首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
针对现有植保机械使用维护成本较高、驾驶员易出现农药中毒等问题,研制了一种遥控式小型高地隙植保喷药机。喷药机主要由具备四轮转向、四轮驱动的高地隙行走系统和精量喷药系统组成;高地隙底盘行走系统由底盘框架、驱动总成、转向总成组成,用以固定安装控制装置、蓄电池和精量喷药装置,前桥采用铰接式悬浮机构使底盘具备良好的行驶稳定性和田间通过性。精量喷药系统由精量控制器、测速模块、药箱、液泵、喷杆和喷头组成,能够根据作业行驶速度实时调节液泵流量,保证喷药量的均匀一致。测试结果表明:该高地隙植保喷药机能够在人工遥控模式下沿直线路径和田间道路自动行走,横向偏差小于20cm,行驶速度能够根据作业需要实时调节,喷杆喷幅为6.5m,喷药量调节范围为4.2~18 L/min。  相似文献   

2.
玉米收获机自动对行系统设计与试验   总被引:5,自引:0,他引:5  
为提高玉米收获机的对行质量,减轻驾驶员的劳动强度,设计了一套玉米收获机自动对行系统,包括自动对行感知系统和路径跟踪控制系统。感知系统由激光雷达、机械式对行传感器、陀螺转角仪等组成,激光雷达检测进入地块前的横向偏差,机械式对行传感器检测收获作业时的横向偏差,陀螺转角仪检测航向偏角。以纯追踪模型作为路径跟踪的控制方法,利用模糊控制原理动态调整纯追踪模型中的前视距离,结合收获机的运动学模型,确定收获机转向轮的期望转角,并通过Matlab/Simulink软件对模型进行仿真分析。将自动对行系统搭载于4YL-6型玉米收获机上进行田间试验,结果表明,激光雷达静态检测试验的偏差均值为0. 077 5 m,标准差均值为0. 130 9 m,偏差在±15 cm和±30 cm内的比例均值分别为80. 5%和95%;激光雷达地头自动对行试验的平均调整距离为7. 89m,平均偏差为0. 146 m;基于机械式对行传感器的收获作业自动对行试验的偏差均值为0. 087 6 m,标准差均值为0. 097 6 m,偏差在±15 cm和±30 cm内的比例均值分别为83. 1%和100%。试验结果满足玉米收获机的对行作业要求,可为玉米收获机的自动对行提供理论支持。  相似文献   

3.
玉米生长中后期常规施药机械难以适应,高地隙喷雾机的研制问题亟待解决。自走式高地隙底盘技术是玉米高地隙喷雾机研制的核心问题。为此,根据玉米生长中后期植保作业要求,制定了喷雾机总体设计方案;结合自走式底盘技术原理,应用solidworks对喷雾机底盘系统相关的行走系、转向系、制动系、轮距调整系及喷杆系等关键系统进行了三维设计,为底盘系统动力学建模、性能仿真分析及自走式玉米高地隙喷雾机的研制奠定了基础。  相似文献   

4.
针对传统喷杆喷雾机底盘较低不能满足玉米中后期植保作业,以及雾滴飘失、农药利用率低等问题,研制了高地隙底盘与风幕式防飘技术相结合的风幕式高地隙喷杆喷雾机。整机主要由驾驶室组件、高地隙静液压底盘、喷杆架组件、喷雾系统和风幕系统等组成,高地隙底盘采用静液压驱动底盘,四轮驱动,四轮转向,龙门式机架最小离地间隙为2 600mm,轮距调节范围为2 280 3 300mm。试验结果表明:有辅助气流较无辅助气流雾滴在玉米整个冠层平均覆盖率提高了57.37%,风幕系统对于增加雾滴在玉米冠层沉积及减少雾滴飘失作用明显。该机具底盘离地间隙高、防飘性能好,可以满足玉米中后期病虫害防治要求。  相似文献   

5.
为提高花生收获机的智能化水平,设计了花生收获机自动驾驶作业系统。以东泰机械4HBL-2型自走式花生联合收获机为平台,针对花生收获机操作台、变速机构和作业机构设计了具有CAN总线接口的手自一体化电控系统,采用PD控制算法和Bang-Bang控制算法实现了行走和作业系统的控制。针对花生收获作业农艺要求,设计了花生收获机联合作业策略、自动导航路径规划和路径跟踪控制方法。以行驶速度0.25m/s在水泥路面和沙质土壤花生地进行了自动驾驶收获作业试验。水泥路面试验结果表明,花生收获机直线跟踪平均绝对偏差为4.34cm,最大偏差为9.30cm;沙质土壤田间试验结果表明,花生收获机直线跟踪平均绝对偏差为5.12cm,最大偏差为12.20cm,满足花生联合收获作业要求。  相似文献   

6.
为满足稻麦高效植保的要求,规范基于农机操作与农药植保相互融合条件下,高地隙自走式喷杆喷雾机田间作业条件、作业前准备、机具操作及施药后处理等技术,形成高地隙自走式喷杆喷雾机田间作业技术规程。  相似文献   

7.
谈新型高地隙自走式喷药机的设计   总被引:2,自引:0,他引:2  
在玉米田间管理中,喷药、除草、施肥、中耕是管理中重要的环节,针对目前植保技术相对其他机械化作业落后的情况,为满足玉米规模化生产的要求,市场急需一种相对结构简单、技术先进、便于操作、成本低廉、效果优良、科学环保的新型高地隙自走式喷药机.市场上种类繁多的各种喷药机,都不适合我省目前的玉米田间管理生产机械化.我省农业生产急需的喷药机,是一种高地隙、能自走、垄距可调、高效率、价格低、安全环保、低耗的新型高地隙自走式喷药机.  相似文献   

8.
为满足水稻穴直播机自主作业的高性能需求,对穴直播机的自主驾驶系统进行了自主化设计与验证。根据洋马VP6型穴直播机的结构特点,对穴直播机自主驾驶进行机电改造,设计了自主驾驶总控制器和CAN总线化电动转向、油门及挡位的分控制系统,满足了自动驾驶的功能要求。经过分析穴直播机的运动学模型及控制模型,分别建立了外环轨迹跟踪和内环转向角度跟踪的双闭环控制算法策略。经过反复试验,确定合适的控制器参数为k_p=1、k_d=3.5。水田环境的试验结果表明:自动驾驶控制系统达到了横向偏差的绝对值不大于8 cm的跟踪效果。  相似文献   

9.
设计一种高地隙水田液压行走底盘,目的是解决喷药机在田间行走时对秧苗的损伤大、传动复杂、转向半径大等问题。基于此,本文研究设计了一款符合水稻农艺的专用底盘,选择了传动简单的液压传动方式和优化了转向机构的高地隙喷药机,样机试制后进行田间试验,结果显示:喷药机在田间行走时水稻秧苗的损伤率小于3%,最小转向半径为3.12m。  相似文献   

10.
针对皖南山区高垄畦沟环境下小型烟草植保机田间作业易侧翻、难调头的问题,根据植保机在高垄畦沟田间行走的稳定性与转向要求,通过对传动系统与转向系统进行分析,设计了小型轮式烟草植保机。利用Recur Dyn/Track仿真软件,建立植保机与田垄结构的动力学与运动学模型,完成植保机移动平台设计和优化,并对植保机在高垄畦沟田间环境下进行试验。仿真结果表明,设计的植保机模型能够达到转向半径为0. 8 m的实际要求,且沿垄间直线行驶时移动平台侧倾角小于3°,移动平台最佳作业速度为1. 0 m/s,验证了植保机移动平台模型具有良好的转向性和稳定性。植保机样机田间试验结果表明,移动平台在烟草田头转向性满足南方烟草垄作环境需求,利用惯导装置测试垄间移动植保机作业速度为1. 0 m/s时,最大侧倾角为14. 38°,没有超过其发生侧翻的临界角,能够安全通过。  相似文献   

11.
为了提高自动驾驶系统对车身纵向速度和滑移工况等影响因素的自适应能力,提出了一种基于航向预估模型的路径跟踪控制算法。首先对NF-752型履带式拖拉机进行适应性改造,将其手动转向机构和无级变速机构改造为大扭矩舵机控制,通过绝对值编码器测量两侧履带转速,利用RTK-GNSS定位系统测量车辆地理位置和车身速度,结合车载计算机和底层控制器搭建了自动驾驶系统试验平台。然后以车身速度和两侧履带速度为状态变量,考虑履带滑移率建立了航向预估控制模型,进而提出了一种基于航向预估模型的路径跟踪控制方法。最后在沥青路面分别以低速(1 km/h)、中速(5 km/h)和高速(9 km/h)进行了直线路径跟踪试验,结果显示,在不同作业速度条件下,路径跟踪误差无明显差异,最大跟踪误差为-2.00 cm,标准差为0.93 cm。进行了田间曲线路径跟踪试验,结果显示,当拖拉机以6 km/h速度跟踪曲线路径时,跟踪误差优于10 cm,在滑移区域无明显误差增大现象。试验表明,提出的航向预估控制方法对作业速度有较好的适应性,一定程度上克服了滑移现象对控制精度的影响,可满足履带拖拉机耕整地作业精度要求。   相似文献   

12.
针对“精准农业”的作业需求,为提高植保机械的作业精度,降低驾驶人员的工作强度,设计了一种四轮转向液压底盘自动驾驶系统。该系统主要由车载电脑、行车控制器、RTK-DGPS采集装置、电控液压转向装置及行车状态采集装置等组成。行车状态采集装置采集行车参数信息并基于i CAN通信协议进行系统通信。车载电脑根据导航控制模型和各传感器实时参数生成控制指令,行车控制器根据车载电脑指令根据四轮车运动模型生成电控信号,并通过各电磁阀控制液压马达和转向油缸实现对底盘4个轮的转向。试验结果表明:当底盘前进速度为2m/s时,平均跟踪误差不超过0.04m。  相似文献   

13.
拖拉机作业时滑转率过高会降低作业效率,准确监滑转率具有重要意义。针对基于最小轮速的滑转率测量方法在转向工况下失效的问题,提出一种基于阿克曼转向原理的滑转率测量方法。通过建立转向时的滑转率测量模型,得到滑转率与理论车速、右前轮车速、右前轮转向角的关系。基于约翰迪尔4720型拖拉机设计滑转率测量系统,包括右前轮轮速测量装置,CAN总线解析模块和滑转率计算模块。水泥路面直行工况下滑转率测量试验结果表明,直行工况滑转率的平均值为3.0%。在水泥路面转向工况下,进行目标理论速度分别为0.5、0.8、1.0、1.2、1.5 m/s的滑转率测量试验。试验结果表明:转向工况滑转率的平均值分别为3.9%、3.4%、3.7%、3.8%、2.9%,处于直行工况的滑转率区间;因此认为此方法可行,为农机田间转向工况滑转率测量提供支撑。  相似文献   

14.
基于DGPS与双闭环控制的拖拉机自动导航系统   总被引:1,自引:0,他引:1  
以东方红X-804型拖拉机为平台,设计了一种基于RTK-DGPS定位和双闭环转向控制相结合的自动导航系统,研究提高农业机械导航控制精度的方法。阐述了导航系统整体设计方案,以RTK-DGPS和AHRS500GA分别提供位置信息和辅助修正信息实现准确定位,以电控液压转向系统实现转向控制。分析了整体控制的策略,建立了路径跟踪的传递函数模型,阐述了双闭环转向控制算法的建立过程,以及控制器的硬件实现。试验结果表明:GPS定位数据经过校正后,平均偏差降低至0.031 m;双闭环控制算法提高了自动转向系统性能,稳态时方波信号以及正弦波信号的跟踪误差平均值为0.40°;在拖拉机田间作业跟踪过程中,路径跟踪误差平均值不超过0.019 m,转向轮偏角跟踪误差平均值为0.43°,标准差不超过0.041 m。  相似文献   

15.
为解决无人化水田植保机在田间作业时上线速度慢、精度不高和抗干扰能力差的问题,提出了一种基于快速幂次趋近律和全局滑模控制的水田植保机路径跟踪控制方法。首先建立了含有滑移干扰项和航向角干扰项的水田植保机四轮异相位转向运动学模型,提出了一种基于全局滑模控制和快速幂次趋近律的直线作业跟踪转向控制算法,解决了滑模控制算法的抖振和趋近模态对干扰敏感的问题,使用Lyapunov判据检验了算法的收敛性。使用Matlab建立了仿真模型,对算法进行了仿真,相比基于指数趋近律和等速趋近律的滑模控制算法,本文算法的快速性更好。实际作业实验结果表明,该方法直线跟踪横向偏差绝对值最大为0.0778m,能够有效提高自主导航控制系统的稳定性和快速性。  相似文献   

16.
变速条件下农业机械路径跟踪稳定控制方法   总被引:1,自引:0,他引:1  
为提高农业机械(农机)路径跟踪控制在不同速度条件下的稳定性和鲁棒性,提出了基于链式系统模型和小范围稳定性分析优化的直线路径跟踪控制方法。首先,根据几何约束建立农机非线性运动学模型,并基于链式系统模型将其转换为线性链式系统,进而对系统的误差项进行线性组合,得到农机路径跟踪控制方法;然后,基于控制方法在平衡位置小范围的稳定性分析,对控制方法进行优化,使得农机路径跟踪控制在平衡位置小范围的稳定性与行驶速度无关;最后,以水稻穴直播机为实验平台开展了直线跟踪对比实验和农机作业实验。结果表明,相比于PID控制方法,本文控制方法在3种不同速度下均能保持直线跟踪控制的稳定性,并且具有较高的控制精度。同时,本文路径跟踪控制方法的稳定性与行驶速度无关,农机作业的行驶速度在0. 4~2. 0 m/s范围内均能实现稳定控制,平均绝对误差均值为0. 047 m,最大绝对误差为0. 128 m。  相似文献   

17.
为实现农业机械全田块高效自主作业,提出一种增益系数自适应的Stanley模型路径跟踪算法。以横向偏差和航向偏差为输入变量构建隶属度函数,设计模糊推理和解模糊化过程实时确定控制模型增益系数,提高Stanley模型对不同曲率路径的自适应能力。为验证所提算法有效性,以移动小车为平台开展联合收获机回字形全田块自主作业路径跟踪试验,结果表明所提算法显著改善Stanley模型路径跟踪精度,直线作业速度2.5m/s、转弯速度1m/s时,直线段和曲线段最大跟踪误差均小于3cm。大初始横向偏差路径跟踪试验表明,模糊Stanley模型较Stanley模型大幅度减小路径跟踪上线距离,满足农业机械全田块高效自动导航作业要求。  相似文献   

18.
针对传统燃油驱动、前轮转向的高地隙喷雾机传动效率低、碳排放高、环境污染、智能化水平低、灵活性差等问题,本研究提出了一种适用于无人驾驶的高地隙四轮独立驱动(Four Wheel Independent Drive,4WID)喷雾机。其采用混合动力、前后双转向桥的4WID,转向半径小,前后轮的运行轨迹高度一致,能够减少田间植保作业时的压苗现象。考虑水田极端作业环境下驱动轮的滑移、陷坑等问题,基于喷雾机线性时变的运动学模型(LTV),构建了考虑驱动轮滑移的分层路径跟踪控制。上层模型预测控制(Model Predictive Control,MPC)器根据预期路径、车辆当前位置,获得喷雾机的转向角和运动速度,实现路径跟踪。下层以模糊控制和积分分离PID控制构建驱动轮滑移控制器,从而实现路径跟踪、运动速度、驱动轮滑移的有效控制,提高了喷雾机在复杂作业环境中的稳定性和路径跟踪精度。采用Adams/Matlab的联合仿真结果表明,在复杂的工况条件下,喷雾机驱动轮的滑移率依然控制在±20%之内,防止驱动轮发生过度滑移对车速和转向角产生不良影响,有利于喷雾机稳定性的提升。本喷雾机能够快速准确地跟踪期望路径,与未考虑驱动轮滑移的控制相比,能够适应更加复杂的工作环境,跟踪精度有明显提升。  相似文献   

19.
针对铰接式车辆的特殊转向结构和行驶特性,为提高其路径跟踪控制精度和反应速度,提出了一种基于预见信息的线性二次型最优控制(Linear quadratic regulator,LQR)策略,并应用遗传算法(Genetic algorithm,GA)对状态量权重矩阵进行优化求解,获得最优LQR状态反馈控制器,实现铰接式车辆精确路径跟踪控制,由位置偏差、行驶方位偏差和曲率偏差来反映控制效果。ADAMS-Matlab/Simulink联合仿真结果:位置偏差为0.03 m,偏差误差为1.3%,行驶方位偏差误差为0.19%,曲率偏差收敛于0.003 m-1。联合仿真和试验验证结果表明,所提出的控制方法可有效提高控制精度,实现铰接式车辆的精确、稳定路径跟踪。  相似文献   

20.
扰动下农用运输车辆路径跟踪控制器设计与试验   总被引:1,自引:0,他引:1  
为提高农用运输车辆路径跟踪的鲁棒稳定性,基于线性模型预测控制结合农用运输车辆特点设计了路径跟踪控制器。该方法首先将农用运输车辆的运动学模型进行离散化求解,推出误差模型作为控制器预测方程,为使农用运输车能够克服在田间行驶时的各种干扰,通过构建李雅普诺夫函数重点分析了该模型的鲁棒稳定性,得到控制周期约束条件,然后建立目标函数并引入松弛因子,最后把预测模型代入目标函数进行优化求解,重复以上过程,实现优化控制。Matlab仿真表明:当前轮转角扰动不大于15°及横向扰动不大于1.5m时,控制器可以迅速起到调节作用,使车辆快速回到参考轨迹上行驶。对应的场地试验结果表明:试验小车以2m/s的速度跟踪参考路径时,直线路段跟踪效果良好,最大横向偏差为10.57cm,均值为8.49cm;添加扰动路段的跟踪偏差较大,最大横向偏差为23.89cm,最大纵向偏差为62.53cm,但在控制器的控制作用下可以实现对路径的有效跟踪。由此可见,该控制器在速度小于等于2m/s的情况下,可以满足农用运输车辆对路径跟踪的精度与鲁棒稳定性要求。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号