共查询到15条相似文献,搜索用时 61 毫秒
1.
2.
基于随机森林模型的山体滑坡空间预测研究 总被引:4,自引:0,他引:4
滑坡灾害空间分布的准确预测是实现防灾减灾的重要途径。以2010年福建省顺昌地区滑坡资料为基础数据,分别应用随机森林模型和逻辑回归模型对福建顺昌地区山体滑坡发生与滑坡因子之间的关系进行实证分析,通过模型变量筛选、模型精度分析,探讨了随机森林模型在我国南方山体滑坡空间预测中的适应性。结果表明:随机森林模型对滑坡发生数据的拟合效果比逻辑回归模型好,其对顺昌地区滑坡发生数据的预测精度为90.8%,而逻辑回归模型的预测精度为81.8%;随机森林模型对研究区滑坡发生的泛化能力比逻辑回归模型好,其预测出高危险区和较高危险区所包含的滑坡比总和为66.05%,而逻辑回归模型为63.34%。研究结果表明随机森林模型的性能优于逻辑回归模型,可用于顺昌地区基于滑坡因子的未来滑坡发生的预测预报。 相似文献
3.
基于随机森林算法的农耕区土地利用分类研究 总被引:15,自引:0,他引:15
基于随机森林算法,采用多季节、多时相光谱信息、纹理信息和地形信息进行分类研究,选出最佳分类方案对农耕区土地利用信息进行提取,并利用随机森林算法对所有特征变量进行降维,将降维后的变量分别用于随机森林、支持向量机和最大似然分类法,分析不同分类方法对农耕区土地利用类型提取的适用性。研究结果表明:基于随机森林算法的多源信息综合分类方案进行土地利用信息提取效果最佳,总体精度85.54%,Kappa系数0.835 9;利用随机森林算法进行特征选择可以在有效降低数据维度的同时保证分类精度;3种分类方法中,随机森林算法总体分类精度81.08%,分别较支持向量机和最大似然法高9.46%和5.27%。利用随机森林分类法结合多源信息能够有效对农耕区土地利用类型进行分类,为土地类型的划分提供了快捷可行的方法。 相似文献
4.
基于随机森林偏差校正的农业干旱遥感监测模型研究 总被引:1,自引:0,他引:1
以3个月尺度的标准化降水蒸散指数(SPEI3指数)为因变量,采用融合多源遥感数据的随机森林(RF)算法构建淮河流域2001—2014年作物生长季(4—10月)的农业干旱监测模型,采用简单线性回归、偏差估算法、旋转残差法和最优角度残差旋转法4种方法进行模型结果校正,以决定系数(R2)、均方根误差(RMSE)及干旱等级监测准确率对模型监测能力进行评估。选取最优校正方法,构建随机森林偏差校正干旱监测模型(Bias-correcting random forest drought condition,BRFDC),通过站点实测土壤相对湿度及干旱事件记录对模型干旱监测能力进行验证。结果表明:采用最优角度残差旋转法校正后,模型模拟精度指标R2和RMSE分别为0.897、0.874和0.335、0.362,优于其他校正方法;偏差估算法对各类干旱等级监测更为准确,尤其是对极端干旱的监测准确率最高,达到33.3%~50.0%,最终采用偏差估算法作为最优校正方法,构建BRFDC模型;相比SPEI3,BRFDC模型计算指数与大部分站点土壤相对湿度的相关性更加显著(P 0.01),适于农业干旱监测; BRFDC模型能够准确监测淮河流域2001年严重干旱事件的时空演变过程,并能有效识别极端旱情。该模型可为淮河流域农业抗旱工作的有效开展提供科学依据。 相似文献
5.
准确检测机械部件的故障是减少维修成本、生产损失和延长机器使用寿命的重要基础条件。在农业生产环境中,由于作业环境较差、干扰信号较多,导致传统故障传感器灵敏度降低,不能及时对故障进行判断与处理,故障频发。为此,选取拖拉机为研究目标,对其辅助齿轮箱进行智能故障诊断。在3种不同的转速(600、1350、2000r/min)条件下,收集了健康和故障小齿轮的振动信号,基于离散小波变换(DWT)作为信号处理,通过相关性特征选择(CFS)方法被用来进行特征选取,并采用随机森林(RF)和多层感知器(MLP)神经网络来对数据进行分类。研究结果表明:不使用特征选择的情况下,RF故障预测准确率为86.25%;在600r/min时,不使用特征选择的RF故障预测准确率为86.25%,使用CFS的最佳6个特征通过训练的RF的相应值,在600r/min时,RF故障预测准确率为92.5%;在1350r/min时,RF故障预测准确率为95.0%。 相似文献
6.
7.
基于计算机视觉的番茄营养元素亏缺识别研究 总被引:1,自引:0,他引:1
针对番茄种植中营养元素的亏缺,肉眼不易进行识别判断的问题,以番茄亏缺氮、镁营养元素为研究对象,利用CDD摄像机采集研究图像,将图像进行处理后,提取分割出可以表现亏缺氮、镁的特征图像,提取颜色特征和纹理特征,并通过遗传算法进行优化。同时,将优化的特征进行组合分析,以此建立特征模型,并确定特征向量用于分析提取出来的特征参数,建立的特征模型,并采用二叉树形式对番茄缺素识别进行研究。仿真试验结果表明:番茄种植中,采用计算机视觉技术识别亏缺氮、镁营养元素,识别准确率可以满足生产需要。种植户可以根据检测结果对番茄进行区别施肥,既能满足番茄生长的需要,又不会造成资源的浪费,符合农业可持续发展的要求。 相似文献
8.
建立了计算机视觉系统获取番茄的图像,利用0°图像的圆度特征判别番茄生理病害果中的空洞果。实验表明:该方法对生理病害果的识别准确率可以达到94%。 相似文献
9.
针对联合收割机故障精准识别机制存在的诊断速度较慢以及多种故障场景下的诊断精确度低的问题,提出一种基于CART决策树的随机森林方法完成对联合收割机的故障诊断。此方法对联合收割机主要部件的故障数据集进行特征提取,针对不同故障情景将数据分为正常—异常二分类,建立多棵CART决策树,形成随机森林诊断模型,实现联合收割机故障的快速诊断。通过基于Labview数据采集系统采集的实际故障数据,验证该方法的有效性。同时,通过对随机森林中的重要参数的对比优化设计,得出该方法模型的最优设计结构。试验结果表明,该方法达到0.965的诊断准确率,并且具有预警速度快、操作方便、鲁棒性强的优点。 相似文献
10.
基于随机森林算法的自然光照条件下绿色苹果识别 总被引:6,自引:0,他引:6
果实识别是自动化采摘系统中的重要环节,能否快速、准确地识别出果实直接影响采摘机器人的实时性和可靠性。为了实现自然光照条件下绿色苹果的识别,本文采集了果实生长期苹果树图像,并利用随机森林算法实现了绿色苹果果实的分类和识别。针对果树背景颜色和纹理特征的复杂性,尤其是绿色果实和叶片在很多特征上的相似性,论文基于RGB颜色空间进行了Otsu阈值分割和滤波处理,去除枝干等背景,得到仅剩果实和叶片的图像。然后,分别提取叶片和苹果的灰度及纹理特征构成训练集合,建立了绿色苹果随机森林识别模型,并使用像素模板验证数据集,对模型进行预测试验,正确率为90%。最后,选择10幅自然光照条件下不同的果树图像作为检测对象,使用该模型进行果实识别并使用霍夫变换绘制果实轮廓,平均识别正确率为88%。结果表明,该方法具有较高的鲁棒性、稳定性、准确性,能够用于自然光照条件下绿色果实的快速识别。 相似文献
11.
基于地理加权回归模型的亚热带地区乔木林生物量估算 总被引:2,自引:0,他引:2
基于浙江省碳汇样地调查数据,以乔木林生物量(含地上和地下生物量)为因变量,将筛选的与因变量相关性较高的因子作为解释变量,采用地理加权回归和协同克里格方法对乔木林生物量进行估算,对比分析两种估测方法的精度。结果表明:基于地理加权回归方法构建的乔木林生物量估算模型(R2adj=0.820 4,RMSE=23.021 5 t/hm2)精度优于协同克里格方法(R2adj=0.726 3,RMSE=28.054 9 t/hm2),同时使用地理加权回归方法的乔木林生物量预测值的变异系数(Cv=0.618 9)高于协同克里格法(Cv=0.585 4),由此可知地理加权回归方法因考虑了待估变量的局部变异,比协同克里格方法具有更好的拟合结果,预测精度较高。 相似文献
12.
基于随机森林模型的林地叶面积指数遥感估算 总被引:5,自引:0,他引:5
林地叶面积指数(Leaf area index,LAI)的准确估测是精准林业的重要体现。为了快速、准确、无损监测林地LAI,利用LAI-2200型植物冠层分析仪获取福建省西部森林样地的LAI数据,结合同期Pleiades卫星影像计算12种遥感植被指数,分析了各样地实测LAI数据和相应植被指数的相关性,进而使用随机森林(RF)算法构建了林地LAI估算模型,以支持向量回归(SVR)模型和反向传播神经网络(BP)模型作为参比模型,以决定系数(R~2)、均方根误差(RMSE)、平均相对误差(MAE)和相对分析误差(RPD)为指标评价并比较了模型预测精度。结果表明:全样本数据中,各植被指数与对应LAI值均呈极显著相关(P0.01),且相关系数都大于0.4;RF模型在3次不同样本组中的预测精度均高于同期的SVR模型和BP模型;3个样本组中RF模型的LAI估测值与实测值的R~2分别为0.688、0.796和0.707,RPD分别为1.653、1.984和1.731,均高于同期SVR模型和BP模型,对应的RMSE分别为0.509、0.658和0.696,MAE分别为0.417、0.414和0.466,均低于同期其他2种模型。 相似文献
13.
针对自然环境复杂背景下葡萄霜霉病检测分级困难的问题,提出了一种基于语义分割结合K-means聚类和随机森林算法的葡萄霜霉病检测分级方法,实现对葡萄霜霉病快速分级。构建了葡萄霜霉病数据集,采用HRNet v2+OCR网络建立葡萄叶片语义分割模型,提取复杂环境下葡萄叶片;采用K-means聚类算法将葡萄叶片分解为若干子区域图像,并标记少量数据集进行随机森林算法学习,实现葡萄叶片病斑分割与提取;同时在叶片提取和病斑提取过程中,设计一种像素尺寸变换方法,解决图像分辨率引起的精度低问题。基于HRNet v2+OCR网络的葡萄叶片分割模型的准确率为98.45%,平均交并比为97.23%;融合K-means聚类和随机森林(RF)算法的葡萄叶片正面、反面和正反面霜霉病病害分级准确率分别为52.59%、73.08%和63.32%,病害等级误差小于等于2级时的病害分级准确率分别为88.67%、96.97%和92.98%。研究结果表明,基于K-means聚类和随机森林算法的葡萄霜霉病检测分级方法能够准确地分割自然环境复杂背景下的葡萄叶片和葡萄霜霉病病斑,并实现葡萄霜霉病分级,为葡萄霜霉病精准防治提供了方法和... 相似文献
14.
基于随机森林的高寒湿地地区土地覆盖遥感分类方法 总被引:3,自引:0,他引:3
高寒湿地是青藏高原典型独特的生态系统,是全球气候变化的敏感地带和预警区。利用遥感技术快速、准确地分类提取高寒湿地的土地覆盖信息,对当地生态安全监测和保护具有重要意义。本文以若尔盖湿地国家级自然保护区为研究区,首先,以高分一号(GF-1)遥感影像为数据源,融合光谱特征、水体指数、地形特征、植被指数和纹理信息等26个变量进行随机森林(Random forest,RF)分类实验;然后,根据袋外数据(Out of bag,OOB)的特征变量重要性得分和精度评价结果,选出高寒湿地地区土地覆盖类型的最优分类方案和特征;最后,对特征变量进行降维,并基于相同的变量,采用极大似然法(Maximum likelihood classification,MLC)、支持向量机(Support vector machine,SVM)、人工神经网络(Artificial neural network,ANN)和RF等方法进行分类,比较不同方法的优适性。结果表明:结合GF-1影像光谱、水体、植被、纹理特征和地形信息,使用26个变量的RF模型的分类精度最高,总体精度(Overall accuracy,OA)为90.07%,Kappa系数为0.86;通过RF模型的变量重要性分析可以有效选出重要的特征信息,在降低特征变量维度的同时,还能保证较高的分类精度; 4种分类方法中,RF算法是高寒湿地地区较合适的分类方法,OA比MLC基准方法高17.63个百分点,比SVM和ANN等机器学习算法分别高6.98、6.56个百分点。 相似文献
15.
合理的果树冠层结构有利于光照的有效分布,对提升果实产量与品质有重要意义。为揭示果树冠层内部的光照分布情况,针对目前果树冠层内部光照强度获取难度大、预测精度低的问题,研究了冠层颜色特征与光照强度的对应关系,提出一种基于冠层剖面阴影特征和冠层点云颜色特征的随机森林预测模型。以纺锤形陕富6号苹果树为研究对象,首先使用Kinect 2. 0采集果树的双面点云数据,预处理后得到完整的点云数据;其次,基于改进的空间殖民算法和叶序添加规则重构果树的三维模型;最后,使用切片法,在垂直方向上将冠层模型每0. 1 m分层划分,使用POV-Ray渲染器逐层渲染阴影,同时使用光照度计,自顶向下每0. 1 m实测光照强度数据,构建以每层阴影图灰度特征和每层点云HSI颜色特征为输入,以相对光照强度为输出的随机森林网络。试验结果表明,该方法能够较为准确地预测冠层内的光照分布情况,预测值与实际值的决定系数R~2为0. 864,平均绝对百分比误差MAPE为0. 236,RF回归模型可作为苹果树冠层内光照分布预测的有效方法,为果树的剪枝、整形等研究提供参考。 相似文献