首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到11条相似文献,搜索用时 46 毫秒
1.
黄土丘陵区红枣经济林根系分布与土壤水分关系研究   总被引:7,自引:0,他引:7  
为明确半干旱黄土丘陵区不同年龄无灌溉旱作矮化修剪密植枣林的根系分布范围与其土壤水分的空间关系,利用根钻法测定枣林株间不同深度的根系分布、枣树主干就近位置的根系量,并采用土钻取土和中子仪定位测定结合了解不同年龄的枣林10 m深度的土壤水分。结果表明:随着树龄增加,1、3、5、12 a枣树根系最大深度年平均增值在减小,12 a枣林垂直根系达520 cm。枣树株间100 cm处向下的根系深度较浅,枣林的垂直根系最大和最小值之差先增加后减小,12 a枣林垂直根系之差只有180 cm。研究区枣树株间水平根系在枣林3 a时开始交汇,枣树水平根系延伸无法确定,所得到的水平方向根系实际是枣林多株树汇集的根系。枣林垂直根系对土壤水分的垂直变化作用显著,但矮化修剪密植枣林株间根系深度差异并没有造成土壤水分因此而波动。随着枣树树龄的增加根系深度和土壤水分干层均增加,0~2 m土层的土壤水分年内变化幅度也增加,而且根层范围的土壤水分随着树龄增加在降低,但是土壤干层深度稍大于测得的根系深度。  相似文献   

2.
黄土半干旱区枣林深层土壤水分消耗特征   总被引:10,自引:0,他引:10  
黄土区人工经济林普遍出现利用性土壤干层,制约着植被的恢复与重建。为了准确计算黄土半干旱区密植高产枣林(Ziziphus jujube Mill.)深层土壤(2 m以下)水分消耗量,采用根钻法(洛阳铲)分层获得从地表到细根分布最大深度范围内的土壤含水率。结果表明:枣林深层土壤水分消耗是一个逐渐加深、逐渐向下的过程。2、4、9和12 a生枣林深层土壤水分消耗量分别为0、29.6、149.9和155.7 mm,可再供水量分别为203.7、167.7、35.5和29.7 mm;枣林生长第9年后,2~4 m土层几乎没有可利用的水分,现有降水和滴灌已经不能满足枣树的耗水需求,枣林吸收土壤水分有向深处延伸的趋势。以降水入渗最大深度为上界、细根分布最大深度为下界计算的深层土壤水分消耗量,能更准确地评估林地利用性土壤干层的程度和深度。  相似文献   

3.
黄土丘陵区枣林土壤水分动态及其对蒸腾的影响   总被引:5,自引:0,他引:5  
为了探明黄土高原半干旱区山地枣林蒸腾和土壤水分间的关系,对山地枣林的土壤水分和枣树茎液流动态进行了连续3年的定位监测,结果表明:土壤含水率时空变异性显著,垂直方向上随着土层深度的增加,变异系数(Cv)逐渐降低。其自上而下可划分为土壤水分变化层(0~2.6 m)、土壤水分干层(2.6~6.0 m)和土壤水分恢复层(6.0~10.0 m)。枣树液流监测的参数在生育期和休眠期间具有显著性差异,根据这一特征可以对枣树生育期进行较为准确的界定。基于液流参数特征确定的生育期与观察树体萌芽、落叶确定的生育期时长基本一致,均约为160 d,但基于液流参数确定的生育期较后者约提前5 d。土壤水分的增加会使枣树液流(瞬时蒸腾)的谷值出现时间提前,峰值出现时间推后,"午休"时间缩短,旺盛蒸腾时间延长,反之亦然。枣树生育前期蒸腾均呈逐日增加趋势,而生育中后期蒸腾和土壤水分呈极显著的正相关关系。  相似文献   

4.
深层干化土壤水分恢复试验研究   总被引:1,自引:0,他引:1  
为探索黄土丘陵区深层干化土壤在不同覆盖措施下的土壤水分恢复特征,在陕西省米脂县丘陵山地建造大型模拟干化土壤土柱,地表分别进行薄膜覆盖、石子覆盖、树枝覆盖、栽植枣树、刺槐及裸地6个处理,对2014—2017年土壤水分进行定位监测。数据分析结果表明:至试验期结束,薄膜覆盖、石子覆盖、树枝覆盖、裸地土壤水分恢复深度分别为1 000、1 000、700、480 cm,薄膜覆盖、石子覆盖、树枝覆盖、裸地、枣树、刺槐0~1 000 cm深度范围内土壤储水量变化量分别为1 211. 4、853. 4、662. 5、523. 2、17. 8、-235. 7 mm,全年覆盖降雨贮存效率分别为63. 4%、42. 4%、29. 4%、23. 0%、-8. 5%、-20. 3%,4年生枣树耗水区域为0~300 cm范围,刺槐耗水深度达1 000 cm,枣树年均蒸散量为586. 4 mm、刺槐年均蒸散量为666. 5 mm,是枣树的1. 1倍。该研究结果对黄土区大面积干化土壤修复及合理选择人工栽植植物具有积极意义。  相似文献   

5.
以枣树为研究对象,通过对自然生长枣林与矮化密植枣林、截干枣林、极端矮化的枣树及不同修剪强度枣林土壤水分进行监测,采用水量平衡法分析上述情况下枣林耗水特点及枣树水分利用效率。结果表明:自然生长枣林每年在土壤中耗水量较矮化密植枣林大6.54 mm,耗水深度较矮化密植枣林大13.3 cm,水分利用效率最小,2014、2015年分别为2.1、1.8 kg/m~3;12龄枣林实施截干处理3年,其林下土壤水分恢复深度达460 cm,每年恢复深度达153.3 cm,是形成干层速度的3.41倍;极端矮化枣树规格降低1/2,其耗水量为同龄枣林的25%,水分利用效率是同龄枣林的1.26倍;枣树不同修剪强度与其蒸腾耗水关系紧密,随着修剪强度加大枣树蒸腾耗水量减小,林下土壤含水率可提高。研究显示,枣林可以通过对枣树规格的缩小来实现枣林耗水量及水分利用效率的调控,黄土高原半干旱区年降水量波动较大,确定当地适宜修剪强度指标时,建议参考多年平均降水量来制定。  相似文献   

6.
土壤容重变化与土壤水分状况和土壤水分检测的关系研究   总被引:10,自引:0,他引:10  
以湖北地区黄棕壤、水稻土、潮土为供试土壤,通过土壤在脱水干燥过程中客重增大和模拟不同容重级别土壤所引起的土壤水分状况变化,研究了土壤容重与体积含水量、土壤水分类型、土壤水分利用、土壤水分运动相伴变化的关系以及土壤容重与土壤水分检测的关系.试验结果表明,随着土壤容重增加,其饱和含水量、重力水含量、有效水含量减小,其凋萎含水量、无效水含量增加;其饱和导水率减小,非饱和导水率增加;同时土壤容重变化影响土壤水分运动参数的表述和土壤水分运动方程的应用以及土壤水分检测及其结果的应用.  相似文献   

7.
次生盐渍土垂向剖面斥水性及其与理化性质关系   总被引:1,自引:0,他引:1  
任鑫  李毅  李敏  郭丽俊  丰满 《农业机械学报》2011,42(3):58-64,79
为探求土壤剖面斥水性的变化规律及其与土壤水盐含量、pH值的关系,在新疆新垦膜下滴灌棉田以10 cm×10 cm和5cm×5cm的网格等间距采集两个土壤剖面样品,对剖面土壤的斥水性、含水率、含盐量和pH值了进行经典统计、地学统计和相关性分析。结果表明:次生盐渍土剖面斥水性呈中等程度变异,空间自相关性中等偏弱;土壤斥水性在40cm深度附近时最强,在大于80cm深度的土层斥水特征不明显;在0~40cm深度土层,含水率与土壤斥水性正相关,在40~80cm深度与斥水性负相关;含盐量除在0~10cm的表层与斥水性正相关外,在其余土层均为负相关; pH值与斥水性之间多为正相关。  相似文献   

8.
立体种植农田不同生育期及土壤水分的根系分布特征   总被引:6,自引:0,他引:6  
在立体种植农田中,作物根系分布是影响作物间水肥竞争及利用效率的首要因素。针对滴灌条件下番茄套种玉米立体种植农田设置高(T1)、中(T2)、低(T3)3个土壤水分处理,研究不同水分处理对立体种植农田不同位置土壤含水率、作物根系分布的影响,探讨立体种植农田根系在不同生育期生长发育特征。结果显示:立体种植农田番茄侧土壤含水率平均值显著低于玉米侧,膜内土壤含水率明显高于膜外土壤含水率,膜内不同位置土壤含水率无明显差异;随着生育期的推进作物间根系呈"不交叉—轻度交叉—完全交叉—轻度交叉"规律;随着土壤含水率的增加根系总量呈增长趋势,在0~30 cm的滴灌湿润区,作物根系分布最密集,约占总根系的60%~70%,且高水分处理根量显著大于低水分处理,根长密度、根表面积密度、根体积密度以及根重密度均呈现T1T2T3的趋势,而在非滴灌主要湿润区则正好相反;累积根系分布曲线分析显示随着土壤含水率增加根系向土壤下层生长,随着生育期推进根系向作物中间发展。立体种植农田作物在不同生育期根系分布变化明显,同时土壤水分对根系分布影响较大。  相似文献   

9.
间接地下滴灌灌溉深度对枣树根系和水分的影响   总被引:4,自引:0,他引:4  
为探讨间接地下滴灌及导水装置埋深(灌溉深度)对南疆极端干旱区矮化密植红枣根系生长分布特征及产量、水分利用率的影响,试验设间接地下滴灌(ISDI)3个导水装置埋深水平,分别为20、27、35 cm,以地表滴灌(DI)为对照,共4个处理,经过2~4 a的田间试验后,采用环状壕沟分层挖掘法对以枣树树干为中心,半径为1 m的90°扇形区域内0~100 cm土层进行根系取样。结果表明,相对于DI,ISDI下各根系分布较均匀,生长方向基本向下延伸;ISDI显著增加了根径小于5 mm根系根长密度,细根(根径小于2 mm)是DI的3倍,但减少了根径大于5 mm根系根长密度,相对增加了20~40 cm土层根系根长占总根长的比率;垂直方向上随着灌溉深度的增加表层根系根长密度相对减少,深层相对增加;水平方向上各处理根系根长密度基本呈现随着与树干水平距离的增加而减小的趋势,但在0~20 cm土层减小的幅度较大,在20~40 cm土层其减小的幅度较小;随着灌溉技术由DI到ISDI及灌溉深度的增加,细根分布基本呈现出由"宽浅型"向"深根型"发展的趋势。相对DI,ISDI具有较好的节水增产效果,提高产量及灌溉水生产率最大达20%。建议幼龄期南疆密植枣树的导水装置埋深为27~35 cm。研究为极端干旱区枣树适宜灌溉技术的选择及其技术要素的制定提供依据。  相似文献   

10.
在野外山地设置4种不同土壤含水率水平的定位试验小区,试验枣树采用相同的节水型修剪标准使其保持一致的规格,在自然降水情况下连续2年观测土壤含水率、枣树生长、产量等。不同初始含水率的土壤在自然降水条件下,土壤含水率趋向某一个值,该值受年降水量的影响而异,2014平水年该值为(13.83±0.22)%,2015偏旱年为(9.46±0.32)%。初始土壤干化程度不同会显著抑制枣树枣吊生长和果实个数,在相同干化土壤中枣树的生长取决于当年的降水量,但节水型修剪下的产量比常规矮化修剪提高36%~41%,产量水分利用效率提高3.6倍以上。节水型修剪技术有利于提高枣树的产量水分利用效率。  相似文献   

11.
应用土壤-植被-大气系统水热传输模型CoupModel,在野外定位观测试验的基础上对陕北黄土丘陵沟壑区阴、阳坡荒草地SVAT系统水分传输进行了模拟.结果表明,土壤含水率和土壤温度模拟值与实测值有较高的一致性;阳坡荒草地的土壤蒸发量较阴坡高,阳坡荒草地植被蒸腾量低于阴坡荒草地,说明阴、阳坡荒草地在大气-土壤界面和植被-土壤界面水分交换差异明显;干旱年大气降水主要消耗于土壤蒸发和植被蒸腾,蒸散量超过了同期降水量,输入草地系统的降水满足不了水分的支出,土壤水库处于负补偿状态.丰水年,试验地约有20%降水储存于土壤中,系统的水分收入大于支出.黄土丘陵沟壑区阳坡和阴坡是水热条件不同的立地类型,阳坡用于土壤蒸发的水分较多,土壤储水量低,因此阳坡植被配置应当考虑盖度较高、可以降低土壤蒸发的植被类型.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号