首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 62 毫秒
1.
为提取水果图像的多维特征,运用卷积神经网络深度学习技术,在LeNet-5的模型结构的基础上,设计了一个卷积神经网络结构,进而完成水果识别任务.实验结果表明,所提出的网络结构取得了较高的识别准确率.  相似文献   

2.
针对现有的车牌识别方法存在车牌无法定位且车牌字符无法正确分割等情况,提出了一种基于卷积神经网络的车牌识别技术。首先,设计了一套图像处理流程实现车牌定位和字符分割,然后,利用提出的卷积神经网络对车牌字符集进行训练、识别。所提方法可以达到98.54%以上的准确率,极大提高适用性和准确率。  相似文献   

3.
病害是我国养蚕业健康发展面临的主要威胁之一,为研究机械化养蚕模式下的家蚕病害防治方法,采用卷积神经网络进行家蚕病害图像的识别研究。首先在实际环境下,采用饲养和添食病原的方法,集中获取家蚕品种芳·秀×白·春在大蚕期的部分生长阶段下患脓病、微粒子病、白僵病、细菌病、农药中毒以及健康状态的样本,并开展图像采集工作,构建出家蚕病害图像数据集。其次采用特征融合和缩减结构的方法,对残差神经网络进行部分改进,以避免直接使用该算法会导致不必要的计算耗损。最后进行家蚕病害识别试验。结果表明:卷积神经网络能够高效准确识别家蚕病害图像,使用改进的算法在测试集上的准确率达到94.31%,与标准的残差神经网络准确率相当,但训练的参数量仅为原来的1/3,且识别效率大幅提升,更有利于网络的训练与部署。  相似文献   

4.
5.
利用卷积神经网络等图像处理技术研究识别作物病虫害是农业智能化未来发展的必然趋势,具有识别速度快、精度高等优点。综述了卷积神经网络的几种经典模型及其分别在农作物病虫害识别领域的应用成果;讨论了卷积神经网络在农业病虫害识别领域的局限性和发展趋势,以期更有利于卷积神经网络技术更好地帮助农业进步和经济发展。  相似文献   

6.
基于卷积神经网络的无人机遥感农作物分类   总被引:3,自引:0,他引:3  
针对采用长时间序列卫星影像、结合物候特征进行农作物精细分类识别精度较低的问题,将深度学习用于无人机遥感农作物识别,提出一种基于卷积神经网络的农作物精细分类方法,利用卷积神经网络提取高分辨率遥感影像中的农作物特征,通过调整网络参数及样本光谱组合,进一步优化网络结构,得到农作物识别模型。研究结果表明:卷积神经网络能够有效地提取影像中的农作物信息,实现农作物精细分类。除地块边缘因农作物种植稀疏、混杂而产生少许错分现象外,其他区域均得到较好的分类效果。经训练优化后的模型对3种农作物总体分类精度可达97.75%,优于SVM、BP神经网络等分类算法。  相似文献   

7.
基于深度学习中数字图像识别的理论,课题组构建了深层卷积神经网络,并使用网络模型对苹果树叶片进行分类试验,基于深度学习MobileNet,修改输出的全连接层尺寸,搭建了MobileNet苹果树叶分类模型,实现了Alternaria_Boltch(斑点落叶病)、Brown_Spot(褐斑病)、Grey_Spot(灰斑病)、...  相似文献   

8.
大数据背景下产生了海量图像数据,传统的图像识别方法识别玉米植株病害准确率较低,已远远不能满足需求。卷积神经网络作为深度学习中的常用算法被广泛用于处理机器视觉问题,能自动识别和提取图像特征。因此,本研究提出一种基于数据增强与迁移学习相结合的卷积神经网络识别玉米植株病害模型。该算法首先通过数据增强方法增加数据,以提高模型的泛化性和准确率;再构建基于迁移学习的卷积神经网络模型,引入该模型的训练方式,提取病害图片特征,加速卷积神经网络的训练过程,降低网络的过拟合程度;最后将该模型运用到从农田采集的玉米病害图片,进行玉米病害的精确识别。识别试验结果表明:使用数据增强与迁移学习的卷积神经网络优化算法对玉米主要病害(玉米大斑病、小斑病、灰斑病、黑穗病及瘤黑粉病)的平均识别准确度达96.6%,和单一的卷积神经网络相比,精度提高了25.6%,处理每张图片时间为0.28s,比传统神经网络缩短了将近10倍。本算法的精确度和训练速度上比传统卷积神经网络有明显提高,为玉米等农作物植株病害的识别提供了新方法。  相似文献   

9.
周永庆 《南方农机》2021,(1):116-117
针对现有的轴承故障诊断数据特征提取单一的问题,本文提出了一种基于多尺度卷积神经网络的轴承故障诊断方法,以轴承运行时采集的故障信号为研究对象,使用多个尺寸的卷积核提取原始信号,使提取到的信号更加丰富,有效解决特征提取能力不强的问题,无需人工提取故障特征.试验结果表明,该方法具有较高的轴承故障诊断准确率.  相似文献   

10.
农作物病害的精准检测与识别是推动农业生产智能化与现代化发展的重要举措。随着计算机视觉技术的发展,深度学习方法已得到快速应用,利用卷积神经网络进行农作物病害检测与识别成为近年来研究的热点。基于传统农作物病害识别方法,分析传统方法的弊端所在;立足于农作物病害检测与识别的卷积神经网络模型结构,结合卷积神经网络模型发展和优化历程,针对卷积神经网络在农作物病害检测与识别的具体应用进行分类,从基于公开数据集和自建数据集的农作物病害分类识别、基于双阶段目标检测和单阶段目标检测的农作物病害目标检测以及国外和国内的农作物病害严重程度评估3个方面,对各类卷积神经网络模型研究进展进行综述,对其性能做了对比分析,指出了基于农作物病害检测与识别的卷积神经网络模型当前存在的问题有:公开数据集上识别效果良好的网络模型在自建复杂背景下的数据集上识别效果不理想;基于双阶段目标检测的农作物病害检测算法实时性差,不适于小目标的检测;基于单阶段目标检测的农作物病害检测算法在复杂背景下检测精度较低;复杂大田环境中农作物病害程度评估模型的精度较低。最后对未来研究方向进行了展望:如何获取高质量的农作物病害数据集;如何提升网络的泛化性能;如何提升大田环境中农作物监测性能;如何进行大面积植株受病的范围定位、病害严重程度的评估以及单枝植株的病害预警。  相似文献   

11.
高效精准地提取遥感影像中的耕地对农业资源监测以及可持续发展具有重要意义,针对目前多数传统全卷积神经网络(FCN)模型在提取耕地时存在重精度而轻效率的缺陷,本文建立基于FCN的轻量级耕地图斑提取模型(LWIBNet模型),并结合数学形态学算法进行后处理,开展耕地图斑信息的自动化提取研究。该LWIBNet模型汲取了轻量级卷积神经网络和U-Net模型的优点,以Inv-Bottleneck模块(由深度可分离卷积、压缩-激励块和反残差块组成)为核心,采用高效的编码-解码结构为骨架,将LWIBNet模型分别与传统模型的耕地提取效果、经典FCN模型的轻量性和精确度进行对比,结果表明,LWIBNet模型比表现最优的传统模型Kappa系数提高12.0%,比U-Net模型的参数量、计算量、训练耗时、分割耗时分别降低96.5%、87.1%、78.2%和75%,且LWIBNet的分割精度与经典FCN模型相似。  相似文献   

12.
基于FTVGG16卷积神经网络的鱼类识别方法   总被引:3,自引:0,他引:3  
针对大多数应用场景中,大多数鱼类呈不规则条状,鱼类目标小,受他物遮挡和光线干扰,且一些基于颜色、形状、纹理特征的传统鱼类识别方法在提取图像特征方面存在计算复杂、特征提取具有盲目和不确定性,最终导致识别准确率低、分类效果差等问题,本文在分析已有的VGG16卷积神经网络良好的图像特征提取器的基础上,使用Image Net大规模数据集上预训练的VGG16权重作为新模型的初始化权重,通过增加批规范层(Batch normalization,BN)、池化层、Dropout层、全连接层(Fully connected,FC)、softmax层,采用带有约束的正则权重项作为模型的损失函数,并使用Adam优化算法对模型的参数进行更新,汲取深度学习中迁移学习理论,构建了FTVGG16卷积神经网络(Fine-tuning VGG16 convolutional neural network,FTVGG16)。测试结果表明:FTVGG16模型在很大程度上能够克服训练的过拟合,收敛速度明显加快,训练时间明显减少,针对鱼类目标很小、背景干扰很强的图像,FTVGG16模型平均准确率为97. 66%,对部分鱼的平均识别准确率达到了99. 43%。  相似文献   

13.
基于卷积神经网络的油茶籽完整性识别方法   总被引:2,自引:0,他引:2  
针对现有油茶籽色选机无法识别碎籽的问题,提出一种基于卷积神经网络的油茶籽完整性识别算法。以油茶籽完整性识别为目标,构建油茶籽图像库;基于油茶籽完整性识别任务要求,通过对Alex Net网络进行优化得到适合油茶籽完整性识别的卷积神经网络模型,该网络具有4层卷积层、2层归一化层、3层池化层和1层全连接层。为了提高网络分类准确率和实时性,从网络结构简化和超参数优化两方面对卷积神经网络进行优化,最终网络结构(CO-Net)的分类准确率、训练收敛速度和泛化性能均得到了提高。实验结果表明,优化后的网络对油茶籽完整性识别准确率达98.05%,训练时间为0.58 h,模型规模为1.65 MB,单幅油茶籽图像检测平均耗时13.91 ms,可以满足油茶籽在线实时分选的要求。  相似文献   

14.
基于卷积神经网络的草莓识别方法   总被引:6,自引:0,他引:6  
针对目前草莓识别定位大多在简单环境下进行、识别效率较低的问题,提出利用改进的YOLOv3识别方法在复杂环境中对草莓进行连续识别检测。通过训练大量的草莓图像数据集,得到最优权值模型,其测试集的精度均值(MAP)达到87. 51%;成熟草莓的识别准确率为97. 14%,召回率为94. 46%;未成熟草莓的识别准确率为96. 51%,召回率为93. 61%。在模型测试阶段,针对夜晚环境下草莓图像模糊的问题,采用伽马变换得到的增强图像较原图识别正确率有显著提升。以调和平均值(F)作为综合评价指标,对比多种识别方法在不同果实数量、不同时间段及视频测试下的实际检测结果,结果表明,YOLOv3算法F值最高,每帧图像的平均检测时间为34. 99 ms,视频的平均检测速率为58. 1 f/s,模型的识别正确率及速率均优于其他算法,满足实时性要求。同时,该方法在果实遮挡、重叠、密集等复杂环境下具有良好的鲁棒性。  相似文献   

15.
基于卷积神经网络的奶牛发情行为识别方法   总被引:6,自引:0,他引:6  
对奶牛发情的及时监测在奶牛养殖中至关重要。针对现有人工监测奶牛发情行为费时费力、计步器接触式监测会产生奶牛应激行为等问题,根据奶牛发情的爬跨行为特征,提出一种基于卷积神经网络的奶牛发情行为识别方法。构建的卷积神经网络通过批量归一化方法提高网络训练速度,以Max-pooling为下采样,修正线性单元(Rectified linear units,Re LU)为激活函数,Softmax回归分类器为输出层,结合理论分析和试验验证,确定了32×32-20c-2s-50c-2s-200c-2的网络结构和参数。经过对奶牛活动区50头奶牛6个月的视频监控,筛选了具有发情行为爬跨特征的视频150段,随机选取网络训练数据23 000幅和测试数据7 000幅,对构建的网络进行了训练和测试。试验结果表明:本文方法对奶牛发情行为识别准确率为98. 25%,漏检率为5. 80%,误识别率为1. 75%,平均单幅图像识别时间为0. 257 s。该方法能够实现奶牛发情爬跨的无接触实时监测,对奶牛发情行为具有较高的识别率,可显著提高规模化奶牛养殖的管理效率。  相似文献   

16.
基于卷积网络和哈希码的玉米田间杂草快速识别方法   总被引:6,自引:0,他引:6  
为提高作物与杂草识别的准确性,结合深度卷积网络强大的特征提取能力和哈希码便于存储和快速检索的特点,提出了基于深度卷积网络和二进制哈希码的田间杂草快速识别方法。结合预训练好的多层卷积网络,增加二进制哈希层构建杂草识别模型,并利用所采集的杂草数据集对模型进行fine-tuning。所提出的二进制哈希层可有效地的将高维杂草特征进行压缩,以便于实际田间杂草特征的存储和后续计算。在进行杂草识别时,利用训练好的模型提取输入图像的全连接层特征码和哈希特征码,与数据库中的全连接层特征码和哈希特征码进行对比,分别计算其汉明距离与欧氏距离,找出与其最相似的K张图像,统计这K张图像的标签,将其归入频率最高的一类,以达到分类识别的目的。本文通过对比不同卷积层数和不同二进制哈希码长度对杂草识别的影响,最终确定了包含4层卷积网络和128位哈希码长度的杂草识别模型。试验结果表明所提出的研究方法在田间杂草识别上可以达到98.6%准确率,并且损失函数稳定性相较于普通模型有所提高。同时在其他杂草数据集上也有良好的表现,准确率达到95.8%,说明提出的方法具有通用性。经实地测试表明利用本文提出的模型识别杂草进行对靶喷雾可以达到92.7%的杂草施药率,能够有效减少农药浪费,适用于精准喷雾。  相似文献   

17.
基于迁移学习的卷积神经网络玉米病害图像识别   总被引:17,自引:0,他引:17  
为实现小数据样本复杂田间背景下的玉米病害图像识别,提出了一种基于迁移学习的卷积神经网络玉米病害图像识别模型。在VGG-16模型的基础上,设计了全新的全连接层模块,并将VGG-16模型在Image Net图像数据集训练好的卷积层迁移到本模型中。将收集到的玉米病害图像数据集按3∶1的比例分为训练集与测试集。为扩充图像数据,对训练集原图进行了旋转、翻转等操作。基于扩充前后的训练集,对只训练模型的全连接层和训练模型的全部层(卷积层+全连接层)两种迁移学习方式进行了试验,结果表明,数据扩充和训练模型的全部层能够提高模型的识别能力。在训练模型全部层和训练集数据扩充的条件下,对玉米健康叶、大斑病叶、锈病叶图像的平均识别准确率为95. 33%。与全新学习相比,迁移学习能够明显提高模型的收敛速度与识别能力。将训练好的模型用Python开发为图形用户界面,可实现田间复杂背景下玉米大斑病与锈病图像的智能识别。  相似文献   

18.
针对多光谱图像中由于多镜头多光谱相机各通道之间存在的偏差以及传统分割方法的不适用,图像分析处理过程往往会出现无法自动化分割或分割精度较低的问题,提出采用基于相位相关算法和基于UNet的语义分割模型对田间生菜多光谱图像进行各个通道的精确配准并实现前景分割。使用Canny算法对多光谱各通道图像进行边缘提取,进而使用相位相关算法对多光谱各通道图像进行配准,单幅图像平均处理时间0.92s,配准精度达到99%,满足后续图像分割所需精度;以VGG16作为主干特征提取网络,直接采用两倍上采样,使最终输出图像和输入图像高宽相等,构建优化的UNet模型。实验结果表明:本文所提出的图像配准和图像分割网络,分割像素准确率达到99.19%,平均IoU可以达到94.98%,能够很好地对生菜多光谱图像进行前景分割,可以为后续研究作物精准表型的光谱分析提供参考。  相似文献   

19.
针对现有基于卷积神经网络的水果图像分类算法均使用池化层进行降维处理会丢失部分特征,导致分类精度有待提高的问题,提出FC-CNN(Fruit Classification Convolutional Neural Network)水果图像分类算法.该算法基于深度卷积神经网络思想,设计了一种由二维卷积层、批量规范化层和激活...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号