three methods generated cells with typical DC morphology that expressed CD1c, CD11c and CD14, similar to macrophages. However, CD40 was only found on DC, CD206 on MΦ and BMDC, but not on monocytes and MoDC. CD1c was not found on monocytes but on all in vitro differentiated cells. FL-BMDC and GM-BMDC were partially positive for CD4 and CD8. CD45RA was expressed on a subset of FL-BMDC but not on MoDC and GM-BMDC. MoDC and FL-DC responded well to TLR ligands including poly-IC (TLR2), Pam3Cys (TLR3), LPS (TLR4) and imiquimod (TLR7) by up-regulating MHC II and CD86. The generated DC and MΦ showed a stimulatory capacity for lymphocytes, which increased upon maturation with LPS. Taken together, our results are the basis for further characterization of canine DC subsets with respect to their role in inflammation and immune responses.  相似文献   

12.
Bacillus cereus var. toyoi enhanced systemic immune response in piglets   总被引:3,自引:0,他引:3  
Probiotic bacteria have been suggested to stimulate the host immune system. In this study we evaluated the immunomodulatory effects of probiotic Bacillus cereus var. toyoi on the systemic immunity of piglets. A pool of 70 piglets was divided into a probiotic or control group. We determined the ratios of peripheral blood mononuclear cell (PBMC) subsets and measured proliferative responses and cytokine production of PBMCs and effects on vaccination responses. Blood samples of probiotic-treated piglets showed a significantly lower frequency of CD8(high)/CD3+ T cells and CD8(low)/CD3+ T cells and a significant higher CD4+/CD8+ ratio. IL-4 and IFN-gamma production of polyclonally stimulated PBMCs was on average higher in the probiotic group. Specific proliferative responses of PBMCs to Influenza vaccination antigens were significantly higher and antibody titers against H3N2 Influenza and Mycoplasma vaccination antigens were on average higher in the probiotic group. In conclusion, B. cereus var. toyoi therefore alters the immune status of piglets as indicated by changes in the ratios as well as functionalities of systemic immune cell populations.  相似文献   

13.
We investigated the phenotype of the T cells (CD4+ and CD8+) that produced Th1 (IFN-gamma) and Th2 cytokines (IL-4 and IL-10) during the firsttwo weeks of experimental fasciolosis in rats. We also followed the kinetics of the cytokine and proliferative responses of hepatic mononuclear cells (HMNC) over the same period. We found that HMNC were more numerous in the infected animals than in the controls. The percentage of CD4+ cells increased significantly after infection, whereas the percentage of CD8+ cells did not change. Moreover, the frequency of the cells producing (CP) cytokine changed after infection. The frequency of CP IFN-gamma on 7 days postinfection (pi) was similar to that in control animals. However, the frequency of CP IFN-gamma was clearly lower on day 14 pi, whereas the frequency of CP IL-4 and CP IL-10 had increased. The CP IL-10-were mostly CD4+. Mitogenic stimulation (phorbol myristate acetate/ionomycin) of HMNC led to an increase in the amounts of the Th2 cytokines in the supernatant on days 7 and 14 pi, with the increase more pronounced on day 14. In contrast, IFN-gamma levels also increased by day 7 pi but then decreased to below control levels by day 14. In addition, HMNC proliferation in response to mitogen followed a similar pattern to IFN-gamma production. These findings suggested that, during the first 2 weeks of infection, F hepatica induced a transient ThO cytokine profile followed by downregulation of the cellular response and the induction of a Th2 cytokine profile.  相似文献   

14.
To better understand the interaction between Mycoplasma bovis and its bovine host, we have characterized the immune response generated during an experimental lung infection with M. bovis. Proliferation ([3H]-thymidine blastogenesis) and Th1/Th2 cytokine production were used to monitor peripheral cellular immune responses. Flow cytometry analysis was used to determine T-cell subset activity by CD25 expression. Humoral immune response was monitored by the identification of antigen-specific IgG1 and IgG2 isotypes over time. Herein, we show that M. bovis antigen stimulates activation of CD4+ and CD8+ cells in vitro in a manner consistent with memory, and that gammadelta-T cells are activated by antigen in a manner consistent with innate immunity. In addition, the percentage of cells producing IFN-gamma during recall response is equal to that of IL-4 producing cells. Serological analysis shows M. bovis stimulates increased production of antigen-specific IgG1 while very little IgG2 is produced. We therefore submit that experimental lung infection of cattle with M. bovis results in a Th2-skewed immune response.  相似文献   

15.
Interferon gamma (IFN-gamma) is considered as a key mediator of protective cell-mediated immunity against intracellular pathogens in general, and against Ehrlichia ruminantium, the causative agent of tick-borne heartwater disease of ruminants, in particular. However, the source of this important cytokine in animals immunized against E. ruminantium remains largely unknown. We have analyzed in goats protected by vaccination with a killed E. ruminantium vaccine, the potential of individual, genuine (i.e., non-cloned), T cell subsets to produce IFN-gamma after antigenic recall in vitro. In all vaccinated but none control animals, E. ruminantium-induced IFN-gamma secretion was observed in 24 h stimulated blood. Flow cytometric analysis of stimulated peripheral blood mononuclear cells (PBMCs) collected after each vaccine inoculation indicated that immune CD4+ and CD8+ T cells contribute to the same extent to the production of IFN-gamma, while WC1+ T cells are less important. This was confirmed by blocking the secretion of IFN-gamma with anti-classes I and II major histocompatibility complex antibodies. Blocking experiments also suggest that CD8+ need the help of CD4+ T cells in order to produce IFN-gamma. Thus, this work underlines the key role of CD4+ T cells in the production of IFN-gamma by immune goat PBMC. It also describes, for the first time in ruminants, E. ruminantium-specific CD8+ effector T cells. Since CD4+ and CD8+ T cells collectively contribute to the production of IFN-gamma in most vaccinated animals, and since these responses are associated with protection, it may be that a recombinant vaccine will need to incorporate E. ruminantium antigens capable of driving both responses.  相似文献   

16.
17.
Toll-like receptors (TLRs) are germline-encoded pattern recognition receptors (PRRs) that activate the innate immune system. While it is clear that TLRs are important in the immune response against pathogens, they may also be exploited by some pathogens. Our objective is to determine whether feline immunodeficiency virus (FIV) infection affects TLR expression or function thereby resulting in innate immune dysfunction. To this end, we cloned partial sequences for feline TLRs 1--3, 5--8, and developed real-time PCR assays to quantify feline TLRs 1--9. TLR expression was quantified in normal cat lymphoid tissues, purified lymphocyte subsets, and FIV-infected cell lines. Different expression patterns of TLRs were found in spleen, mesenteric lymph node, retropharyngeal lymph node, thymus, intestinal intraepithelial lymphocytes, and lamina propria lymphocytes. B lymphocytes, CD4+ T cells, and CD8+ T cells all expressed TLRs 2--5, 7--9; however, the relative levels of expression varied among lymphocyte phenotypes. Infection of cell lines with FIV resulted in altered TLR expression levels that differed depending on cell type. These results demonstrate that tissue distribution of TLRs is associated with the immunological role of a particular tissue, that lymphocytes may also express these 'innate immune' receptors, and that FIV infection can alter TLR expression.  相似文献   

18.
Toll-like receptors (TLRs) are a family of functionally important receptors for recognition of pathogen-associated molecular pattern (PAMP) since they trigger the pro-inflammatory response and upregulation of costimulatory molecules, linking the rapid innate response to adaptative immunity. In human leukocytes, TLR3 has been found to be specifically expressed in dendritic cells (DC). This study examined the expression of TLR3 in canine monocytes-derived DC (cMo-DC) and PBMC using three new anti-TLR3 mAbs (619F7, 722E2 and 713E4 clones). The non-adherent cMo-DC generated after culture in canine IL-4 plus canine GM-CSF were labelled with the three anti-TLR3 clones by flow cytometry, with a strong expression shown for 619F7 and 722E2 clones. By contrast, TLR3 expression was low to moderate in canine monocytes and lymphocytes. These results were confirmed by Western blot using 619F7 and 722E2 clones and several polypeptide bands were observed, suggesting a possible cleavage of TLR3 molecule or different glycosylation states. In addition, TLR3 was detectable in immunocytochemistry by using 722E2 clone. In conclusion, this first approach to study canine TLR3 protein expression shows that three anti-TLR3 clones detect canine TLR3 and can be used to better characterize canine DC and the immune system of dogs.  相似文献   

19.
To clarify the relationship between cellular immune status and nutritive condition in periparturient dairy cows, feeding content, blood profiles, and immune condition were observed in cows from two dairy herds with different types of feed content. Immunological analyses such as leukocyte population and peripheral blood mononuclear cell (PBMC) mRNA of IFN-gamma, TNF-alpha, IL-4, and IL-10, quantified by real-time RT-PCR were performed. With regard to feed content during dry periods, there were six cows in the herd with insufficient non-structural carbohydrate (NFC) intake (group I) and six cows in the herd with sufficient NFC intake (group II). Significantly lower levels of blood glucose were observed in group I between weeks -12 and 16 compared with group II. Serum cholesterol level was significantly lower in group I between weeks 2 and 10 than in group II. The numbers of CD3+ and CD4+ T cells in group I were significantly lower than those in group II in weeks 6 and 14. The numbers of CD21+ B cells were significantly lower in group I than in group II in weeks -16, -12, 2, and 10. On the other hand, the CD4+/CD8+ ratio in group II was significantly higher than group I between weeks 2 and 14. The IFNgamma/IL-4 mRNA rate in group I was significantly lower than group II in week 6. We concluded that cellular immune depression occurrs after calving in dairy cows with low nutritional status in the periparturient period.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号