首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 43 毫秒
1.
生物质流化床气化反应过程数值模拟   总被引:1,自引:0,他引:1  
建立了二维生物质流化床气化炉模型,模型包括气相质量、动量和能量守恒,热解过程动力学采用一步反应模型,气固均相与非均相反应采用物质输送模型,重点考察了颗粒在炉内的运动和热解气化过程,分析了温度和当量比对燃气组分的影响,并对模拟结果与实验结果进行对比验证.结果表明:颗粒在炉内的运行时间约为2.15s,0.8s左右时颗粒进入稳定的流化环境;CO2和CH4摩尔分数沿y轴方向逐渐将低,而CO和H2摩尔分数沿y轴方向不断增加.在不同温度和当量比条件下,模拟所获得的H2、CO、CH4和CO2摩尔分数与实验结果具有良好的一致性.  相似文献   

2.
生物质气化技术及焦油净化方法   总被引:3,自引:0,他引:3  
生物质气化供气是农村利用生物质能源的主要途径。与生物质集中供气技术相比,户用的单独供气技术更适合于经济相对落后和居住较分散的农村用户。为此,分析对比了目前生物质气化装置为降低燃气焦油含量而常用的热裂解、催化裂解、湿法与干法等可用技术的特点与应用条件,提出了催化裂解方法较具发展前景。采用生物质气化与焦油裂解一体化的气化装置,并配置具有降温、除尘和焦油分离回收等多种功能的高效净化装置,是适合小型气化装置特点的处理焦油的有效技术。  相似文献   

3.
生物质气化发电焦油废水的厌氧毒性研究   总被引:4,自引:0,他引:4  
李亚新  吴创之  韩志英 《中国沼气》2003,21(1):15-17,36
厌氧毒性测定(ATA)结果表明焦油废水对厌氧菌有毒害作用,焦油废水使污泥活性下降50%的抑制浓度(IC50%)为418mgCOD·L-1。废水浓度不同对甲烷菌的毒性类型也不同,废水COD浓度在293mg·L-1以下属代谢毒性;在587mg·L-1时属生理毒性;在879mg·L-1以上属杀菌毒性。  相似文献   

4.
梯度链条式生物质气化炉按照气化规律从空间上将生物质气化过程分为4个阶段,可实现对各气化阶段气化条件进行控制。为此,对梯度链条式生物质气化炉进行数值模拟,通过改变ER,计算出不同ER下床层顶部各组分的温度和浓度分布及炉膛气相的气化特性。模拟结果显示:气化合成气出口温度622.24℃;气化合成气中CO为13.81%、CH4为3.26%、C2H4为0.601%、C2H6为0.002%、CnHm为10.936%、H2为3.82%;碳转化效率为75.1%,低位热值为5 501k J/Nm3,气化效率为57.56%。该气化效果比下吸式固定床气化炉、固定床气化炉及鼓泡床气化炉空气气化效果好。  相似文献   

5.
比较了生物质集中供气技术与户用生物质气化技术。通过炉型分析,提出了上吸式生物质气化炉是农村户用气化炉型的理想选择;同时,分析了目前户用生物质气化炉存在的问题,认为催化裂解是户用气化炉焦油净化的有效途径。在分析小型气化炉焦油净化技术的基础上,开发了一种设置二次催化裂解与分离回收装置的新型气化炉。该炉能利用燃气显热,有效回收液态焦油和冷凝水,具有焦油裂解转化效果好、气化炉效率和燃气热值提高等优点。  相似文献   

6.
生物质气化中焦油的产生及处理方法   总被引:1,自引:0,他引:1  
生物质气化是一种常用的生物质能转换途径,气化过程中不可避免地产生的副产物焦油具有极大的危害性.为此,从生物质气化技术原理、装置及流程入手,论述了气化过程中焦油的产生、特点、影响因素及危害性;分析生物质气化气中焦油的旋风分离、湿式净化和干式净化等物理净化方法,比较高温热解和催化裂解化学转化方法;指出不同焦油处理方法的优缺点及工程应用.如何控制与优化气化过程、采取合适的焦油脱除技术,已成为生物质气化技术的一个重要研究方向.  相似文献   

7.
生物质固定床两步法气化技术   总被引:2,自引:0,他引:2  
在分析焦油形成机理和裂解条件的基础上提出了一种高效的低焦油生物质气化技术.该技术将生物质低温热解和高温气化两个过程分开进行,且要求热解发生于350~500℃之间,气化温度控制在1000℃左右,气化剂当量比大约为0.3.分步气化保证了焦油强化裂解的高温条件,使其充分裂解为小分子不凝性可燃气体,从而降低了可燃气体中基础焦油质量浓度,提高了燃气品质.该工艺可使燃气中基础焦油质量浓度降低到20mg/m~3以下.  相似文献   

8.
生物质热解气化气中焦油生成机理及其脱除研究   总被引:7,自引:0,他引:7  
生物质气化气中焦油含量高成为制约生物质气化技术商业化发展的决定性因素之一。在对生物质热解气化过程中焦油的生成及其影响因素进行分析的基础上,采取优化炉内结构与炉外气体湿式净化相结合的方法来脱除气体中的焦油,研究开发出气化剂由侧向送入的气化反应炉,以及相应的集喷淋、水溶、水膜、冲激于一体的湿式净化装置。该生物质气化机组所得到的可燃气具有燃气热值高、焦油含量胝、操作简单、安全可靠的特点。气化效率可达到78%,燃气低位热值为5.4MJ/m^3(玉米秸),焦油含量48mg/m^3,O2含量为0.7%,主要技术指标均低于有关行业标准。  相似文献   

9.
切向旋风分离器内部流场的数值模拟及试验研究   总被引:18,自引:1,他引:18  
分析了湍流中的计算流体动力学(CFD)模型,然后用介于ASM和RSM之间的一个混和模型,对切向分离器中的流场进行了理论计算,得出了切向分离器中的流场分布结果。然后用激光多普勒装置试验测试了分离器中的速度分布,根据试验结果,评判了分离模型,并分析了旋风分离器进口区域附近流场的轴对称性。  相似文献   

10.
生物质可燃气的净化   总被引:2,自引:0,他引:2  
  相似文献   

11.
基于松木块气化试验数据,建立了燃气焦油炉内、炉外联合脱除过程最小二乘支持向量机模型(LS—SVM)。在燃气焦油炉内脱除工况优化基础上,针对催化剂活性进一步拟合了燃气焦油炉外催化裂解脱除过程多目标优化模型,优化计算得到气化燃气焦油联合脱除工况的Pareto最优解集。寻优结果表明,气化炉出口燃气焦油质量浓度低于2g/m3,满足焦油催化裂解器对入口燃气焦油含量要求;焦油催化裂解器出口燃气焦油质量浓度降低至0.126~0.340g/m3之间,同时满足燃气热值大于4MJ/m3的工程要求,燃气总体品质明显优于试验结果。  相似文献   

12.
主动配气下生物质气化焦油热裂解特性试验   总被引:1,自引:0,他引:1  
针对下吸式生物质固定床气化炉,采取主动配气的方式,进行焦油的热裂解性能试验.试验结果表明:主动配气下,气化炉同一截面反应均匀,具有较厚的高温层,为焦油热裂解提供良好的条件,并寻找到气化反应的最优配气量,在此配气量下,以玉米秸秆为原料,燃气中的焦油质量浓度约为600 mg/m3,热值达到5 400 kJ/m3左右,同时验证了灰层厚度等其他因素对焦油热裂解和燃气质量的影响.  相似文献   

13.
气化剂配风工艺的改变可对气化过程中炉内温度产生影响,经过对比测温实验得到中心管配风工况下床层温度高于双层配风工况。应用Fluent软件对不同配风工艺下气化炉压力场进行模拟分析,根据燃烧学理论找出热解层压力对气化反应的影响因素,结果表明:气化剂中心管供给降低了气化炉热解层区域压力,且该工况下床层压力分布较均匀。热解层压力降低可增加挥发分析出量,加快反应速率,提高炉内温度,从床层压力角度诠释了气化炉实验结果,最后通过误差分析方法检验了仿真结果的准确性。  相似文献   

14.
首先采用多维数值模拟方法解析了下吸式固定床反应器生物质气化反应的发展过程,并通过主动配气下吸式固定床的气化试验结果验证了该数值解析方法的可行性。在此基础上,解析了气化过程中炉内温度场和组分场的分布特性。结果表明,空气当量比RER是影响下吸式固定床气化过程气化特性的重要因素,并且对于炉内温度场分布和气化产气组分场的最优取值范围为0.24~0.28。  相似文献   

15.
生物质流化床富氧-水蒸气气化制备合成气研究   总被引:3,自引:0,他引:3  
使用不同含水率的木粉为原料,以180~270kg/h的进料速度在内径0.5m、高9m的常压流化床气化炉上进行了富氧-水蒸气气化制备合成气实验。考察了当量比、水蒸气配比、二次风以及原料含水率对气化温度、燃气组分、低位热值、气体产率、气化效率和碳转化率等参数的影响。结果显示:当量比为0.25~0.27之间,水蒸气配比0.4时,H2含量最高可达28.7%,H2/CO为0.94,燃气热值9.9MJ/m3,气化效率大于75%, 碳转化率大于97%;提高二次风比率可明显降低焦油含量,在总当量比0.29、二次风比率25%时焦油含量为49mg/m3;原料水分增加,气体质量下降,含水率以不超过20%为宜。  相似文献   

16.
生物质气化与废弃物焚烧联合发电技术环境效益分析   总被引:2,自引:2,他引:0  
介绍了生物质气化与废弃物焚烧联合发电技术,确定了该联合发电技术减排CO2环境效益的评估方法和基准线,定量计算了CO2减排增量成本和环境效益。对燃料费用、贴现率、C排放系数变化引起的不确定性进行了敏感性分析。结果表明,该联合发电技术具有显著的CO2减排环境效益,与基准线同等规模时效益为1457.2万美元/年。  相似文献   

17.
基于ASPEN PLUS的烟气气氛下生物质气化模拟   总被引:1,自引:0,他引:1  
基于ASPEN PLUS平台利用气固反应动力学,在生物质热解气燃烧所产生的烟气气氛下,建立生物质热解气化模型。通过AKTS热动力学软件分析了生物质在模拟烟气(80%N2、17%CO_2、3%O_2)气氛下热解气化的反应动力学,并对比模拟值和实验值,验证模型的可靠性;对影响热解气化特性的气氛进行分析并确定反应釜数量。结果表明:基于ASPEN PLUS平台进行生物质气化模拟性能良好。生物质热解气化过程中,动力学参数活化能和指前因子随着反应的进行而变化;与氮气和氧气气氛相比,烟气气氛有利于CO产生,产气热值比实验值提高1.3倍。  相似文献   

18.
下吸式气化炉木屑高温蒸汽气化制取富H2实验   总被引:4,自引:0,他引:4  
设计了生物质高温蒸汽气化实验平台,主反应器为高温蒸汽发生系统和带有喉口的下吸式气化炉。利用该实验平台对木屑进行高温蒸汽气化研究,气化过程通入的蒸汽温度控制在600~1 000℃。实验结果表明:高温蒸汽既是气化过程的气化剂又是部分热载体,能有效提高气化效率,并维持炉内温度场的稳定。实验条件下,气化气可燃组分体积分数达到77%以上,当蒸汽温度为(948±4)℃时,气化气中H2体积分数达到(51.83±0.12)%,气体热值为9.81 MJ/m3,H2/CO组分比达到2.17,气化气可持续稳定燃烧,气化性能较为理想。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号