首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The caudal lumbar and lumbosacral spine of 13 dogs with pain or neurologic deficits were evaluated using magnetic resonance imaging (MRI). Spin echo T1, proton density, and T2 weighted and gradient echo T2* imaging sequences were utilized. MRI permitted direct, multiplanar, tomographic visualization of the spine facilitating evaluation of all components of degenerative caudal lumbar and lumbosacral stenosis. Abnormalities detected included intervertebral disc degeneration, intervertebral disc protrusion involving both the vertebral canal and intervertebral foramina, articular process osteophytosis, articular process fracture, nerve root impingement by spondylosis deformans, and the presence of low signal material within the vertebral canal of 2 dogs with recurrent pain following previous spinal surgery. In all 7 dogs treated surgically, MRI findings were consistent with surgical findings.  相似文献   

2.
The cervical spine of 27 dogs with cervical pain or cervical myelopathy was evaluated using magnetic resonance imaging (MRI). Spin echo T1, T2, and post-contrast T1 weighted imaging sequences were obtained with a 0.5 Tesla magnet in 5 dogs and a 1.5 Tesla magnet in the remaining 22 dogs. MRI provided for visualization of the entire cervical spine including the vertebral bodies, intervertebral discs, vertebral canal, and spinal cord. Disorders noted included intervertebral disc degeneration and/or protrusion (12 dogs), intradural extramedullary mass lesions (3 dogs), intradural and extradural nerve root tumors (3 dogs), hydromyelia/syringomyelia (1 dog), intramedullary ring enhancing lesions (1 dog), extradural synovial cysts (1 dog), and extradural compressive lesions (3 dogs). The MRI findings were consistent with surgical findings in 18 dogs that underwent surgery. Magnetic resonance imaging provided a safe, useful non-invasive method of evaluating the cervical spinal cord.  相似文献   

3.
A series of low-field magnetic resonance images of the normal canine middle and inner ear are presented to serve as a reference. A completely balanced steady-state gradient echo pulse sequence with a slice thickness of 0.9 mm can be used to acquire images of the relevant structures within and neighboring the inner ear. These were the cochlear duct, semicircular ducts, vestibule, facial and vestibulocochlear nerves, as well as the temporal sinus. Within the middle ear, no applied sequence was able to allow identification of the auditory ossicles or the tympanic membrane.  相似文献   

4.
Magnetic resonance imaging was conducted on previously frozen left carpi from six normal dogs using a 1.5 Tesla magnet in combination with a transmit/receive wrist coil. Three-millimeter thick T1-weighted spin-echo images and 1-mm thick T2*-weighted gradient-recalled 3-D images were obtained in dorsal and sagittal planes. Carpi were embedded, sectioned, and stained. Anatomic structures on the histologic sections were correlated with the MR images. All of the carpal ligaments plus the radioulnar articular disc and the palmar fibrocartilage were identified on MR images. The accessorio-quartile ligament, which had not been well described previously in dogs, was also identified. It originated on the accessory carpal bone and inserted on the fourth carpal bone. The T2*-weighted gradient echo imaging technique provided better images than T1-weighted technique, largely because thinner slices were possible (1 mm vs. 3 mm), resulting in less volume averaging of thin ligaments with surrounding structures. Although MRI is currently the imaging modality of choice to identify ligamentous injury in humans, further studies are needed to determine if abnormalities can be detected in canine carpal ligaments using MRI.  相似文献   

5.
Diffusion‐weighted imaging (DWI) MRI has been primarily reported as a method for diagnosing cerebrovascular disease in veterinary patients. In humans, clinical applications for diffusion‐weighted MRI have also included epilepsy, Alzheimer's, and Creutzfeld–Jakob disease. Before these applications can be developed in veterinary patients, more data on brain diffusion characteristics are needed. Therefore, the aim of this study was to evaluate the distribution of diffusion in the normal canine brain. Magnetic resonance imaging of the brain was performed in ten, clinically normal, purpose‐bred beagle dogs. On apparent diffusion coefficient maps, regions of interest were drawn around the caudate nucleus, thalamus, piriform lobe, hippocampus, semioval center, and cerebral cortex. Statistically significant differences in mean apparent diffusion coefficient were found for the internal capsule, hippocampus, and thalamus. The highest apparent diffusion coefficient (1044.29 ± 165.21 μm2/s (mean ± SD (standard deviation)) was detected in the hippocampus. The lowest apparent diffusion coefficient was measured in the semioval center (721.39 ± 126.28 μm2/s (mean ± SD)). Significant differences in mean apparent diffusion coefficients of the caudate nucleus, thalamus, and piriform lobe were found by comparing right and left sides. Differences between brain regions may occur due to differences in myelination, neural density, or fiber orientation. The reason for the differences between right and left sides remains unclear. Data from the current study provide background for further studies of diffusion changes in dogs with brain disease.  相似文献   

6.
The purpose of this study was to describe relevant canine brain structures as seen on T2-weighted images following magnetic resonance (MR) imaging at 7 T and to compare the results with imaging at 1.5 T. Imaging was performed on five healthy laboratory beagle dogs using 1.5 and 7 T clinical scanners. At 1.5 T, spin echo images were acquired, while gradient echo images were acquired at 3 T. Image quality and conspicuity of anatomic structures were evaluated qualitatively by direct comparison of the images obtained from the two different magnetic fields. The signal-to-nose ratio (SNR) and contrast-to-noise ratio (CNR) were calculated and compared between 1.5 and 7 T. The T2-weighted images at 7 T provided good spatial and contrast resolution for the identification of clinically relevant brain anatomy; these images provided better delineation and conspicuity of the brain stem and cerebellar structures, which were difficult to unequivocally identify at 1.5 T. However, frontal and parietal lobe and the trigeminal nerve were difficult to identify at 7 T due to susceptibility artifact. The SNR and CNR of the images at 7 T were significantly increased up to 318% and 715% compared with the 1.5 T images. If some disadvantages of 7 T imaging, such as susceptibility artifacts, technical difficulties, and high cost, can be improved, 7 T clinical MR imaging could provide a good experimental and diagnostic tool for the evaluation of canine brain disorders.  相似文献   

7.
A 6-year-old neutered male Rottweiler had chronic episodic signs of thoracolumbar pain and inability to stand that did not improve after rest and nonsteroidal antiinflammatory medication. In magnetic resonance images, an extradural mass was identified between the spinal cord and the T13/L1 intervertebral disc; the mass was compressing the cord in a dorsoventral direction. The lesion had a low signal intensity rim that enhanced slightly after gadolinium administration, and contents with similar signal intensity to cerebrospinal fluid. The lesion was removed surgically by severing its attachments to the annulus fibrosus. The histologic diagnosis was degenerative intraspinal cyst. The origin of such cysts, and their relationship to synovial and ganglion cysts is discussed.  相似文献   

8.
Janet S.  Muleya  BVM  MVM  Yasuho  Taura  DVM  Ph.D.  Munekazu  Nakaichi  DVM  PhD.  Sanenori  Nakama  DVM  Ph.D.  Akira  Takeuchi  DVM  Ph.D. 《Veterinary radiology & ultrasound》1997,38(6):444-447
The study was carried out to evaluate the applicability of magnetic resonance imaging (MRI) in detecting tumors in the abdomen of the dog. Abdominal ultrasound and MRI were performed on 8 dogs having a mass lesion on abdominal radiography. MR images were obtained in the transverse, sagittal and dorsal planes using T1- and T2-weighted spin echo pulse sequences. There was good visual correlation of the lesion site by MRI and ultrasonography (US).  相似文献   

9.
The records of four dogs with cervical spinal cord meningiomas were retrospectively reviewed. Signalment, history, laboratory findings, neurological examination, and histopathological findings were evaluated. Magnetic resonance imaging (MRI) was performed using a 1.0-T superconducting magnet and T2-weighted (W) and noncontrast and postcontrast T1-W spin echo pulse sequences. Meningiomas were located at the level of the second, third, and fifth cervical vertebrae and the C2-3 intervertebral space. All meningiomas appeared as focal masses that were hyperintense to the spinal cord on T2-W images and iso- to hypointense on the T1-W images. They could be identified as intradural and extramedullary in origin based on a broad-based dural margin seen on at least one of the imaging planes and a gradual expansion of the subarachnoid space cranial and caudal to the mass, best noted on the transverse and dorsal plane images. On dorsal plane T2-W images in three dogs, expansion of the subarachnoid space adjacent to the mass appeared similar to the myelographic "golf tee" sign. All meningiomas exhibited moderate, well-defined contrast enhancement with dural tails seen in three of the four dogs. One dog had extension into the intervertebral foramen along the nerve and ipsilateral atrophy of the muscles of the neck. By differentiating the meningiomas from intramedullary tumors and by clearly depicting the extent of the masses, MRI provided valuable information about treatment options and prognosis.  相似文献   

10.
Recognition of disc degeneration in vivo is important in the investigation of the pathophysiology of intervertebral disc disease as well as the assessment of patients. The purpose of this study was to compare low-field magnetic resonance imaging and histopathologic findings of disc degeneration in the canine caudal lumbar spine. A simple four-stage classification system for disc degeneration is proposed. Most common signs of disc degeneration in magnetic resonance imaging included nuclear clefts, decreased signal intensity of the nucleus pulposus and tears of the annulus fibrosus, or disc herniations. The association between magnetic resonance images and histopathologic findings was highly significant. A sensitivity of 100% and specificity of 79% for magnetic resonance imaging was calculated using histopathology as the gold standard.  相似文献   

11.
Flexor enthesopathy is a recently recognized elbow disorder in dogs and considered to be an important differential diagnosis for elbow lameness. Primary and concomitant forms of the disease have been previously described and treatments differ for the two forms. The goal of this prospective study was to compare magnetic resonance imaging (MRI) findings for dogs with primary flexor enthesopathy (n = 17), concomitant flexor enthesopathy (n = 23), elbow dysplasia alone (n = 13), and normal elbows (n = 7). Each elbow joint underwent MRI using the same low‐field scanner. Sequences included transverse and sagittal T1‐weighted (before and after IV contrast), transverse and sagittal T2‐weighted, and dorsal STIR. For each elbow, MRI lesions were recorded based on a consensus of two observers unaware of group status. Magnetic resonance imaging lesions involving flexor tendons were found in 100% of clinically affected joints with primary flexor enthesopathy and 96% of clinically affected joints with concomitant flexor enthesopathy. Thickened flexor muscles were the most common lesions, followed by hyperintense tendon signal and contrast enhancement. Irregular, thickened medial humeral epicondyle, edema, and calcified body lesions were less frequently observed. Magnetic resonance imaging characteristics of flexor enthesopathy were not found in normal joints or those affected by elbow dysplasia alone. No significant differences in frequencies and details of individual MRI characteristics were found between primary and concomitant flexor enthesopathy groups. Findings indicated that MRI is a sensitive technique for detection of flexor enthesopathy lesions in dogs, however, MRI characteristics do not allow differentiation of primary versus concomitant forms of the disease.  相似文献   

12.
In order to compare the accuracy of MR sequences for diagnosis of meningeal disease, MR images of the brain, and histopathologic specimens including the meninges of 60 dogs were reviewed retrospectively by independent observers in a cross‐sectional study. MR images included T1‐weighted pre‐ and postgadolinium images, subtraction images, T2‐weighted images, and T2‐weighted fluid‐attenuated inversion‐recovery (FLAIR) images. Pathologic changes affected the pachymeninges in 16 dogs, leptomeninges in 35 dogs, and brain in 38 dogs. The meninges were normal in 12 dogs. Meninges were classified histopathologically as normal (grade 0), slightly or inconsistently affected (grade 1), or markedly affected (grade 2). When applying relaxed pathologic criteria (grades 0 and 1 considered normal), the results of ROC analysis (area under curve, AUC) were: T1‐weighted postcontrast images 0.74; subtraction images 0.7; T2‐weighted images 0.68; FLAIR images 0.56. The difference in AUC between T1‐weighted postgadolinium images and FLAIR images was significant (P = 0.04). AUC for FLAIR images was not significantly different from 0.5. When applying strict pathologic criteria (only grade 0 considered normal), none of the MR sequences had AUC significantly different from 0.5. On the basis of T1‐weighted postgadolinium images and subtraction images, correct anatomic classification of lesions occurred more often for pachymeningeal than leptomeningeal lesions (P < 0.001). Overall, MR imaging had low sensitivity for diagnosis of meningeal pathology in dogs, particularly for changes affecting the leptomeninges. Subtraction images had similar accuracy to T1‐weighted postgadolinium images for meningeal lesions in dogs. T2‐weighted FLAIR images appear to have limited diagnostic utility for meningeal lesions.  相似文献   

13.
MAGNETIC RESONANCE IMAGING OF THE EQUINE FOOT   总被引:1,自引:1,他引:0  
The purpose of this study was to assess the ability of magnetic resonance imaging to depict abnormalities of the equine foot. MRI was performed on isolated limbs which had lesions of the foot. These images were made in 3 perpendicular planes (sagittal, transverse and frontal) using a T1 weighted sequence and were 5mm thick. Images accurately depicted normal and pathologic structures in the foot and proved to be very precise for documenting degenerative joint disease, navicular disease and laminitis lesions. This preliminary study demonstrates the considerable potential of MRI in the diagnosis of locomotor problems in the horse.  相似文献   

14.
Pulsatile venous flow in the internal vertebral venous plexus of the cervical spine can lead to vertical, linear T2‐hyperintensities in the spinal cord at the cranial aspect of C3 and C4 in transverse T2‐weighted images in large breed dogs that are not accompanied by ghosting. The artifact is more conspicuous in pre‐ and postcontrast transverse T1‐weighted images and is accompanied by ghosting in that sequence, typical of a pulsatility artifact. A flow‐related artifact was confirmed as the cause for this appearance by noting its absence after either exchange of phase and frequency encoding direction or by flow compensation. Care should be exercised to avoid misdiagnosing this pulsatility artifact seen in transverse T2‐weighted images of the midcervical spine in large dogs as an intramedullary lesion when T1‐images or phase‐swap images are not available to confirm its artifactual origin.  相似文献   

15.
Thoracolumbar spinal magnetic resonance imaging (MRI) examinations in dogs frequently include the region of the cisterna chyli within the field of view. It is important to be aware of the appearance and location of this structure to avoid confusing it for a pathologic periaortic lesion. MRI examinations of the thoracolumbar spine were reviewed in 30 dogs. The cisterna chyli was identified in 26 dogs and was most commonly located caudal to the diaphragmatic crura at the level of L4; afferent and efferent lymphatics were seen in all dogs. Transverse T2-weighted images were the most useful to locate the cisterna chyli. It was isointense to fluid on T2-weighted images and isointense to muscle on T1-weighted images. Mild contrast enhancement was seen in three dogs. The cisterna always wrapped around the aorta, but varied in shape, with the most common being the wide right dorsolateral ellipse. The thoracic duct was also visible in 30 dogs. MRI may have potential for noninvasive evaluation of the abdominal and thoracic lymphatic ducts in dogs.  相似文献   

16.
MAGNETIC RESONANCE IMAGING FEATURES OF PRIMARY BRAIN TUMORS IN DOGS   总被引:1,自引:0,他引:1  
Magnetic resonance images of twenty-five dogs with histopathologically confirmed primary brain tumors were evaluated. A lesion was visible in each dog. Meningiomas were extra-axial lesions that enhanced markedly withj gadolinium-DTPA. Glimas were Characteized by intra-axial location, significant mass effect and surrounding edema, and variable enhancement patterns. Choroid plexus tumors and pituitary tumors were differentiated by their location and marked enbancement. Prediction of general typeof tumor was correct in 24 of 25 dogs.  相似文献   

17.
The purpose of this study was to describe the appearance of normal bone marrow in seven adult dogs using low-field (0.3 T) magnetic resonance (MR) imaging. The areas imaged included the lumbar spine, pelvis, and femur. T1-weighted, fast spin-echo T2-weighted, and short tau (T1) inversion recovery (STIR) sequences were obtained at all locations. Histopathology was performed on sections from the sixth lumbar vertebral body, the wing of the ilium, and the femur (head and neck, mid-diaphysis, and condyle) for evaluation of cellularity and fat content. The lumbar spine and pelvic marrow MR images were similar in all dogs. The lumbar vertebral bone marrow was uniform, intermediate signal intensity, and isointense to muscle on all sequences. There was variation between dogs in the bone marrow distribution with MR imaging of the femur. In the proximal and mid-diaphysis of the femur there was patchy high-signal intensity on T1- and T2-weighted images, and hypointense foci on the STIR images. The distal femoral metaphysis had a variable pattern ranging from intermediate-to-high signal on T1- and T2-weighted images and intermediate-to-low signal on STIR images. The femoral condyles were uniformly high signal on T1- and T2-weighted images and hypointense on STIR images. Histopathologically there was a normal variation in the bone marrow cellularity. The marrow was normocellular (25–75% cellularity) for all sites examined except the femoral condyles, which were hypocellular (<25% cellularity).  相似文献   

18.
Magnetic resonance (MR) imaging is highly sensitive for detecting tuberculomas in human patients but the specificity of the MR imaging features is low. Misdiagnosis with intracranial neoplasia is common, especially with dural‐based lesions or lesions located in the epidural space. We describe the MR imaging characteristics of an intracranial epidural tuberculoma caused by Mycobacterium tuberculosis infection in a dog. The intracranial mass and skull flat bone lysis and erosion are similar to those described in human caseating tuberculomas and can mimic intracranial neoplastic disease.  相似文献   

19.
The canine meninges are not visible as discrete structures in noncontrast magnetic resonance (MR) images, and are incompletely visualized in T1‐weighted, postgadolinium images, reportedly appearing as short, thin curvilinear segments with minimal enhancement. Subtraction imaging facilitates detection of enhancement of tissues, hence may increase the conspicuity of meninges. The aim of the present study was to describe qualitatively the appearance of canine meninges in subtraction MR images obtained using a dynamic technique. Images were reviewed of 10 consecutive dogs that had dynamic pre‐ and postgadolinium T1W imaging of the brain that was interpreted as normal, and had normal cerebrospinal fluid. Image‐anatomic correlation was facilitated by dissection and histologic examination of two canine cadavers. Meningeal enhancement was relatively inconspicuous in postgadolinium T1‐weighted images, but was clearly visible in subtraction images of all dogs. Enhancement was visible as faint, small‐rounded foci compatible with vessels seen end on within the sulci, a series of larger rounded foci compatible with vessels of variable caliber on the dorsal aspect of the cerebral cortex, and a continuous thin zone of moderate enhancement around the brain. Superimposition of color‐encoded subtraction images on pregadolinium T1‐ and T2‐weighted images facilitated localization of the origin of enhancement, which appeared to be predominantly dural, with relatively few leptomeningeal structures visible. Dynamic subtraction MR imaging should be considered for inclusion in clinical brain MR protocols because of the possibility that its use may increase sensitivity for lesions affecting the meninges.  相似文献   

20.
Debra K.  Baird  DVM  John T.  Hathcock  DVM  MS  Paul F.  Rumph  DVM  MS  Steven A.  Kincaid  DVM  MS  PhD  Denise M.  Visco  PhD 《Veterinary radiology & ultrasound》1998,39(2):87-97
Low-field magnetic resonance imaging (MRI) was performed on the stifle joints of four normal adult mongrel dogs using a 0.064 Tesla scanner. Markers were placed on each stifle joint to serve as reference points for comparing gross sections with the images. A T1-weighted sequence was used to image one stifle joint on each dog in the sagittal plane and the other stifle joint in the dorsal plane. The dogs were euthanized immediately following MRI and the stifle joints frozen intact. Each stifle joint was then embedded in paraffin, again frozen, and sectioned using the markers as reference points. On T1-weighted images, synovial fluid had low signal intensity (dark) compared to the infrapatellar fat pad which had a high signal intensity (bright). Articular cartilage was visualized as an intermediate bright signal and was separated from trabecular bone by a dark line representing subchondral bone. Menisci, fibrous joint capsule, and ligamentous structures appeared dark. In the true sagittal plane, the entire caudal cruciate ligament was often seen within one image slice. The patella was visualized as an intermediate bright signal (trabecular bone) surrounded by a low intensity signal (cortical bone). The trochlea and the intercondylar notch were difficult areas to analyze due to signal volume averaging of the curved surface of these areas and the presence of several types of tissues.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号