共查询到17条相似文献,搜索用时 93 毫秒
2.
喷雾参数对雾滴沉积性能影响研究 总被引:1,自引:0,他引:1
为了研究扇形喷嘴不同喷雾方式下的空间沉积情况,利用自行设计的NJS-1型植保风洞,搭建雾滴粒径测试装置与雾滴沉积分布测试装置。选用LURMARK-04F80型标准扇形喷嘴开展雾滴粒径分布与沉积特性试验,分析了喷雾压力与风速对雾滴粒径的影响,同时研究了不同风速、喷雾压力、雾流角及喷头倾角下雾滴沉积特性,并采用3种不同的计算方法对比了雾滴飘移减少百分比的影响因素。雾滴粒径分布试验结果表明,相同风速下,增大喷雾压力会导致DV0.1、DV0.5和DV0.9都变小,同时ΦVol<100μm变大,雾滴谱宽S变化不大;相同压力下,增大风速导致DV0.1和DV0.5变大,DV0.9变化较小,同时ΦVol<100μm变小,雾滴谱宽S减小。雾滴沉积分布试验结果表明,压力从0.2MPa增加至0.4MPa时,水平喷雾平面上,距离喷头2~3m处雾滴沉积量基本呈增加趋势,竖直喷雾平面上,距离地面0.1~0.2m处雾滴沉积量呈增加趋势;风速从1m/s增加至5m/s时,在水平喷雾平面以及竖直喷雾平面上,雾滴沉积量整体呈增加趋势;雾流角从-15°变化到15°时,在水平喷雾平面以及竖直喷雾平面上,雾滴沉积量明显加大;喷头倾角从0°变化到30°时,在水平喷雾平面以及竖直喷雾平面上,总体趋势是喷头倾角越大,沉积量越低,但差异不大;同时与参考喷雾相比较,采用3种计算方法得到的雾滴飘移减少百分比(DPRP)表明,喷雾压力、风速以及雾流角对雾滴飘移减少百分比影响较大,特别是侧风风速影响尤为显著。该研究可为田间喷雾作业参数的选择提供试验数据指导。 相似文献
3.
为了描述风幕式喷杆喷雾雾滴特性与飘移性能之间的关系,运用激光粒度分析仪、粒子图像测速(PIV)和集雾试验测量装置对Lechler标准扇形喷头ST110-01在不同喷雾压力、风幕出风口风速和喷雾高度情况下的雾滴粒径、速度分布和飘移进行了试验,但飘移率逐渐变大;在400~600mm时,增大喷雾高度使雾滴粒径变大,雾滴的运动速度逐渐变小且飘移率变小;增大风幕出风口风速使雾滴粒径变小,此时喷雾高度对雾滴飘移率有着很大的影响。该研究可为正确设定喷雾系统运行参数等提供参考,对风幕式喷杆喷雾能够合理地喷施药液、减少雾滴的飘移和增大雾滴覆盖面积具有重要意义。 相似文献
4.
风洞条件下雾滴飘移模型与其影响因素分析 总被引:7,自引:0,他引:7
航空喷雾作业受侧风的影响容易产生雾滴的随风飘失,影响喷雾效果。对影响雾滴飘移行为的相关因素进行了分析,运用在三维坐标系中建立的雾滴运动方程,获得了雾滴在侧风作用下的飘移预测模型,通过计算可以预测雾滴在侧风作用下的飘移距离。利用风洞通过雾滴浓度测试方法进行了不同气流条件和喷雾条件下的雾滴飘移规律的试验研究,并通过线性回归模拟法计算获得雾滴在风洞试验条件下的实际飘移距离。试验结果显示,随着气流速度增大,雾滴飘移距离明显增加,小于200μm的雾滴在侧风作用下更容易发生飘移;对于雾滴粒径在250μm以上大雾滴虽然也会沿风洞下风方向发生飘移,但其垂直方向的动能也比较大,因而飘移距离比较短。通过分析比较了试验计算的雾滴飘移距离与运动模型得到的雾滴飘移距离预测值,雾滴飘移随雾滴粒径和气流大小的变化规律的结果比较吻合,雾滴运动模型作为雾滴飘移行为的显性表达式是可行的。 相似文献
5.
6.
7.
8.
9.
采用立体布样的方法,用5mg/L的"丽春红―2R"稀释水溶液代替农药在室内进行了圆盘风扇辅助喷雾雾滴沉积分布试验,研究了用于仿形喷雾的圆盘风扇的雾滴沉积分布影响规律.试验结果表明,无风助喷雾时,雾滴沉积在短距离内急剧下降,射程短.纸卡反面,雾滴沉积明显少于有风助喷雾的雾滴沉积.有风助喷雾时,沿射程方向雾滴沉积有急剧下降和缓慢下降两个阶段.不同采样高度上,出口风速对雾滴沉积分布影响不同.纸卡正面,采样高度1.8m时,出口风速对雾滴沉积影响不大,采样高度1.5m和1.2m时,雾滴覆盖率与风机转速成正比.纸卡反面,不同的采样高度上雾滴沉积覆盖率与出口风速线性关系均显著. 相似文献
10.
风送喷雾技术被广泛运用在果园喷雾机研究中,辅助气流能够对雾滴进行二次雾化以进一步降低雾滴粒径。为进一步研究扇形喷头与辅助气流的角度和距离对雾滴粒径的影响,设计了一种喷头角度和喷头距离可调的喷雾装置,研究了喷头角度、喷头距离和喷雾压力对雾滴粒径的影响规律。结果表明:在辅助气流作用下,喷雾压力增大,雾滴粒径呈现降低趋势,但雾滴粒径均匀度先减小后增大;当喷雾压力0.3MPa、喷头角度10°~20°、喷头距离约为95mm时,雾滴粒径明显降低但雾滴粒径均匀度变大,雾滴粒径相对无辅助气流作用降低了10.35%。 相似文献
11.
通过计算流体力学软件Fluent的仿真模拟,分析现有双圆弧罩盖喷雾的流场和雾滴运动轨迹,并针对存在的问题提出了罩盖的改进方案.与改进前罩盖喷雾、常规喷雾进行了流场、雾滴运动轨迹和沉积率的仿真对比以及雾滴沉积率的风洞试验对比.仿真结果表明,改进后罩盖的流场有利于雾滴向靶标的沉降,当风速为3 m/s时 ,安装改进罩盖喷雾的雾滴沉积率为76.88%,高于改进前的63.26%和常规喷雾的50.16%.风洞试验结果表明,当风速为3 m/s时,改进罩盖的雾滴沉积率为73.35%,高于改进前的66.90%和常规喷雾的49.95%. 相似文献
12.
13.
扇形雾喷头雾滴飘失机理 总被引:9,自引:1,他引:9
为了分析雾滴飘失机理和提出针对性的防飘措施,使用相位多普勒粒子分析仪( PDPA)对常规扇形雾喷头雾化产生的喷雾扇面中的雾滴粒径与运动速度分布进行了分析.结果表明:喷雾截面上雾滴体积中值直径(VMD)分布为中间低、边缘高的凹面形态,在喷雾扇面横向和纵向对称面上,VMD形态呈二次多项式分布;易飘失雾滴主要集中在距离喷头300~500 mm喷雾扇面的中心位置;喷雾扇面截面上的夹带气流速度符合高斯分布,气流分布与空气淹没射流类似;喷雾扇面中易飘失区域是喷雾扇面末端、喷雾扇面两翼、喷雾扇面迎流面外层. 相似文献
14.
扇形喷头雾滴粒径分布风洞试验 总被引:23,自引:0,他引:23
利用开路式风洞系统和Sympatec激光粒度仪测试了参考喷头的雾谱尺寸以此作为喷头雾谱等级的依据。对扇形雾喷头在不同压力、风速、喷头与激光粒度仪距离情况下的雾滴粒径、数量和范围进行了试验。试验结果表明,压力、风速、喷头与激光粒度仪之间距离的增大,都导致扇形雾喷头的雾滴体积中径变小,尺寸小于150μm的雾滴占全部雾滴体积的百分比变大,增加了农药脱靶飘移的可能性,同时压力和风速的增大都导致部分喷头的雾谱等级降低。为了保证激光粒度仪对雾滴粒径测试结果的可靠性,可以使用风洞试验和调整喷头与激光粒度仪的距离,来减小因细小雾滴通过激光束过程中速度迅速衰减而对测量结果带来的影响。 相似文献
15.
为提高微喷灌在湿润面积上的均匀性,本文选出三种具有代表性的微喷头,测出了其水力性能特征,画出了水量分布图,进行了不同间距和不同布置形式的组合,以组合喷洒均匀系数为主要评价指标,探讨了微喷头组合的最佳布置形式。经分析:水轮型微喷头的布置间距以(0.85~0.92)R、水雾型微喷头的布置间距以(1.30~1.36)R时,其组合喷洒均匀系数较高,喷洒效果比较理想,可供设计者参考。 相似文献
16.
O’Rourke碰撞模型仅仅考虑了碰撞拉伸分离以及聚合,而忽略了碰撞反弹、反射分离以及高韦伯数下的碰撞二次破碎过程,在碰撞分区过程中也忽略了燃油物性以及碰撞环境条件的影响,使得预测的碰撞分区临界韦伯数偏低。复合碰撞模型根据相关的实验结果对碰撞分区进行油滴粘度以及碰撞环境压力修正,考虑碰撞反弹、反射分离、拉伸分离以及碰撞二次破碎过程,提高了碰撞分区的预测精度。基于复合碰撞模型,分析了油滴粘度与环境压力对喷雾碰撞过程的影响。结果表明环境压力的增加,使得碰撞反弹概率增加而聚合概率下降;燃油粘度的增加使得碰撞聚合比例增加而碰撞分离比例下降。 相似文献