首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Microalgae have great biotechnological potential but the high cost of traditional formulae culture media is one of the limiting factors to their commercial cultivation. As an alternative, the use of residual water from other activities has been proposed as a culture medium. The goal of this study was to produce Chaetoceros muelleri, Nannochloropsis oculata and Tetraselmis chuii biomass using residual water from an intensive Litopenaeus vannamei biofloc cultivation system and to verify the ammoniacal nitrogen, nitrite, nitrate and orthophosphate consumption. The microalgae cultures were developed until the second day of their stationary phase in the following treatments: 100% f/2 culture media; 100% residual water; residual water diluted 50% with marine water. T. chuii and N. oculata presented the best relative biomass average (576 mg L?1; 474 mg L?1)(P > 0.05). All the species completely assimilated the orthophosphate in 2 days. In 10 days, T. chuii and N. oculata assimilated 87% and 85% of nitrate respectively. It can be concluded that residual water from an L. vannamei biofloc cultivation system can be used as an alternative culture medium for T. chuii and N. oculata biomass production. Moreover, the microalgae biomass proved to be very effective in recycling the dissolved nutritive salts.  相似文献   

2.
The marine centric diatom Chaetoceros muelleri has been widely used as live feed in fish and shellfish aquaculture due to its excellent nutritional properties. The growth of microalgae is affected by various nutritional and environmental parameters, and species specific optimization of these parameters is essential for the development of cost‐effective biomass production process. In this study, the growth of C. muelleri, was optimized using response surface methodology (RSM). The variables nitrate, phosphate, silicate, temperature, pH, salinity and agitation speed were initially screened for biomass production in C. muelleri using Plackett–Burman experimental design, and it was found that nitrate, phosphate, silicate, temperature and pH significantly influenced the biomass production. These variables were further optimized by central composite design of RSM for biomass production and nutrient composition, and the medium was re‐constituted accordingly to have 180 mg L?1 nitrate, 7.5 mg L?1 phosphate, 30 mg L?1 silicate, with optimum growth conditions of temperature at 31°C and pH 6.46. At the end of 10 days culture period under the above conditions, biomass, protein, lipid and carbohydrate significantly increased from 0.360 ± 0.01 mg L?1, 9.41 ± 0.02%, 18.11 ± 0.01%, 0.6 ± 0.02% to 1.16 ± 0.01 mg L?1, 11.02 ± 0.01%, 19.58 ± 0.01% and 0.77 ± 0.01% respectively. The biomass production of C. muelleri could be increased 3.2‐fold with an improved nutrient profile by modifying the growth factors, the study thus offering an optimized process for biomass production of C. muelleri.  相似文献   

3.
Effects of eugenol (AQUI‐S®20E, 10% active eugenol) sedation on cool water, yellow perch Perca flavescens (Mitchill), and warm water, Nile tilapia Oreochromis niloticus L. fish metabolic rates were assessed. Both species were exposed to 0, 10, 20 and 30 mg L?1 eugenol using static respirometry. In 17°C water and loading densities of 60, 120 and 240 g L?1, yellow perch controls (0 mg L?1 eugenol) had metabolic rates of 329.6–400.0 mg O2 kg?1 h?1, while yellow perch exposed to 20 and 30 mg L?1 eugenol had significantly reduced metabolic rates of 258.4–325.6 and 189.1–271.0 mg O2 kg?1 h?1 respectively. Nile tilapia exposed to 30 mg L?1 eugenol had a significantly reduced metabolic rate (424.5 ± 42.3 mg O2 kg?1 h?1) relative to the 0 mg L?1 eugenol control (546.6 ± 53.5 mg O2 kg?1 h?1) at a loading density of 120 g L?1 in 22°C water. No significant differences in metabolic rates for Nile tilapia were found at 240 or 360 g L?1 loading densities when exposed to eugenol. Results suggest that eugenol sedation may benefit yellow perch welfare at high densities (e.g. live transport) due to a reduction in metabolic rates, while further research is needed to assess the benefits of eugenol sedation on Nile tilapia at high loading densities.  相似文献   

4.
Ammonia toxicity and morphological changes in gills of juvenile Japanese flounder Paralichthys olivaceus (5.76 ± 0.12 g) were investigated when fish were separately exposed to normal dissolved oxygen (DO) at 6.5 ± 0.5 mg L?1 and supersaturated oxygen at 16.0 ± 2.0 mg L?1 at different ammonia concentrations. Under normal oxygen, ammonia concentrations were tested from 0.04 (control) to 93.3 mg L?1 total ammonia nitrogen (TAN), whereas under oxygen supersaturation, ammonia concentrations ranged from 0.04 (control) to 226.7 mg L?1 TAN in the trial. After exposure to ammonia for 96 h, the ammonia LC50 for fish was 62.48 mg L?1 TAN (0.50 mg L?1 NH3–N) at normal oxygen and 160.71 mg L?1 TAN (0.65 mg L?1 NH3–N) at oxygen supersaturation. Light microscopic observations confirmed that gill damage in normal oxygen was more profound than in oxygen supersaturation when fish were exposed to the same level of TAN (93.3 mg L?1). Furthermore, electron microscopic scanning also showed more crimple, retraction and fibrosis on the secondary lamella surface in fish exposed to normal oxygen than those in fish exposed to supersaturated oxygen at the same TAN (93.3 mg L?1). This study suggests that supersaturated oxygen can increase ammonia tolerance in Japanese flounder through reducing gill damage by ammonia, which partially explains the merit of using pure oxygen injection in intensive fish farming.  相似文献   

5.
Aeromonas hydrophila and Flavobacterium columnare, the aetiological agents of motile aeromonas septicaemia (MAS) and columnaris disease respectively, have been recently causing crippling mortalities to the sunshine bass, Morone chrysops female ×Morone saxatilis male (Percichthyidae), industry in the United States. Isolates of A. hydrophila and F. columnare obtained from fish that died during farm outbreaks were subjected to in vitro evaluation of florfenicol (FFC), copper sulphate (CuSO4) and potassium permanganate (KMnO4). Florfenicol inhibited the growth of A. hydrophila and F. columnare more than CuSO4 and KMnO4. The minimum inhibition concentration (MIC) of FFC was 0.04 ± 0 and 0.2 ± 0.1 mg L?1 for A. hydrophila and F. columnare respectively, while the 50% inhibition concentration (IC50) for A. hydrophila and F. columnare was 0.23 ± 0.01 and 0.4 ± 0.2 mg L?1 respectively. Copper sulphate was more effective against A. hydrophila than KMnO4; CuSO4 had a MIC of 83.2 ± 0 mg L?1 compared to 158.0 ± 0 mg L?1 for KMnO4. Copper sulphate was also more effective against F. columnare than KMnO4. The IC50 values of CuSO4 and KMnO4 towards F. columnare were 4.8 ± 0.3 and 8.7 ± 1.6 mg L?1 respectively, and the minimum bactericidal concentration values of CuSO4 and KMnO4 towards F. columnare were 25.0 ± 0 and > 158.0 mg L?1 respectively. In addition, F. columnare was more sensitive to CuSO4 and KMnO4 than A. hydrophila.  相似文献   

6.
This study describes for the first time the cultivation of Cerastoderma edule on a commercial scale. A protocol to grow F2 generation cockles was developed, which led to fine‐tuning experiments for broodstock conditioning and spat growth. Broodstock animals were conditioned with diets of Isochrysis galbana (T‐Iso) or Tetraselmis suecica, whereas a third group was not fed. The best diet, T. suecica, induced 12 females out of 100 animals to spawn a total of 3 380 000 eggs. The non‐fed group did not spawn. Cockle spat (4.9 ± 1.0 mm) grew best when given a mixed diet of C. muelleri, T‐Iso and Sceletonema costatum, or a mixture of P. tricornutum and S. costatum at a concentration of 240 cells μl?1 day?1, resulting in a tripling of their wet weight after 14 days. The impact of density, burrowing substrate and food availability on cockle spat growth (41 days old, 5.6 ± 1.2 mm) was studied for 11 weeks. Best results were obtained by culturing spat at ad libitum food conditions at 500 ind m?2, resulting in an average growth rate of 168 μm day?1, an average final size of 19.0 ± 1.9 mm and a total final biomass of 1040 g m?2.  相似文献   

7.
In a Biofloc Technology System (BFT), there is constant biofloc formation and suspended solids accumulation, leading to effects on water quality parameters that may affect the growth performance of cultured shrimp. This study aimed to analyse during biofloc formation the effect of different total suspended solids (TSS) levels on water quality and the growth performance of Litopenaeus vannamei shrimp in a BFT system. A 42‐day trial was conducted with treatments of three ranges of TSS: 100–300 mg L?1 as low (TL), 300–600 as medium (TM) and 600–1000 as high (TH). The initial concentrations of 100 (TL), 300 (TM) and 600 mg L?1 (TH) were achieved by fertilization before starting the experiment. Litopenaeus  vannamei juveniles with an average weight of 4.54 ± 1.19 g were stocked at a density of 372 shrimp m?3. Physical and chemical water parameters and shrimp growth performance were analysed. After 6 weeks, TSS mean concentrations were 306.37, 532.43 and 745.2 mg L?1 for, respectively, TL, TM and TH treatments. Significant differences (P < 0.05) were observed in TSS, settleable solids, pH, alkalinity and nitrite, especially between the TL and TH treatments. Similarly, differences (P < 0.05) were observed in the growth performance parameters, specifically final weight, survival, feed conversion and productivity. The water quality parameters at lower range of total suspended solids concentration (TL) treatment resulted in a better performance of L. vannamei in the BFT system. The maintenance at range of 100–300 mg L?1 TSS is thus important to the success of shrimp culture.  相似文献   

8.
The nitrite toxicity was estimated in juveniles of L. vannamei. The 24, 48, 72 and 96 h LC50 of nitrite‐N on juveniles were 8.1, 7.9, 6.8 and 5.7 mg L?1 at 0.6 g L?1; 14.4, 9.6 8.3 and 7.0 mg L?1 at 1.0 g L?1; 19.4, 15.4, 13.4 and 12.4 mg L?1 at 2.0 g L?1 of salinity respectively. The tolerance of juveniles to nitrite decreased at 96 h of exposure by 18.6% and 54.0%, when salinity declined from 1.0 to 0.6 g L?1 and from 2.0 to 0.6 g L?1 respectively. The safe concentrations at salinities of 0.6, 1.0 and 2.0 g L?1 were 0.28, 0.35 and 0.62 mg L?1 nitrite‐N respectively. The relationship between LC50 (mg L?1), salinity (S) (g L?1) and exposure time (T) (h) was LC50 = 8.4688 + 5.6764S – 0.0762T for salinities from 0.6 to 2.0 g L?1 and for exposure times from 24 to 96 h; the relationship between survival (%) and nitrite‐N concentration (C) for salinity of 0.6–2.0 g L?1, nitrite‐N concentrations of 0–40 mg L?1 and exposure times from 0 to 96 h was as follows: survival (%) = 0.8442 + 0.1909S – 0.0038T – 0.0277C + 0.0008ST + 0.0001CT–0.0029SC, and the tentative equation for predicting the 96‐h LC50 to salinities from 0.6 to 35 g L?1 in L. vannamei juveniles (3.9–4.4 g) was 96‐h LC50 = 0.2127 S2 + 1.558S + 5.9868. For nitrite toxicity, it is shown that a small change in salinity of waters from 2.0 to 0.6 g L?1 is more critical for L. vannamei than when wider differences in salinity occur in brackish and marine waters (15–35 g L?1).  相似文献   

9.
Biofloc systems rely on microbial processes in the water column to recycle animal waste products, reducing the need for water exchange. These increases biofloc concentration in the water and some form of removal is needed. An experiment was carried out to evaluate two management practices to control biofloc in Litopenaeus vannamei culture. Six tanks (48 m3) were divided into two treatments: water exchange and solid settler. Shrimp were stocked at 164 shrimp m?2 and with 0.67 g of weight. After 61 days, shrimp under solid settler treatment demonstrated mean weight of 12.7 ± 0.5 g with survival of 73.8 ± 1.4%, and those under water exchange had a final weight of 10.1 ± 0.2 g and survival rate of 57.8 ± 11.1%. Total suspended solids did not differ between the treatments: 326.8 ± 24.9 mg L?1 for water exchange and 310.9 ± 25.3 mg L?1 for solid settlers. Settleable solids and productivity/respiration ratio was higher (P < 0.05) in water exchange treatment, indicating differences in physical and biological characteristics of bioflocs. Solids removal method influenced the water use, in which 1150 ± 249 L of water was necessary to produce one kilogram of shrimp using water exchange strategy, and 631 ± 25 L kg?1 with the use of settlers. Our results indicate that continuous operation of settlers can reduce variability in solids characteristics and water quality variables such as ammonia. Both strategies are efficient in controlling biofloc concentrations of the water; however, settlers can reduce water use and improve shrimp production.  相似文献   

10.
Effect of different carbon sources on nursery performance of Pacific white shrimp (Litopenaeus vannamei) cultivated in biofloc system was investigated. Shrimp postlarvae (98.47 ± 8.6 mg) were fed for 32 days in tanks with water volume of 130 L and density of 1 individual L?1. One control treatment and four biofloc treatments (BFT1, BFT2, BFT3 and BFT4) with adding different carbon sources including molasses, starch, wheat flour and mixture of them, respectively, were considered at equal weight ratios. According to the results, salinity, dissolved oxygen and pH were not significantly different among the biofloc treatments (P > 0.05). Maximum pH (8.27) and maximum dissolved oxygen (6.35 mg L?1) were recorded in the control. Maximum (0.43 mg L?1) and minimum (0.09 mg L?1) ammonia were recorded in the control and BFT2, respectively (P < 0.05). Using simple carbohydrates (molasses and starch) lowered the ammonia concentration significantly. The highest increase in body weight (1640.43 ± 231.28 mg), growth rate, specific growth rate (8.97 ± 0.42% per day) and biomass (190.29 ± 26.83 mg) were found in BFT1 and the highest survival (90 ± 0.77%) was found in BFT4. The highest feed conversion (1.52 ± 0.23) and the lowest feed efficiency (66.81 ± 7.95) were observed in the control (P < 0.05). The proximate composition analysis revealed an increase in lipid and ash in biofloc treatments. Results indicated that using biofloc technology with zero‐water exchange system and adding carbon sources could help to recycle waste and improve the water quality. Moreover, the type of carbonaceous organic matter as a substrate for heterotrophic bacteria would be effective in degradation and metabolization of ammonia and nitrite.  相似文献   

11.
Anaesthetic efficacy of eugenol was investigated on Flowerhorn (Amphilophus labiatus × Amphilophus trimaculatus). A total of 104 fish with average weights of 12 ± 2.5, 28 ± 5 and 53 ±5.1 g were subjected to 25–200 mg L?1 eugenol and behavioural responses as well as induction and recovery times were recorded. Induction and recovery times were significantly affected by eugenol concentration as well as fish weight (P < 0.05). Generally, 49.9–127.3 s after exposure to 50–200 mg L?1 eugenol, fish reached stage 3 anaesthesia (suitable for general handling). Fish entered stage 4 anaesthesia (suitable for surgery and blood sampling) over 57.3–140.4 s post exposure to such concentrations. Recovery time was 91.7–312 s in all weight classes for all eugenol concentrations. Mortality (23%) was only observed in 12‐g fish when were subjected to 200 mg L?1 eugenol. This study showed the behavioural response of Flowerhorn to anaesthesia and eugenol efficacy as an anaesthetic in this important ornamental species. The general quadratic equation revealed that concentrations of eugenol and fish size along with their interactive effects have significantly contributed to the model, with concentration recording the highest beta value in all models (β = ?0.809, ?0.818 and ?0.909, P = 0.000). According to the results, minimum eugenol concentration to induce anaesthesia in less than 3 min was 50 mg L?1.  相似文献   

12.
Piaractus mesopotamicus juveniles (total length 12 ± 0.5 mm) were exposed to different concentrations of ammonia‐N (un‐ionized plus ionized ammonia as nitrogen), using the static renewal method at different temperature levels (15, 20 and 25°C) at pH 7. The 24, 48, 72, 96 h LC50 values of ammonia‐N in P. mesopotamicus juveniles were 5.32, 4.19, 3.79 and 2.85 mg L?1 at 15°C; 4.81, 3.97, 3.25 and 2.50 mg L?1 at 20°C; and 4.16, 3.79, 2.58 and 1.97 mg L?1 at 25°C respectively. The 24, 48, 72, 96 h LC50 values of NH3‐N (un‐ionized ammonia as nitrogen) were 0.018, 0.014, 0.013, 0.009 mg L?1 at 15°C temperature; 0.023, 0.019, 0.016 and 0.012 mg L?1 at 20°C; 0.029, 0.026, 0.018 and 0.014 mg L?1 at 25°C. The temperature increase from 15 to 25°C caused an increase of ammonia‐N susceptibility by 21.80%, 9.55%, 31.92% and 30.87%, after 24, 48, 72 and 96 h exposure respectively. Furthermore, we found that exposure of fish to ammonia‐N caused an elevation in total haemoglobin and blood glucose with an increase of 2 mg L?1 concentration. Ammonia levels tolerated, especially in different temperatures levels, have important implications for the management of aquaculture.  相似文献   

13.
This study evaluated the effects of AQUI‐S®20E (10% eugenol) sedation on the survival and behaviour of yellow perch Perca flavescens (Mitchill) and Nile tilapia Oreochromis niloticus L. held in high loading densities. Fish were held in 0–300 mg L?1 AQUI‐S®20E (0–30 mg L?1 eugenol) for up to 10 h in static tanks. At 17°C, yellow perch held in 200 and 300 mg L?1 AQUI‐S®20E were lightly sedated for up to 7 h. Yellow perch at 200 and 300 mg L?1 AQUI‐S®20E also had >95% mean survival 7‐days post exposure using loading densities up to 360 g L?1. Nile tilapia were only sedated for ≤3 h in concentrations up to 300 mg L?1 at 22°C and had >90% mean survival at loading densities ≤480 g L?1. Ammonia in tanks increased significantly as loading density increased, but treatment with AQUI–S®20E did not reduce ammonia accumulation. Results suggest that AQUI–S®20E was effective to sedate yellow perch and Nile tilapia at high loading densities, but sedation varied with loading density and species.  相似文献   

14.
Feeding copepods during early larval culture stages of marine fish has proven to be advantageous for growth and survival of marine finfish larvae. However, commercial availability of most copepods is limited; thus, there is an impetus to evaluate promising copepod species to meet the diverse dietary demands of various marine fish. The marine cyclopoid copepod, Oithona colcarva, was isolated out of zooplankton samples taken from waters within Tampa Bay, Florida. Once isolated, trials were conducted to determine the appropriate culture parameters for producing nauplii to feed marine fish larvae. The effects of temperature (22°C, 26°C and 30°C), salinity (15, 20, 25, 30 and 35 g L?1), stocking density (0.5, 1.0, 2.0, 4.0 and 8.0 individuals mL?1) and diet (Nanno 3600 microalgae paste, Colurella adriatica, Rhodomonas lens, Tisochrysis lutea, Chaetoceros gracilis and/or Tetraselmis chuii) on nauplii production during a single life cycle of reproducing individuals were examined. Results of those trials indicated that a culture temperature of 30°C and a salinity of 30 g L?1 were advantageous for maximum nauplii production. Furthermore, a diet containing a 1:1:1 mixture of T. lutea, C. gracilis and T. chuii and a stocking density of at least 8 individuals mL?1 were identified as beneficial. The results of these trials, the potential for large‐scale culture and observations on the performance of marine fish larvae fed Oithona colcarva nauplii are discussed.  相似文献   

15.
Argyrosomus regius (3.0 ± 0.9 g) were exposed to different concentrations of ammonia in a series of acute toxicity tests by the static renewal method at three temperature levels (18, 22 and 26°C) at a pH of 8.2. Low temperature clearly increased the tolerance of the fish to total ammonia nitrogen (TAN) and unionized ammonia (NH3) (P < 0.05). While the 96‐h LC50 values of TAN were 19.79, 10.39 and 5.06 mg L?1, the 96‐h LC50 of NH3 were 1.00, 0.70 and 0.44 mg L?1 at 18, 22 and 26°C respectively. The safe levels of NH3 for A. regius was estimated to be 0.10, 0.07 and 0.04 mg L?1 at 18, 22 and 26°C respectively (P < 0.05). This study clearly indicates that A. regius is more sensitive to ammonia than other marine fish species cultured on the Mediterranean and Eastern Atlantic coasts.  相似文献   

16.
The effects of the density and type of food on oxygen consumption and ingestion rate of larvae of the white shrimp Penaeus setiferus fed diatoms Chaetoceros ceratosporum, flagellates Tetraselmis chuii and Artemia franciscana nauplii were analysed. Diatoms, flagellates and Artemia nauplii were fed at five densities from 10 to 5 × 103 cells mL?1, 0 to 4 × 103 cells mL?1, and 0.1, 0.5, 1.0, 1.5 and 2 nauplii mL?1, respectively. In three experiments, two of three types of food were maintained constant at concentrations of 30-40 × 103 cells mL?1 (diatoms), 2 × 103 cells mL?1 (flagellates) and 1 Artemia nauplii mL?1. The oxygen consumption in three experiments increased with larval stage, reaching maximum values in Mill except at lower feed concentrations. A maximum ingestion peak in MI was recorded in larvae fed diatoms, whereas that peak was observed in Mil in larvae fed flagellates. The maximum ingestion rate of Artemia nauplii was observed in Mill. Feed concentrations that produced an optimum metabolic rate as a consequence of equilibrium between ingested food and larval stages were obtained with 20 and 30 × 103 cells mL?1 of C. ceratosporum, 2 and 3 × 103 cells mL?1 of T. chuii, and 1.0 Artemia nauplii mL?1. These concentrations would be the most suitable for producing P. setiferus postlarvae.  相似文献   

17.
For the first time was characterized the semen of Pimelodus britskii, hormonally induced and non‐induced induced, during the reproductive period. The experiment 1 was conducted with 12 fish per month, divided into: (i) induced with Carp Pituitary Extract (CPE), and (ii) without hormonal induction (testes macerated). The experiment 2 was conducted, with 30 fish, divided into groups for comparison of different doses of CPE and human Chorionic Gonadotrophin (hCG; T1: control; T2: 3.0 mg kg?1 CPE; T3: 0.5 mg kg + 3.0 mg kg?1 CPE; T4: 0.5 mg kg?1 + 7.0 mg kg?1 CPE; T5: 200 UI kg?1 hCG), the same fish were used every month, and the semen was collected by abdominal massage. In both, experiments were assessed the sperm motility and velocity by means of the CASA software. In experiment 1, the concentration of spermatozoids was significantly increase by application of CPE compared untreated males. The volume and motility decreased gradually until the end of the experiment, the highest values were recorded for treatment induced (0.49 ± 0.25 mL and 62.18, respectively). The same occurred to Gonadosomatic Index, showing the smallest value at the end of the reproductive period. The fish from experiment 2 released reduced volume of watery semen (0.1 mL). The values of sperm concentration, motility velocity decreased gradually throughout the months. For P. britskii, the reproductive period influenced the production and sperm quality. Despite small seminal volume released the dose of 7.5 mg kg?1 of CPE proved effective.  相似文献   

18.
ABSTRACT

In an Artemia survey conducted along the coast of Tanzania between March and July 2017, 32 salt pans in Tanga, Dar es salaam, Pwani, Lindi, and Mtwara were assessed. Of all visited salt pans, 16 (50%) had either Artemia biomass or cysts or both. Body length ranged from 4.0 mm to 9.5 mm, while the mean and modal lengths were 6.2 mm and 6.0 mm, respectively. Temperature ranged from 27.2°C to 48.7°C, salinity from 20 g L?1 to >140 g L?1, pH from 5.8 to 7.8, dissolved oxygen (DO) from 3.1 mg L?1 to 4.9 mg L?1, water depth from 10 cm to 75 cm and conductivity from 42.0 ms cm?1 to 176.6 ms cm?1. A bisexual population of Artemia franciscana is suggested. Observed cyst states included concave, biconcave, spherical and cracking cysts. This is the first to report on the occurrence of Artemia in Tanzania.  相似文献   

19.
The copepod Pseudodiaptomus euryhalinus was fed 320 cells μL− 1 of monoalgal cultures of Chaetoceros muelleri, Nannochloropsis oculata, Isochrysis galbana, Tetraselmis suecica, or a commercial frozen concentrate of Tetraselmis sp., and the diet which gave the best production was compared in a second experiment to three mixed diets: C. muelleri:I. galbana supplied in 1:1 and 2:1 cell ratios and C. muelleri:I. galbana:frozen Tetraselmis sp. in 2:2:1 ratio. These gave better results than the cultures of N. oculata, I. galbana, T. suecica and the frozen Tetraselmis concentrate, but the production was similar to that obtained with C. muelleri supplied as a monoalgal diet, showing that the addition of C. muelleri may improve the performance of other monoalgal diets, whereas the addition of other microalgae is unlikely to improve the results obtained when C. muelleri is supplied as a monoalgal diet.  相似文献   

20.
This study was performed to investigate the effects of 17β‐estradiol (ES) and 17α‐methyltestosterone (MT) on growth, development, survival, sex ratio and colour change in the electric blue hap (Sciaenochromis ahli Trewavas, 1935). The hormones were not supplemented to the control feed, while six other feeds were prepared by adding 20, 40 and 60 mg kg?1 17β‐ES or 20, 40 and 60 mg kg?1 17α‐MT to each, resulting in seven different feed treatments. Average live weight of the fish supplemented with these diets was 0.42 ± 0.04 g. At the end of the study, the highest weight gain was observed in fish fed 60 mg kg?1 17α‐MT group (2.62 ± 0.11 g) and the difference with the groups fed with 17β‐ES was found to be significant. All fish fed 17α‐MT were male, while the rates of feminization in fish fed 17β‐ES at 20, 40, 60 mg kg?1 were 91.11%, 88.88% and 93.33% respectively. Survival rates were respectively determined as 80%, 95.56%, 84.44%, 93.33%, 77.78%, 84.44% and 84.44% for the control, 20, 40, 60 mg kg?1 17β‐ES and 20, 40, 60 mg kg?1 17α‐MT treatments. The best colouration was achieved in the 17α‐MT groups (P < 0.05). The L* values varied between 32.98 ± 4.44 and 61.35 ± 2.19, a* values between ?7.06 ± 0.22 and ?3.42 ± 0.11, and b* values between ?7.74 ± 0.10 and 11.65 ± 0.03, while Chroma (C*) and Hue (H°ab) angle values varied between 7.54 ± 0.22 and 13.60 ± 0.01 and between 119.76 ± 0.05 and 239.73 ± 4.86. In conclusion, the 17α‐MT feeding was found to have a greater effect on the growth, feed conversion ratio, masculunization and pigmentation of the electric blue haps than the 17β‐ES treatment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号