首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Improving wheat production in drought‐prone areas is the key to meet the increasing global demand. The importance of root traits, especially, the structural traits such as root volume and rooting depth, has been well recognized to confer drought tolerance in wheat. However, generation of knowledge on root water uptake efficiency and its application in drought adaptation breeding had lagged behind. The main objective of this study was to evaluate the relevance of the root water uptake efficiency to biomass production under acute soil water deficit in six wheat genotypes. Pot experiments were conducted under polythene rainout shelters at Hokkaido University, Sapporo, Japan, in 2010 and 2011. Under drought that was measured as smaller critical fraction of transpirable soil water (FTSW), the root systems with less reduction water uptake efficiency were found to postpone the relative transpiration decline. This study also showed the existence of substantial genotypic variation on the root water uptake efficiency among the wheat genotypes. The expression of hydrophobic root morphology under drought environments, however, did not explain the results obtained on the relative root water uptake efficiency, indicating other regulative mechanisms in operation for the regulation of transverse water flow in the roots. These findings provide new understanding of drought adaptation in wheat through variations in the root water uptake efficiency.  相似文献   

2.
3.
类芦根系对不同强度干旱胁迫的形态学响应   总被引:6,自引:2,他引:4  
为了探讨类芦根系对干旱胁迫逆境的响应规律,为其在水土流失区推广和应用提供科学理论依据,以水土保持先锋植物类芦为研究对象,通过4个不同干旱强度胁迫的盆栽试验,测定不同干旱处理对类芦根系生物量和根系形态指标。结果表明:不同干旱强度胁迫处理,类芦根系总长度、表面积、平均直径、根系生物量的差异明显,而根体积差异较小。在不同程度干旱胁迫下,根体积、根平均直径随着干旱胁迫程度增加逐渐减小,且均比充足供水的小;而类芦根系总长度、根表面积、根系生物量、根冠比均比充足供水的大,中度干旱胁迫条件下(田间持水量40%±5%),类芦的根系长度、根表面积、根系生物量、地上部生物量、根冠比均为最大。类芦具有庞大的根系,抗旱和耐旱能力强;类芦根系增强延伸能力、扩大与土壤接触面积是对干旱逆境的形态学响应机制之一。  相似文献   

4.
Drought stress may affect sucrose accumulation of sugar beet by restricting leaf development and storage root growth. The objective of this study was to identify changes occurring in the storage root of Beta beets in growth characteristics and ions and compatible solutes accumulation under drought with regard to sucrose accumulation. Two pot experiments were conducted: (1) sugar beet well supplied with water (100 % water capacity), under continuous moderate (50 %) and severe drought stress (30 %), (2) sugar beet and fodder beet well supplied with water (100 %) and under continuous severe drought stress (30 %). Under drought stress, the ratio of storage root to leaf dry matter of sugar beet decreased indicating a different partitioning of the assimilates. The sucrose concentration of the storage root was reduced. In the root, the number of cambium rings was only slightly affected, although drought stress was implemented already 6 weeks after sowing. In contrast, the distance between adjacent rings and the cell size was considerably restricted, which points to a reduced expansion of existing sink tissues. The daily rate of sucrose accumulation in the root showed a maximum between 16 and 20 weeks after sowing in well‐watered plants, but it was considerably reduced under drought stress. The concentration of compatible solutes (K, Na, amino acids, glycine betaine, glucose and fructose) decreased during growth, while it was enhanced because of drought. However, when sucrose concentration was added, a constant sum of all examined solutes was found throughout the vegetation period. It was similar in sugar beet and in fodder beet despite different concentrations of single solutes, and the total sum was not affected by water supply. A close negative relationship between the concentration of compatible solutes and sucrose occurred. It is therefore concluded that the accumulation of compatible solutes in the storage root of Beta beets under drought might be a physiological constraint limiting sucrose accumulation.  相似文献   

5.
Plant genotypes with higher drought tolerance through improved root characteristics are poorly studied in orchardgrass. In the current research, 30 orchardgrass genotypes were polycrossed and the resulting half‐sib families evaluated under both normal and water stress environments. Under water stress conditions, values for most root traits decreased at 0–30 cm soil depth, while at 30–60 cm depths, the root length (RL), root area (RA), root volume, percentage of root dry weight (RDW) and the ratio of root to shoot were increased. We identified drought‐tolerant genotypes with a high combining ability for root characteristics and a high yield potential. High estimates of heritability as well as genetic variation for root traits indicated that phenotypic selection would be successful in order to achieve genetic progress. Indirect selection to improve dry matter yield was most efficient when selecting for RL and RDW under water stress conditions. Significant associations between a drought tolerance index and RL, RA and root volume confirmed the importance of these traits in conferring drought tolerance of orchardgrass.  相似文献   

6.
研究干旱胁迫和氮素形态对豌豆根系生长的影响,以期为旱农区豌豆的生长调控提供理论依据。采用盆栽方法,研究了2 种氮素形态下55%的土壤相对含水量进行15 天干旱胁迫对不同时期豌豆根系生长的影响。结果表明,氮素对根系生长的影响因形态而异,硝态氮有利于促进正常供水下根系的伸长生长,铵态氮有利于提高不同水分条件下的根直径。干旱胁迫对根系生长的影响也因氮素形态而异,3 种胁迫方式均显著降低了胁迫期间及花荚盛期硝态氮营养下的根长、根体积、根表面积;干旱胁迫有利于降低成熟期根系的衰败速率,产生了等量补偿或超补偿效应。综上所述,硝态氮营养有利于促进豌豆根系生长,孕蕾期干旱胁迫后复水对成熟期根系生长的补偿效果最好。  相似文献   

7.
山西省小麦苗期根系性状及抗旱特性分析   总被引:2,自引:0,他引:2  
小麦苗期根系形态是成株期根系分布的基础,与抗逆和产量密切相关,全面认识苗期根系及抗旱特性,对于抗旱优异种质的利用和早期筛选具有重要意义。采用239份山西省小麦品种(系)在土培条件下,研究了苗期根系性状及对水分胁迫的响应。结果表明,正常生长下山西小麦苗期根系性状多样性丰富,地方种变异最大;不同年代品种中,除最大根长随年代略下降外,其他性状均呈先升后降的趋势;不同根系性状对水分胁迫响应存在差异,总根长对水分最敏感,其次为根表面积、根体积和根生物量,最大根长和平均根数不敏感。苗期根系综合抗旱能力随年代呈先降后升的趋势,地方种和20世纪70年代品种多为中抗,80和90年代的品种抗旱性较低,2000年以后审定品种的抗性较高,其中旱地品种抗性最好。苗期根系抗旱特性与产量性状相关分析发现,最大根长、总根长、根体积和根生物量与雨养条件下的千粒重和产量显著正相关,最大根长和根生物量与成株期抗旱性也显著正相关。因此苗期最大根长和根生物量可作为半干旱地区旱地育种过程中抗旱性和产量的早期筛选指标。  相似文献   

8.
Drought is the major constraint limiting rainfed rice production. The ability of rice roots to penetrate compacted soils and therefore to increase water extraction capacity, osmotic adjustment and dehydration tolerance of leaves enables the plant to tolerate drought. Experiments were conducted to determine the extent of genetic variation in root penetration index, osmotic adjustment and dehydration tolerance among indica accessions adapted to rainfed lowlands as well as traditional varieties from rainfed uplands. Root penetration index was evaluated in a system using wax–petrolatum layers to simulate soil compaction. Osmotic adjustment and dehydration tolerance were studied under slow development of water stress. Substantial genetic variation was found for root penetration index, osmotic adjustment and dehydration tolerance among indica ecotypes from lowlands, and the study of several traditional varieties from uplands showed variation in root penetration index and related root traits. An indica accession, IR58821‐23‐B‐1‐2‐1 had a high root penetration index of 0.38. The accessions, IR61079‐33‐1‐2‐2‐3, IR62266‐42‐6‐2 and IR63919‐38‐B‐1 had high osmotic adjustment capacities (1.91, 1.90 and 1.78 MPa, respectively); IR61079‐33‐1‐2‐2‐3 also had high dehydration tolerance. Good osmotic adjustment and dehydration tolerance were associated with poor root system. The traditional varieties ‘Kallurundaikar’ and ‘Norungan’ had higher root penetration indices (0.46 and 0.43, respectively), than even the japonica accessions. The study identified indica accessions and traditional varieties with superior root‐ and shoot‐related drought resistance traits that could be used in breeding for drought resistance in rice.  相似文献   

9.
不同程度水分处理对烟农21根系抗旱特性的影响   总被引:4,自引:1,他引:3  
此文在盆栽条件下研究了不同程度干旱胁迫对冬小麦根系抗旱特性的影响。结果表明:中度和严重水分胁迫条件下,单株根干重、根冠比和次生根数目增加,但冠干重降低,且烟农21根干重、冠干重、次生根数目均高于鲁麦21,说明烟农21根系形态抗旱性优于鲁麦21。中度水分胁迫和严重水分胁迫条件下,烟农21和鲁麦21根系活力均降低;各生育时期根系活力差异显著,拔节期>挑旗期>开花期>成熟期;烟农21根系活力降低幅度明显低于鲁麦21。中度和严重水分胁迫下,烟农21根系可溶性糖含量分别提高了32.8%、65.6%,脯氨酸含量分别提高了327%和514%。水分胁迫提高了两品种根系的超氧化物岐化酶(SOD)活性、过氧化物酶(POD)活性和丙二醛(MDA)含量。各生育期根系SOD、POD酶活性比较,开花期>挑旗期>拔节期>成熟期。说明烟农21抗旱性优于鲁麦21。  相似文献   

10.
Drought cycling and soil re-watering trends due to intermittent rainfall patterns are key stress factors that influence rice growth and yield under upland cultivation conditions. However, upland rice adaptation responses to fluctuating soil moisture conditions remain poorly understood. This study investigated root and shoot responses of upland New Rice for Africa (NERICA) varieties to episodic drought and re-watering during growth. We examined root and shoot growth of NERICA 1 and NERICA 4 compared with those of IR72, an improved lowland variety, and Dular, a traditional drought-tolerant variety, in terms of soil moisture fluctuations with different levels of nitrogen fertilization under field conditions that impeded deep root development. During soil moisture fluctuation, all varieties reduced shoot dry weight compared with well-watered plants, regardless of nitrogen fertilization levels. However, total root length for the three upland varieties was enhanced by soil moisture fluctuations at moderate and high nitrogen fertilization, while that of the lowland variety was reduced. Comparing root development during water fluctuations revealed that NERICA 1 had a greater root system than NERICA 4, which was attributed to lateral root development. Furthermore, we found that NERICA varieties increase lateral root mass during soil desiccation under adequate nitrogen fertilization, while Dular and IR72 reduced their root growth rate during drought and increased it after re-watering. Both root growth patterns developed, from around maximum tillering to heading. The analysis of regression between root elongation and shoot growth with fluctuating soil moisture indicated that an enhanced root system during drought, on adequate nitrogen fertilization, can contribute to shoot growth when sufficient water becomes available, specifically around the maximum tillering to the heading growth stage of rice.  相似文献   

11.
Identification and understanding the role of physio-morphological drought responsive mechanisms leading to grain yield enhancement under water stress is a critical insight for designing appropriate strategies to breed drought-tolerant cultivars for any drought prone ecology. In this study, three pairs of contrasting BILs with varied maturity were characterized for several agronomical, physiological and morphological traits across a wide range of moisture stress environments at reproductive stage during 2012–2014. Within each group, BILs differ significantly for grain yield, heading, biomass and harvest index under drought stress, but showed similar yield potential, phenology and other traits under control condition. The most tolerant BIL, S-15 out yielded all BILs and standard checks under both conditions. Apart from superior agronomic performance, drought tolerant BILs maintained significantly higher assimilation rate, transpiration rate and transpiration efficiency compared to susceptible BILs under stress in all three groups. In addition, most tolerant BIL (S-15) showed significantly higher stomatal conductance than susceptible BIL (S-55) in early group. Among root traits, significant differences under stress was observed for root dry weight between contrasting BILs in each group, even though tolerant BILs had higher root length and root volume compared to susceptible BILs, which is non-significant. Hence, consideration of root traits an important strategy for drought avoidance in case of rice may not always contributes to significant yield improvement under moisture stress condition. Further, tolerant BILs also recorded significantly higher shoot dry weight and drought recovery score at seedling stage under stress. Our findings suggest that genotypes with higher photosynthetic efficiency and better plant water status are able to produce higher grain yield under drought stress environments.  相似文献   

12.
Root systems of various chickpea genotypes were studied over time and in diverse environments, – varying in soil bulk density, phosphorus (P) levels and moisture regimes. In a pot study comparing a range of chickpea genotypes, ICC 4958 and ICCV 94916‐4 produced higher root length density (RLD) and root dry weight (RDW), which were better expressed under P stress conditions. In two field experiments in soils of intermediate and high soil bulk densities, ICC 4958 also had greater RLD and RDW, particularly under soil moisture stress conditions. The expression of greater rooting ability of ICC 4958 under a wide range of environmental conditions confirms its suitability as a parent for genetically enhancing drought resistance and P acquisition ability. The superiority of ICC 4958 over other genotypes was for root proliferation expressed through RLD. Thus, the variation in RLD can be the most relevant root trait that reflects chickpea's potential for soil moisture or P acquisition.  相似文献   

13.
Although the root system is indispensable for absorption of nutrients and water, it is poorly studied in maize owing to the difficulties of direct measurement of roots. Here, 103 maize lines were used to compare root architectures under well-watered and water-stressed conditions. Significant genetic variation, with medium to high heritability and significant correlations, was observed for root traits. Total root length (TRL) and total root surface area (TSA) had high phenotypical diversity, and TRL was positively correlated with TSA, root volume, and root forks. The first two principal components explained 94.01% and 91.15% of total root variation in well-watered and water-stressed conditions, respectively. Thus, TRL and TSA, major contributors to root variation, can be used as favorable selection criteria at the seedling stage. We found that stiff stalk and non-stiff stalk groups (temperate backgrounds) showed relatively higher mean values for root morphological diversity than the TST group (tropical/subtropical background). Of the tested lines, 7, 42, 45, and 9 were classified as drought sensitive, moderately sensitive, moderately drought tolerant, and highly drought tolerant, respectively. Seven of the 9 extremely drought tolerant lines were from the TST group, suggesting that TST germplasms harbor valuable genetic resources for drought tolerance that could be used in breeding to improve abiotic stress tolerance in maize.  相似文献   

14.
Summary Avoidance of drought stress is commonly associated with root system characteristics and root development. The inheritance of root pulling resistance in rice (Oryza sativa L.) was investigated and its relationship with visual field scores for drought tolerance was studied. Transgressive segregation for high root pulling resistance was observed in 3 crosses (high x high, low x high, and intermediate x intermediate). Both dominant and additive genes control the variation. F1 superiority for high root pulling resistance was observed and could be exploited in an F1 hybrid breeding program. F2 distribution curves indicated that plants highly resistant to root pulling can be obtained not only from low x high and high x high crosses, but also from intermediate x intermediate crosses. Root pulling resistance in rice has a low heritability (39 to 47%). Thus, breeding for a high root pulling resistance may best be accomplished by selection based on line means rather than individual plant selection. Field screening showed significant differences in leaf water potential among random F3 lines. F3 lines with higher leaf water potential had better visual scores for drought tolerance. Visual drought tolerance scores were correlated with root pulling resistance. Plants with high root pulling resistance had the ability to maintain higher leaf water potentials under severe drought stress. The usefulness of the root pulling technique in selecting drought tolerant genotypes was confirmed.  相似文献   

15.
研究通过温室盆栽试验探讨了干旱胁迫对‘三得利’、‘敖汉’和‘中苜1 号’3 个紫花苜蓿品种根系ABA浓度和根系特征的影响。按照田间持水量的100%(对照)、85%(轻度干旱)、70%(中度干旱)和55%(重度干旱)设置4 个梯度的水分胁迫处理,分别对3 个紫花苜蓿品种进行处理,并对根系ABA含量和根系性状进行测量。结果显示:水分胁迫可以显著影响不同生长时期的紫花苜蓿根系ABA的含量。随着处理时间的延长,不同水分胁迫处理的紫花苜蓿根系ABA含量均呈先升高后下降再升高的趋势。在移栽后的第75 天,根系ABA含量达到首个峰值,然后开始下降,到第105 天的时候将至最低,然后开始回升直至处理结束。移栽105 天以后,4 个水分胁迫处理(W1、W2、W3 和W4)紫花苜蓿根系ABA含量分别为44、56.6、64.6、94.4 ng/g FW。同时,不同紫花苜蓿品种根系ABA含量存在差异。移栽105 天以后,‘敖汉’、‘三得利’和‘中苜1 号’根系ABA含量均达到最低,分别为83.2 ng/g FW、61.7 ng/g.FW 和49.9 ng/g FW;之后,根系ABA含量开始回升。与对照相比,重度水分胁迫使根系长度降低了20.92%,使侧根数降低了20.71%,使根鲜重降低了43.79%,使根干重降低了37.96%。重度水分胁迫下植株根冠比是对照的1.9倍,这说明水分胁迫对地上部茎叶的影响要大于地下部的根系。水分胁迫降低了紫花苜蓿根长、侧根数、根鲜重和根干重,增加了紫花苜蓿根冠比,促使根系ABA含量升高。不同紫花苜蓿品种根系ABA含量存在差异。  相似文献   

16.
为探索苹果对干旱的生理反应、抗旱机制及甜菜碱对其抗旱性的影响,以苹果砧木平邑甜茶为试材,通过砂培试验,研究了叶面喷施不同浓度甜菜碱(GB,5~40 mmol/L)对干旱胁迫下平邑甜茶生理效应的影响。结果表明,干旱胁迫下,叶面喷施低浓度的甜菜碱(5~20 mmol/L)有效缓解了叶绿素含量的下降,提高了叶片的光合能力;降低了叶片超氧自由基(O2-)的积累,降低了叶片的相对电导率和膜脂过氧化水平,提高了平邑甜茶的抗干旱能力,其中以甜菜碱10.0 mmol/L的保护效果最好,这种保护作用可能与它能够增加叶片的脯氨酸含量、可溶性糖含量,提高叶片的水分状况和叶片中抗氧化酶活性、减轻活性氧的积累,缓解水分胁迫对膜的破坏作用有关。而喷施高浓度甜菜碱(40 mmol/L)则没有此种保护效果。  相似文献   

17.
为探讨局部根区不同灌溉方式下裸燕麦(Avena nuda L.)光合能力下降的生理机制,采用盆栽及渗水盘供水方法,比较了交替根区灌溉(APRI)、固定根区灌溉(FPRI)和常规灌溉(CTRI)下,裸燕麦旗叶相对叶绿素含量(SPAD值)、光合特征曲线及叶绿素荧光动力学特性的差异。与CTRI处理相比,局部根区灌溉(包括APRI和FPRI处理)降低了叶片SPAD值、净光合速率(Pn)和初始羧化速率(CE),但APRI处理未明显降低初始量子效率(α)、PSII最大量子效率(Fv/Fm)、PSII实际光化学效率(ФPSII)、电子传递效率(ETR)和光化学效率 (qP)。在2种局部根区灌溉模式中,APRI较FPRI显著提高了叶片SPAD值(P<0.05),而且APRI的叶片最大净光合速率(Pmax)、α、光饱和点(LSP)、光能利用率(LUE)、Ci/Ca、CE、CO2饱和点(Ci,sat)、初始荧光(Fo)、最大荧光(Fm)、ФPSII、ETR、qP和非光化学效率(NPQ)均高于FPRI。APRI和FPRI的光合速率降低与气孔因素有关,FPRI光合速率降低还与PSII结构损伤有关;局部根区灌溉提高了裸燕麦干旱胁迫逆境下的耐受能力,APRI有利于保持更高的光合速率。  相似文献   

18.
Water shortages have become more chronic as periodic droughts prolong and water demand for urban and agricultural use increases. Plant drought responses involve coordinated mechanisms in both above‐ and below‐ground systems, yet most studies lack comparisons of root and canopy responses under water scarcity and recovery. This is particularly true of research focused on warm‐season turfgrasses in sandy soils with extremely low water holding capacity. To address the lack of examination of coordinated stress and recovery responses, this study compared the above‐ and below‐ground plant responses during a dry‐down period of 21 days and recovery among four warm‐season turfgrass species in the field. Canopy drought responses and recovery were quantified using digital image analysis. In situ root images were captured using a minirhizotron camera system. Common bermudagrass [Cynodon dactylon (L.) Pers.] endured the entire drought period without losing 50% green cover while other species lost 50% green cover in 11–34 days predicted from the regression. The interspecific differences in drought resistance were mainly due to root characteristics. Other drought mechanisms appear to be responsible for differences identified in drought resistance between “Zeon” and “Taccoa Green” manilagrass [Zoysia matrella (L.) Merr.]. Recovery was delayed for up to 2 weeks in the second year, warranting further evaluation for turfgrass persistence under long‐term drought. Three‐week drought posed no threat to the survival of zoysiagrass. Species and genotypic variations were found in achieving full post‐recovery, which can be used to develop water conservation strategies and to adjust consumer expectations.  相似文献   

19.
An experiment was conducted to investigate the physiological and biochemical responses of two hexaploids viz., C 306 (water stress tolerant) and Hira (water stress susceptible), and two tetraploids, HW 24 (Triticum dicoccum) and A 9‐30‐1 (Triticum durum) wheat genotypes to water stress under pot culture condition. Water stress was imposed for a uniform period of 10 days at 50, 60 and 70 days after sowing (DAS) and observations were recorded at 60, 70 and 80 DAS. Total dry matter and plant height were recorded at harvest. Water stress caused a decline in relative water content (RWC), chlorophyll and carotenoid content, membrane stability and nitrate reductase activity and increased accumulation of proline at all stages and abscisic acid (ABA) at 80 DAS in all the genotypes. Both the tetraploids showed a lower reduction in RWC and highest ABA accumulation under water stress. Among the hexaploids Hira showed the most decline in RWC and the lowest ABA accumulation. The tetraploids also showed comparatively higher carotenoid content and membrane stability, closely followed by C 306, while Hira showed the minimum response under water stress. Nitrate reductase activity and chlorophyll content under irrigated conditions were highest in Hira but under water stress the lowest per cent decline was observed in C 306, followed by HW 24, A 9‐30‐1, and Hira. Proline accumulation under water stress conditions was highest in hexaploids C 306 and Hira and lowest in tetraploids HW 24 and A 9‐30‐1. Tetraploids HW 24, followed by A 9‐30‐1 maintained higher plant height and total dry matter (TDM) under water stress and also showed a lower per cent decline under stress than hexaploids C 306 and Hira. From the results it is clear that proline accumulation did not contribute to better drought tolerance of tetraploids than hexaploids. It is also apparent that water stress tolerance is the result of the cumulative action of various physiological processes, and all the parameters/processes may not be positively associated with the drought tolerance of a particular tolerant genotype.  相似文献   

20.
水分胁迫对不同根型小麦幼苗水分利用率和导水率的影响   总被引:5,自引:2,他引:3  
以旱地小麦晋麦47和高水肥小麦石4185为试材,比较分析了充分供水和模拟干旱胁迫条件下小麦幼苗水分利用效率(WUE)和根系导水率(Lpr)的差异。结果表明:正常供水条件下,晋麦47单株耗水量、根系干质量和单株干质量皆低于石4185,但根系水分利用率(WUEr)、茎叶水分利用率(WUEs)、单株水分利用率(WUE)以及根系导水率均高于石4185。轻度干旱胁迫下,石4185根系干质量稍有增加,晋麦47变化不明显,两者单株干质量均降低;两品种根系、茎叶和单株水分利用效率均显著提高,石4185根系水分利用效率反而高于晋麦47;但两品种根系导水率呈显著下降趋势,晋麦47下降幅度大于石4185并最终低于石4185。以上说明:水分充足条件下,晋麦47表现出“奢侈”利用水分,干旱条件下,表现出以降低水分消耗而维持地上部生长的耐旱节水机制;石4185在水分充足条件下耗水量大,表现出水地品种特点,胁迫条件下,水分利用率均升高且根系水分利用率升高相对更大,体现出干旱胁迫下依赖根系进一步发展增大吸收水分表面积来适应缺水环境。两者相比较,体现了不同根型小麦品种根系在干旱胁迫调节中的重要性和差异性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号