首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 750 毫秒
1.
A study was conducted to determine optimum dietary digestible protein (DP) and digestible energy (DE) levels and DP DE−1 ratio for growth of greater amberjack Seriola dumerili fingerlings. A 3 × 3 factorial design with duplication was used in this study. Nine experimental diets were formulated to contain three levels of crude protein (CP; 420, 470 and 530 g kg−1) and three levels of crude lipid (CL; 130, 180 and 230 g kg−1). Nine groups of fingerling (initial weight 51.8 g) were fed each experimental diet for 40 days. Final body weight, feed efficiency, specific growth rate and energy efficiency were significantly affected by dietary protein and lipid level. These parameters tended to improve with increasing dietary protein level. Conversely, an increase of lipid level negatively affected these parameters. High growth rate and feed efficiency were obtained from fish fed the diet containing 393 g kg−1 DP and 14.2 MJ kg−1 DE (27.7 g MJ−1 DP DE−1). The high DP DE−1 (27.7 g MJ−1) indicates that greater amberjack fingerling are highly dependent on dietary protein as an energy source.  相似文献   

2.
Four extruded diets differing in protein/fat concentrations, 378/389 g kg?1, 425/346 g kg?1, 480/308 g kg?1 and 524/256 g kg?1 were tested in a digestibility trial and a growth study. Apparent digestibility of protein and fat were not significantly different among the diets when tested in 1-kg Atlantic salmon, Salmo salar L., in sea water. The diets represented a range of digestible protein to digestible energy ratios (DP/DE ratios) of 14.1, 16.4, 18.8 and 21.9 g MJ?1. The 138-day growth study was performed with triplicate groups of Atlantic salmon of 1.0 and 2.5 kg initial weight. Irrespective of size; growth, feed conversion ratio (FCR), nitrogen and energy retention were poorer in fish fed the diet with DP/DE ratio of 14.1 g MJ?1 compared with the fish fed the other diets. A DP/DE ratio of 16.4 g MJ?1 was sufficient to produce maximum growth for the large fish, while the DP/DE ratio of 18.8 g MJ?1 produced the highest growth in the small fish. In the large fish, the lowest FCR was obtained on a DP/DE ratio of 16.4 g MJ?1, while there was no clear difference in FCR within the small fish when diets of DP/DE ratios of 16.4–21.9 g MJ?1 were fed. The carcass-to-body ratio in the small fish decreased with decreasing DP/DE ratios. The fish fed the diet of 21.9 g MJ?1 had significantly lower fat and dry matter and higher protein content than fish of similar size fed the other diets. Increased dietary lipid content seemed to improve astaxanthin deposition in the small fish, while the large fish showed no significant differences in astaxanthin deposition due to dietary treatment. This study indicates that a DP/DE ratio of 14.1 g MJ?1 in high-energy diets for Atlantic salmon in sea water is below the optimal DP/DE ratio for growth and feed utilization, and that the optimal DP/DE ratio decreases with increasing fish weight. DP/DE ratios around 19 g MJ?1 for fish weighing 1 to 2.5 kg, and 16–17 g MJ?1 for fish weighing 2.5 to 5 kg, are suggested to be optimal.  相似文献   

3.
A 84‐day feeding experiment of two juvenile horseshoe crab species, including nine formulated diets with three digestible protein (DP) levels (36%, 40% and 44%) and three digestible energy (DE) levels (14, 16 and 18 kJ g?1) versus the control, fed on frozen brine shrimp (Artemia salina), was conducted. The results showed that the survival rate of Tachypleus tridentatus ranged from 67% to 100%, while that of Carcinoscorpius rotundicauda varied from 44% to 100%. The results also indicated that the formulated diet containing 40% DP with 14 kJ g?1 DE was the best, in terms of growth and feed utilization, for the two juvenile horseshoe crab species. Final body weight (FBW), thermal‐unit growth coefficient (TGC), feed efficiency (FE), nitrogen retention efficiency (NRE) and energy retention efficiency (ERE) of T. tridentatus fed 40% DP and 14 kJ g?1 DE were significantly higher than that of T. tridentatus fed the control diet. However, for C. rotundicauda, only significantly higher FE, NRE and ERE were found in juveniles fed 40% DP and 14 kJ g?1 DE than the control diet. The present findings revealed that the optimum DP/DE ratio for the two species was 28 g protein MJ?1.  相似文献   

4.
Effects of varying dietary digestible protein (DP) and digestible energy (DE) on protein retention efficiency (PRE), weight gain, protein deposition and carcass composition for silver perch (Bidyanus bidyanus, Mitchell) were studied. Using digestibility data for silver perch, we formulated three series of diets with different DE contents (13, 15 or 17 MJ DE kg?1). For each series, a ‘summit’ diet containing an excess of protein for silver perch (based on previous research) and a ‘diluent’ diet with only 10–13% DP were formulated. By blending the summit and diluent diets together in different ratios, five diets with different DP contents were produced for each DE series. A commercial diet was also included to give 16 experimental diets in total. Eight juvenile fish (mean initial weight 1.2 g) were stocked into each of 64 × 70‐L acrylic aquaria and then each of the 16 diets was randomly allocated to four replicate aquaria. Tanks were supplied with partially recirculated water (75%) at 25–27°C. Fish were fed restrictively, twice per day, based initially on 3.5% body weight day?1 with 40% of the ration given at 08:30 hours and 60% given at 15:00 hours for 59 days. Quadratic functions were fitted to each energy series to describe the relationship between DP content of diets and PRE (the asymptote of these functions were used to predict maximum PRE). For low DE (13 MJ kg?1), mid‐DE (15 MJ kg?1) and high DE (17 MJ kg?1), the dietary DP contents to give maximum PRE were 24.7%, 26.1% and 30.1% respectively. Carcass fat decreased with increasing DP and increasing DP:DE ratio. Varying the dietary protein and DE also influenced other indices of fish performance. ‘Optimum’ dietary protein therefore depends on several factors. For fish fed, restrictively, the protein content needed to maximize PRE is lower than the content needed to maximize weight gain or minimize carcass fat. For fish fed to satiation, the lowest protein content for maximum weight gain is lower than for fish fed restrictively.  相似文献   

5.
The effect of dietary digestible protein/digestible energy (DP/DE) ratios and feeding level on growth, feed efficiency, nutrient and energy usage by Atlantic salmon ( Salmo salar ; initial body weight, 7.0 g/fish) at 15°C was investigated in a 16-week feeding trial. Three diets, differing in their DP and DE contents, namely 37/18 (regular diet, RD), 37/21 (high fat diet, HF) and 44/ 22 (high nutrient-dense diet, HND) g/MJ of dry feed were formulated. DP/DE ratios were 20, 18 and 20 g/MJ for the RD, HF and HND diets, respectively. Salmon were hand-fed three times a day at either 100% or 85% of the feed requirement estimated by a bioenergetics model. At each feeding level, DE intake (kJ/fish) was similar for all three diets. Diet composition did not affect growth rate. However, increasing the digestible energy density from 18 to 22 MJ/kg of dry feed resulted in a significant increase ( P  < 0.05) in feed efficiency. Restricting feed intake significantly decreased live body weight gains for all diets. However, feed efficiency was not affected by feeding level. Diet composition and feeding level did not affect carcass composition and nutrient and energy usage, with the exception of a higher ( P  < 0.05) carcass lipid of fish fed the HF100 diet compared with the fish fed the RD and HND diets and a higher ( P  < 0.05) lipid gain (g/fish) of fish fed the HF100 diet compared with fish fed all the diets at the restricted feeding level. Restricting feeding resulted in significantly lower ( P  < 0.05) energy gain (kJ/fish) compared with fish fed at 100%. Increasing the DE and nutrient density of the diet had no effect on growth but improved feed efficiency and lowered solid wastes (g of solid wastes per kg of fish produced) while dissolved wastes were not affected by dietary ormulation.  相似文献   

6.
This study investigates the effect of digestible protein levels in experimental diets for meagre (Argyrosomus regius). A group of 253 fish, 52 g of mean weight, was distributed in 12 tanks, three replicates per treatment. Four isolipidic diets (170 g kg?1 crude lipid) with different digestible protein levels (350 g kg?1, 430 g kg?1, 490 g kg?1 and 530 g kg?1) were formulated using commercial ingredients. The trial lasted 62 days. Meagre fed diets 430, 490 and 530 g kg?1 obtained higher TGC (2.47, 2.57, 2.69 × 10?3, respectively) than fish fed diet 350 g kg?1 (2.14 × 10?3). Group of fish fed diet with 350 g kg?1 DP showed the lowest ammonia excretion level. According to the in vitro digestibility trial diets with 350 and 430 g kg?1 DP released less amino acids in comparison with diet with 49% DP, although in vivo digestibility test did not show significant differences among diets 430, 490 and 530 g kg?1 DP. Using the quadratic regression, optimal digestible protein intake according to the ECR for rearing juvenile meagre was recorded in 0.8 g DP/100 g fish and day.  相似文献   

7.
A growth trial was conducted to examine the effect of dietary digestible energy (DE) content on methionine (Met) utilization and requirement in juvenile Nile tilapia (Oreochromis niloticus). Ten iso‐nitrogenous (288 g kg?1 protein) practical diets, with two DE levels (10.9 MJ kg?1; 12.4 MJ kg?1) and five methionine supplementation levels (0, 1, 2, 4 and 6 g kg?1), were hand‐fed twice daily to triplicate groups of Nile tilapia (initial body weight 8.95 ± 0.06 g) for 8 weeks. Weight gain (WG) and specific growth rate (SGR) increased significantly with increasing dietary methionine concentration at the same DE content (< 0.001). At the same dietary methionine level, WG and SGR of fish fed high‐DE diets were significantly higher than that of fish fed low‐DE diets (= 0.0001), although no interaction was found between dietary DE and methionine supplementation. Based on quadratic regression analysis between dietary methionine concentration and weight gain, optimal methionine requirement for maximum growth, expressed as g Met required kg?1 diet (low‐ versus high‐DE diets), increased as diet DE concentration increased (7.34 versus 9.90 g kg?1 diet, respectively; with cysteine 4.70 g kg?1 diet). The results indicated that diet DE content affects methionine utilization and requirement in juvenile Nile tilapia, fish fed high‐DE diets required more methionine for maximum growth.  相似文献   

8.
A 3 × 5 factorial design including three lipid levels (100, 130 and 180 g kg?1 diet, based on dry matter) and five dietary protein levels (370, 420, 470, 520 and 570 g kg?1 diet, based on dry matter) was conducted to investigate the optimum dietary lipid and protein requirements for Rutilus frisii kutum fingerlings. Triplicate groups of 80 kutum (500 ± 60 mg initial weight) were stocked in 250‐l tanks and fed to apparent satiation thrice daily for 8 weeks. The results showed that the growth performance and feed utilization were significantly (P < 0.05) affected by dietary protein and lipid levels. Weight gain, specific growth rate and feed conversion ratio of kutum improved significantly with increasing protein level from 370 to 470 g protein kg?1 diet, but there was a significant decrease in growth parameters with increasing protein level from 470 to 570 g protein kg?1 diet. Also, the higher values of weight gain, specific growth rate and better feed conversion ratio were observed for fish fed diets containing 130 g kg?1 lipid diet. The results of this study showed that diet containing 420 g kg?1 protein and 130 g kg?1 lipid with a P:E ratio of 19.22 mg protein kJ?1 of gross energy is optimal for kutum fingerlings.  相似文献   

9.
A feeding trial was conducted in a recycling water system during 10 weeks to determine the optimal protein to lipid ratio in Asian red‐tailed catfish (Hemibagrus wyckioides). Six diets of two protein levels (390 and 440 g kg?1) with three lipid levels (60, 90 and 120 g kg?1) were formulated. Fish (1.96 g) were fed six diets with four replicates to apparent satiation at a stocking density of 50 fish per tank (500 L). Faeces were collected in cultured tanks at the end of the feeding trial for digestibility measurement. Significantly, improved growth performances (P < 0.01) and higher feed utilization (P < 0.001) were observed in fish fed with higher lipid diets. However, higher protein diets did not significantly improve fish growth but they reduced FCR (P < 0.001) and protein efficiency ratio (P < 0.01). Higher lipid diets also resulted in significantly increased adipose‐somatic index, carcass fat and reduced moisture of the fish. The study revealed the protein sparing effect of dietary lipid in the catfish and highest growth performance was found by fish fed 390 g kg?1 protein and 120 g kg?1 lipid diet with P/E ratio of 20.48 mg protein kJ?1. DP/DE ratio for maximal growth rate in diets was 21.48 mg protein kJ?1.  相似文献   

10.
The effect of DP/DE ratio in diets for rainbow trout, Oncorhynchus mykiss (Walbaum), was investigated. To evaluate growth and body composition, groups of trout were fed three experimental diets with a constant level of gross energy (25.4 ± 0.12 MJ kg?1 dry matter (DM)) and different digestible protein/digestible energy (DP/DE) ratios (diet A, 16. 35; diet B, 17.21; dietC, 18.23 g Mr?1). Fat, protein and energy digestibility coefficients were not affected by the DP/DE ratio of the diets. Growth and feed utilization improved markedly as dietary DP/DE ratio increased (P < .01). The efficiency of fat, protein and energy utilization tended to increase with increasing DP/DE ratio of the diets. Nitrogen discharge in effluent water per kg of weight gain was not affected by dietary treatments (mean values for: diet A, 29.9; diet B, 29.8; diet C, 29.1 g N kg?1 weight gain) while phosphorus discharge in effluent water fell using diets with a higher DP/DE ratio (mean values for: diet A, 7.3; diet B, 6.7; diet C, 5.9 g P kg?1 weight gain).  相似文献   

11.
This study evaluated the effect of ratio of dietary digestible protein (DP) to digestible energy (DE) on growth performance, fillet chemical composition and haematological profile of Nile tilapia subjected to transport‐induced stress at the final rearing stage (450 to 800 g) under commercial conditions. The trial was conducted using a 5 × 2 factorial layout (DP: 200, 230, 260, 290 and 320 g kg?1) and (DE: 12.6 and 13.8 MJ kg?1). Energy levels did not influence any analysed parameters in this research. Final weight and biomass gain were increased up to the ratio of 269 and 270 g PD kg?1, respectively, and feed conversion ratio was reduced down to a 275 g DP kg?1. Protein efficiency ratio linearly decreased from 200 g DP kg?1 diet to 320 g DP kg?1. There was no statistical difference in fillet chemical composition. Red blood cell count (RBC), haemoglobin (Hb), mean corpuscular volume (MCV) and mean corpuscular haemoglobin concentration (MCHC) were different before and after transport‐induced stress. Leucocyte differentiation after transport‐induced stress revealed lymphocytopenia and neutrophilia. We conclude that for tilapia weighing 450–800 g reared under commercially intensive conditions, a diet with 270 g DP kg?1 and 12.6 MJ DE kg?1 (21.43 g DP MJ?1 DE) can improve the growth performance and ensure the fish health.  相似文献   

12.
This study was undertaken to determine the dietary protein requirement of shi drum (Umbrina cirrosa L.) with an initial weight of 86.3±0.4 g. The fish were fed five isoenergetic diets containing dietary protein levels ranging from 35% to 59% by 6% increments [the estimated digestible protein (DP) levels ranged between 29.6% and 52.8%], and the growth response over a 10‐week period was monitored. Each experimental diet was given to triplicate groups of fish. The final weight, weight gain and daily growth coefficient increased with the dietary protein level, reaching a plateau at the dietary level of 47% protein. The feed conversion ratio improved with increasing dietary protein level. The daily feed intake was significantly lower in fish fed 53% and 59% protein diets compared with those fed 35% protein diet. However, protein intake showed an increasing trend with increasing dietary protein and became significantly different between the 59% and the 35% protein diets. The protein efficiency ratio, protein retention and condition factor were not affected significantly by the dietary treatments. The final body composition was not influenced by the treatments. The recommended dietary protein percentage and DP/digestible energy (DE) ratio for juvenile shi drum diets are 51.4% (45.6% DP) and 28.5 g DP MJ DE?1 respectively.  相似文献   

13.
Fingerling Cromileptes altivelis of less than 50 g have been shown to require feeds of 50–56% crude protein (CP) and 9–15% lipid. The requirements of larger, market‐size fish have not been reported. A total of 324 hatchery‐produced C. altivelis were weight sorted into three groups of 136, 175 and 225 g start weight and equally (12 seacage?1) and randomly distributed to floating net seacages in accordance with a 3 × 3 factorial arrangement of CP (42%, 47% or 53%; estimated digestible CP of 40%, 46% or 52%) and lipid (8%, 12% or 16%; equivalent to estimated digestible energy (DE) contents of 14.0, 15.8 or 17.5 MJ kg?1). Changes in dietary CP and lipid content were achieved at the cost of wheat flour by proportionally varying the protein mixture (essentially a 0.62:0.22:0.16 ratio of fish meal, mysid meal and casein respectively) and oil mixture (a 2:1 ratio of fish oil and soybean oil respectively). Fish were fed twice daily to satiation for 180 days. There was no significant (P>0.05) interaction between the main effects of dietary protein and lipid for any growth, nutrient retention or whole‐body composition measurements. Increasing dietary CP significantly improved the survival rate (80.6%, 88.9% and 87.0%), specific growth rate (SGR; 0.24%, 0.28% and 0.31% day?1), feed conversion ratio (FCR; 2.77, 2.21 and 2.00) and DE retention (18.2, 21.3 and 23.2%), respectively, but did not significantly affect digestible protein retention. Increasing dietary lipid increased SGR (0.25, 0.29 and 0.29% day?1) and the whole‐body lipid (and energy) composition, and reduced the survival rate (87.0%, 88.9% and 80.6%), respectively, but FCR and retentions of digestible protein and DE were not significantly affected. These results indicate that humpback grouper of 150–400 g require a dietary specification of not less than 51% digestible protein (~53% CP), 10–12% lipid and digestible protein:DE of 31–32 g MJ?1 for optimal growth.  相似文献   

14.
The objectives of this study were to describe the interactive effects of varying digestible protein (DP) and digestible energy (DE) contents on the feed intake, growth, protein utilization and whole body composition of juvenile mulloway ( Argyrosomus japonicus ) and to determine the optimal DP : DE ratio for growth. This was achieved by feeding mulloway diets containing one of four different DP levels (250–550 g kg−1) at two DE levels (16 or 21 MJ kg−1). Juvenile mulloway were stocked at each of two different sizes (70 or 200 g) in triplicate groups for each dietary treatment and fed twice daily to apparent satiation over 58 days. The results indicated that feed intake was not governed solely by energy demands but was also dependant on the DP content of the diet. Protein utilization did not improve with diets containing decreasing protein and increasing lipid content indicating that mulloway have a limited capacity to spare DP. Optimal DP content was found to be 444–491 g kg−1 depending on the DE content of the diet and the size of mulloway and is within the range reported for other sciaenid species. The use of formulated diets with 28.6 g of DP MJ DE−1 will achieve optimal growth and protein deposition for 70–275 g mulloway.  相似文献   

15.
This study aimed to determine the optimal protein to energy ratio (P/E ratio) and evaluate the effect of dietary protein and lipid levels on growth performance, body composition and digestive enzymes activities in Chinese mitten‐handed crab, Eriocheir sinensis. Nine practical diets containing three levels both for protein (DP 30%, 35% and 40%) and lipid (DL 2%, 7% and 12%) with P/E ratios ranging from 13.69 to 19.79 mg KJ?1 were fed to four replicates of crabs (3.39 ± 0.10 g) for 10 weeks. Weight gain increased significantly with the increase in DP level at each DL level. Moreover, weight gain increased in crabs fed with diets containing DL level from 2% to 12% and DP level from 30% to 35%. However, the diet containing 40% DP and 12% DL levels significantly decreased the growth performance and protein efficiency of the crabs. The whole crab and hepatopancreas lipid contents also increased as dietary lipid increased, but not dietary protein. The total protease activity increased significantly with the increase in dietary protein at each lipid level. The lipase activity was statistically comparable among different DL levels at each DP level. Taken together, the crab fed the diet containing 35% protein and 12% lipid levels with P/E 15.77 mg KJ?1 revealed optimal growth, feed utilization efficiency and digestive enzymes activities. Moreover, our study indicated that the higher dietary lipid level at a relatively lower dietary protein level could provide protein sparing effect in Eriocheir sinensis.  相似文献   

16.
Juvenile haddock, Melanogrammus aeglefinus L. (initial weight, 13.5 ± 0.1 g) were fed practical diets containing digestible protein to digestible energy (DP DE?1) ratios of 25–30 g DP MJ DE?1as‐fed using three protein levels (450, 500 and 550 g kg?1) each at two lipid levels (110 and 160 g kg?1) for 63 days. The results showed mean weight gain and feed conversion ratio were highest for diets containing 28.5 and 30.2 g DP MJ DE?1. DP DE?1 ratio had no significant effect on protein efficiency ratio except at the lowest level (24.7 g DP MJ DE?1) indicating a protein sparing effect of higher lipid when dietary protein is below the requirement. Haddock appears to preferentially use protein as the prime source of DE. DP DE?1 ratio had little effect on apparent digestibility (AD) of protein while AD of lipid was significantly affected. Significant differences in AD of energy and organic matter were found to be inversely related to the carbohydrate level of the diet. DP DE?1 ratios of 28.5 g DP MJ DE?1 or lower resulted in significantly higher hepatosomatic indexes. The highest whole‐body nitrogen gains and energy retention efficiencies were achieved at 28.5 and 30.2 g DP MJ DE?1, whereas only slight differences in nitrogen retention efficiencies were observed. The highest levels of energy retained in the form of protein were achieved at 28.5 and 30.2 g DP MJ DE?1. The diet that provided the best growth, feed utilization and digestibility with minimal HSI contained 546 g kg?1 protein (513 g kg?1 DP), 114 g kg?1 lipid, 164 g kg?1 carbohydrate, 17.0 MJ kg DE?1 and a DP DE?1 ratio of 30.2 g DP MJ DE?1.  相似文献   

17.
A 9‐wk study was conducted to evaluate the effect of dietary protein and energy on growth performance of juvenile permit, Trachinotus falcatus, growing from approximately 30 to 150 g. Nine experimental diets were formulated to contain three levels of crude protein (400, 450, and 500 g/kg dry matter [DM]); and three levels of crude lipid (100, 200, and 300 g/kg DM) in a 3 × 3 factorial design. Growth rate and feed efficiency were significantly improved with increasing dietary protein levels from 400 to 500 g/kg and with dietary lipid levels from 100 to 200 g/kg. Fish body protein content was positively correlated with dietary ratio of digestible protein (DP) to digestible energy (DE) (P < 0.01, R2 = 0.83), while body lipid was negatively correlated with dietary DP/DE (R2 = 0.55, P < 0.05) but positively correlated with dietary DE levels (R2 = 0.66, P < 0.01). Results showed a protein‐sparing effect, as protein retention was significantly increased by increasing dietary lipid level. In conclusion, the diet containing DP of 392.7 g/kg and DE of 18.8 MJ/kg (DM), corresponding to a DP/DE of 20.9 g/MJ, is suggested as an optimal feed for growth and feed efficiency in juvenile permit.  相似文献   

18.
A 10‐week feeding trial with four dietary protein levels (400, 450, 500 and 550 g kg?1 crude protein) and two dietary lipid levels (80 and 160 g kg?1 crude lipid) was conducted to assess optimum dietary protein and lipid levels for the growth, feed utilization and body composition of juvenile Manchurian trout (initial weight 11.80 ± 0.15 g). Fish were fed twice daily (08:30 and 16:30 h) to apparent satiation. The results showed that fish fed the diet with 500 g kg?1 protein and 80 g kg?1 lipid had the highest growth and feed efficiency. However, fish fed the diet with 450 g kg?1 protein and 160 g kg?1 lipid showed comparable growth to that of the fish fed diet 5 (500/80) and had higher protein efficiency ratio (PER), nitrogen retention (NR) and energy retention (ER) than other groups (< 0.05). Growth, PER, NR and ER of fish fed the 160 g kg?1 lipid diet was significantly higher (< 0.05) than that of fish fed the 80 g kg?1 lipid diet at 400 and 450 g kg?1 protein diet, whereas these values showed an opposite trend at 500 and 550 g kg?1 protein diet, and the lowest PER, NR and ER was found by fish fed the 400 g kg?1 protein diet with 80 g kg?1 lipid. Fish fed diets with 400 g kg?1 protein had lower feed intake (FI) than that of other groups. Feed intake of fish fed 80 g kg?1 lipid level was significantly lower than that of fish fed 160 g kg?1 lipid diet at 400 g kg?1 protein (< 0.05), while no significant differences were observed at 450, 500 and 550 g kg?1 protein‐based diets. Contrary to moisture content, lipid content of whole body and muscle increased significantly (< 0.05) with increasing lipid levels. The results of this study indicated that the diet containing 450 g kg?1 protein and 160 g kg?1 lipid, with a P/E ratio of 23.68 g protein MJ?1 would be suitable for better growth and feed utilization of juvenile Manchurian trout under the experimental conditions and design level used in this study.  相似文献   

19.
This study determined the effect of different dietary protein and lipid levels on growth and survival of juvenile redclaw Cherax quadricarinatus. Nine practical test diets were formulated to contain three crude protein (CP) levels [260, 310 and 360 g kg?1, equivalent to 225, 260 and 296 g kg?1 digestible protein (DP) respectively] at three crude lipid (CL) levels (40, 80 and 120 g kg?1, equivalent to 38, 67 and 103 digestible lipids respectively), with digestible protein : digestible energy (DP : DE) ranging from 14.6 to 22.6 mg protein kJ g?1. Three replicate groups of 15 crayfish (initial weight mean ± SD, 0.71 ± 0.13 g) per diet treatment were stocked in 40 L tanks, at 28 °C for 60 days. The highest mean weight, specific growth rate and biomass, with values of 7.0 g, 3.67% day?1, and 370.2 g m?2, respectively, were achieved by feeding a diet with P : L = 310 : 80 (P < 0.05). The treatments resulted in a survival rate of 80–91%, feed conversion ratio of 1.08–1.61 and protein efficiency ratio of 2.24–3.08. Results indicated that a diet containing 270 g kg?1 DP (equivalent to 320 g kg?1 CP), 75 g kg?1 digestible lipid (DL) with a DP/DE of 18.4 mg protein kJ?1, and 0.031 g protein per animal per day was optimum for juvenile C. quadricarinatus under the tested experimental conditions.  相似文献   

20.
An 8‐week feeding trial was conducted to investigate the optimum dietary protein and lipid levels for growth, feed utilization and body composition of Pseudobagrus ussuriensis fingerlings (initial weight: 3.40 ± 0.01 g). Twelve diets containing four protein levels (350, 400, 450 and 500 g kg?1 crude protein) and three lipid levels (50, 100 and 150 g kg?1 crude lipid) were formulated. Fish were randomly allotted to 36 aquaria (1.0 × 0.5 × 0.8 m) with 25 fish to each glass aquarium. Fish were fed twice daily (08:00 and 16:00) to apparent satiation. The results showed that weight gain and specific growth rate (SGR) decreased with increasing dietary lipid level from 50 to 150 g kg?1 at the same dietary protein level. Fish fed the diets containing 150 g kg?1 lipid exhibited higher feed conversion ratio (< 0.05), lower protein efficiency ratio (PER) and nitrogen retention efficiency (NRE) relative to fish fed the diet containing 50 and 100 g kg?1 lipid. Weight gain and SGR significantly increased with increasing dietary protein from 350 to 450 g kg?1 at the same dietary lipid level, and even a little decline in growth with the further increase in dietary protein to 500 g kg?1. Daily feed intake, NRE and PER were significantly affected by both dietary protein and lipid levels (P < 0.05) and tended to decrease with increasing dietary protein and lipid levels. Whole‐body protein content increased as protein levels increased and lipid levels decreased. Whole‐body lipid and muscle lipid content increased with increasing dietary lipid level, and decreased with increasing dietary protein at each lipid level. There was no significant difference in condition factor and viscerosomatic index among fish fed the diets. Hepatosomatic index was affected by dietary lipid level (P < 0.05), and increased with increasing dietary lipid level at the same protein level. These results suggest that the diet containing 450 g kg?1 protein and 50 g kg?1 lipid with a P/E ratio of 29.1 mg protein kJ?1 is optimal for growth and feed utilization of P. ussuriensis fingerlings under the experimental conditions used in the study.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号