首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
ObjectiveTo report the cardiovascular variables, anaesthetic effects and recovery quality of an anaesthesia technique using variable rate infusion propofol combined with constant rate infusion fentanyl in dogs undergoing elective surgery.Study designProspective clinical trial.AnimalsA total of 27 dogs, aged 2.7 ± 2.65 years and weighing 24 ± 11 kg.MethodsFollowing intramuscular acepromazine (0.03 or 0.05 mg kg?1) and subcutaneous carprofen (4 mg kg?1) pre-medication, anaesthesia was induced with propofol (4.0 ± 0.5 mg kg?1) intravenously (IV). All dogs were ventilated with 100% oxygen to maintain normocapnia. Propofol was infused at 0.4 mg kg?1 minute?1 for 20 minutes and then at 0.3 mg kg?1minute?1. If mean arterial blood pressure (MAP) decreased below 70 mmHg, propofol infusion was reduced by 0.1 mg kg?1 minute?1. Five minutes after induction of anaesthesia, fentanyl was administered (2 μg kg?1) IV followed by the infusion at 0.5 μg kg?1 minute?1 and atropine (40 μg kg?1) IV. Heart rate, MAP, respiratory rate, tidal volume, end-tidal carbon dioxide, presence of reflexes, movements and recovery times and quality were recorded.ResultsMean anaesthetic duration was 131 ± 38.5 minutes. Mean heart rate peaked 10 minutes after atropine injection and gradually declined, reaching pre-anaesthetic values at 55 minutes. MAP easily was maintained above 70 mmHg. Mean times to return of spontaneous ventilation, extubation, head lift and sternal recumbency were 21 ± 10.1, 33 ± 14.6, 43 ± 19.7 and 65 ± 23.4 minutes, respectively. Recovery was smooth and quiet. The time to sternal recumbency was significantly correlated with the duration of anaesthesia and total dose of propofol; time to extubation was correlated to total dose of propofol.Conclusion and clinical relevancePropofol and fentanyl infusions provided stable cardiovascular function and satisfactory conditions for surgery. Some modifications of infusion rates are required to improve the long-recovery times.  相似文献   

2.
ObjectiveTo characterize the impact of mechanical positive pressure ventilation on heart rate (HR), arterial blood pressure, blood gases, lactate, glucose, sodium, potassium and calcium concentrations in rattlesnakes during anesthesia and the subsequent recovery period.Study designProspective, randomized trial.AnimalsTwenty one fasted adult South American rattlesnakes (Crotalus durissus terrificus).MethodsSnakes were anesthetized with propofol (15 mg kg−1) intravenously, endotracheally intubated and assigned to one of four ventilation regimens: Spontaneous ventilation, or mechanical ventilation at a tidal volume of 30 mL kg−1 at 1 breath every 90 seconds, 5 breaths minute−1, or 15 breaths minute−1. Arterial blood was collected from indwelling catheters at 30, 40, and 60 minutes and 2, 6, and 24 hours following induction of anesthesia and analyzed for pH, PaO2, PaCO2, and selected variables. Mean arterial blood pressure (MAP) and HR were recorded at 30, 40, 60 minutes and 24 hours.ResultsSpontaneous ventilation and 1 breath every 90 seconds resulted in a mild hypercapnia (PaCO2 22.4 ± 4.3 mmHg [3.0 ± 0.6 kPa] and 24.5 ± 1.6 mmHg [3.3 ± 0.2 kPa], respectively), 5 breaths minute−1 resulted in normocapnia (14.2 ± 2.7 mmHg [1.9 ± 0.4 kPa]), while 15 breaths minute−1 caused marked hypocapnia (8.2 ± 2.5 mmHg [1.1 ± 0.3 kPa]). Following recovery, blood gases of the four groups were similar from 2 hours. Anesthesia, independent of ventilation was associated with significantly elevated glucose, lactate and potassium concentrations compared to values at 24 hours (p < 0.0001). MAP increased significantly with increasing ventilation frequency (p < 0.001). HR did not vary among regimens.Conclusions and clinical relevanceMechanical ventilation had a profound impact on blood gases and blood pressure. The results support the use of mechanical ventilation with a frequency of 1–2 breaths minute−1 at a tidal volume of 30 mL kg−1 during anesthesia in fasted snakes.  相似文献   

3.
ObjectiveTo compare the effects of propofol and alfaxalone on respiration in cats.Study designRandomized, ‘blinded’, prospective clinical trial.AnimalsTwenty cats undergoing ovariohysterectomy.MethodsAfter premedication with medetomidine 0.01 mg kg−1 intramuscularly and meloxicam 0.3 mg kg−1 subcutaneously, the cats were assigned randomly into two groups: group A (n = 10) were administered alfaxalone 5 mg kg−1 minute−1 followed by 10 mg kg−1 hour−1 intravenously (IV) and group P (n = 10) were administered propofol 6 mg kg−1 minute−1 followed by 12 mg kg−1hour−1 IV for induction and maintenance of anaesthesia, respectively. After endotracheal intubation, the tube was connected to a non-rebreathing system delivering 100% oxygen. The anaesthetic maintenance drug rate was adjusted (± 0.5 mg kg−1 hour−1) every 5 minutes according to a scoring sheet based on physiologic variables and clinical signs. If apnoea > 30 seconds, end-tidal carbon dioxide (Pe′CO2) > 7.3 kPa (55 mmHg) or arterial haemoglobin oxygen saturation (SpO2) < 90% occurred, manual ventilation was provided. Methadone was administered postoperatively. Data were analyzed using independent-samples t-tests, Fisher's exact test, linear mixed-effects models and binomial test.ResultsManual ventilation was required in two and eight of the cats in group A and P, respectively (p = 0.02). Two cats in both groups showed apnoea. Pe′CO2 > 7.3 kPa was recorded in zero versus four and SpO2 < 90% in zero versus six cats in groups A and P respectively. Induction and maintenance dose rates (mean ± SD) were 11.6 ± 0.3 mg kg−1 and 10.7 ± 0.8 mg kg−1 hour−1 for alfaxalone and 11.7 ± 2.7 mg kg−1 and 12.4 ± 0.5 mg kg−1 hour−1 for propofol.Conclusion and clinical relevanceAlfaxalone had less adverse influence on respiration than propofol in cats premedicated with medetomidine. Alfaxalone might be better than propofol for induction and maintenance of anaesthesia when artificial ventilation cannot be provided.  相似文献   

4.
ObjectiveTo determine the anaesthetic and cardiorespiratory effects of a constant rate infusion of fentanyl in sheep anaesthetized with isoflurane and undergoing orthopaedic surgery.Study designProspective, randomised, ‘blinded’ controlled study.AnimalsTwenty healthy sheep (weight mean 41.1 ± SD 4.5 kg).MethodsSheep were sedated with intravenous (IV) dexmedetomidine (4 μg kg−1) and morphine (0.2 mg kg−1). Anaesthesia was induced with propofol (1 mg kg−1 minute−1 to effect IV) and maintained with isoflurane in oxygen and a continuous rate infusion (CRI) of fentanyl 10 μg kg−1 hour−1 (group F) or saline (group P) for 100 minutes. The anaesthetic induction dose of propofol, isoflurane expiratory fraction (Fe’iso) required for maintenance and cardiorespiratory measurements were recorded and blood gases analyzed at predetermined intervals. The quality of recovery was assessed. Results were compared between groups using t-tests or Mann–Whitney as relevant.ResultsThe propofol induction dose was 4.7 ± 2.4 mg kg−1. Fe’iso was significantly lower (by 22.6%) in group F sheep than group P (p = 0). Cardiac index (mean ± SD mL kg−1 minute−1) was significantly (p = 0.012) lower in group F (90 ± 15) than group P (102 ± 35). Other measured cardiorespiratory parameters did not differ statistically significantly between groups. Recovery times and recovery quality were statistically similar in both groups.Conclusions and clinical relevanceFentanyl reduced isoflurane requirements without clinically affecting the cardiorespiratory stability or post-operative recovery in anaesthetized sheep undergoing orthopaedic surgery.  相似文献   

5.
ObjectivesTo evaluate the cardiorespiratory and biochemical effects of ketamine-propofol (KP) or guaifenesin-ketamine-xylazine (GKX) anesthesia in donkeys.Study designProspective crossover trial.AnimalsEight healthy, standard donkeys, aged 10 ± 5 years and weighing 153 ± 23 kg.MethodsDonkeys were premedicated with 1.0 mg kg?1 of xylazine (IV) in both treatments. Eight donkeys were administered ketamine (1.5 mg kg?1) and propofol (0.5 mg kg?1) for induction, and anesthesia was maintained by constant rate infusion (CRI) of ketamine (0.05 mg kg?1 minute?1) and propofol (0.15 mg kg?1 minute?1) in the KP treatment. After 10 days, diazepam (0.05 mg kg?1) and ketamine (2.2 mg kg?1) were administered for induction, and anesthesia was maintained by a CRI (2.0 mL kg?1 hour?1) of ketamine (2.0 mg mL?1), xylazine (0.5 mg mL?1) and guaifenesin (50 mg mL?1) solution. Quality of anesthesia was assessed along with cardiorespiratory and biochemical measurements.ResultsAnesthetic induction took longer in GKX than in KP. The induction was considered good in 7/8 with KP and in 6/8 in GKX. Anesthetic recovery was classified as good in 7/8 animals in both treatments. Xylazine administration decreased heart rate (HR) in both treatments, but in KP the HR increased and was higher than GKX throughout the anesthetic period. Respiratory rate was higher in GKX than in KP. PaO2 decreased significantly in both groups during the anesthetic period. Glucose concentrations [GLU] increased and rectal temperature and PCV decreased in both treatments. Arterial lactate [LAC] increased at recovery compared with all time points in KP. [GLU] and calcium were higher in GKX than in KP at recovery.Conclusion and clinical relevanceThese protocols induced significant hypoxemia but no other cardiorespiratory or metabolic changes. These protocols could be used to maintain anesthesia in donkeys, however, they were not tested in animals undergoing surgery.  相似文献   

6.
ObjectiveTo compare anaesthetic induction in healthy dogs using propofol or ketofol (a propofol-ketamine mixture).Study designProspective, randomized, controlled, ‘blinded’ study.AnimalsSeventy healthy dogs (33 males and 37 females), aged 6–157 months and weighing 4–48 kg.MethodsFollowing premedication, either propofol (10 mg mL?1) or ketofol (9 mg propofol and 9 mg ketamine mL?1) was titrated intravenously until laryngoscopy and tracheal intubation were possible. Pulse rate (PR), respiratory rate (fR) and arterial blood pressure (ABP) were compared to post-premedication values and time to first breath (TTFB) recorded. Sedation quality, tracheal intubation and anaesthetic induction were scored by an observer who was unaware of treatment group. Mann–Whitney or t-tests were performed and significance set at p = 0.05.ResultsInduction mixture volume (mean ± SD) was lower for ketofol (0.2 ± 0.1 mL kg?1) than propofol (0.4 ± 0.1 mL kg?1) (p < 0.001). PR increased following ketofol (by 35 ± 20 beats minute?1) but not consistently following propofol (4 ± 16 beats minute?1) (p < 0.001). Ketofol administration was associated with a higher mean arterial blood pressure (MAP) (82 ± 10 mmHg) than propofol (77 ± 11) (p = 0.05). TTFB was similar, but ketofol use resulted in a greater decrease in fR (median (range): ketofol -32 (-158 to 0) propofol -24 (-187 to 2) breaths minute?1) (p < 0.001). Sedation was similar between groups. Tracheal intubation and induction qualities were better with ketofol than propofol (p = 0.04 and 0.02 respectively).Conclusion and clinical relevanceInduction of anaesthesia with ketofol resulted in higher PR and MAP than when propofol was used, but lower fR. Quality of induction and tracheal intubation were consistently good with ketofol, but more variable when using propofol.  相似文献   

7.
ObjectiveTo evaluate the cardiovascular, respiratory, electrolyte and acid–base effects of a continuous infusion of dexmedetomidine during propofol–isoflurane anesthesia following premedication with dexmedetomidine.Study designProspective experimental study.AnimalsFive adult male Walker Hound dogs 1–2 years of age averaging 25.4 ± 3.6 kg.MethodsDogs were sedated with dexmedetomidine 10 μg kg?1 IM, 78 ± 2.3 minutes (mean ± SD) before general anesthesia. Anesthesia was induced with propofol (2.5 ± 0.5 mg kg?1) IV and maintained with 1.5% isoflurane. Thirty minutes later dexmedetomidine 0.5 μg kg?1 IV was administered over 5 minutes followed by an infusion of 0.5 μg kg?1 hour?1. Cardiac output (CO), heart rate (HR), ECG, direct blood pressure, body temperature, respiratory parameters, acid–base and arterial blood gases and electrolytes were measured 30 and 60 minutes after the infusion started. Data were analyzed via multiple linear regression modeling of individual variables over time, compared to anesthetized baseline values. Data are presented as mean ± SD.ResultsNo statistical difference from baseline for any parameter was measured at any time point. Baseline CO, HR and mean arterial blood pressure (MAP) before infusion were 3.11 ± 0.9 L minute?1, 78 ± 18 beats minute?1 and 96 ± 10 mmHg, respectively. During infusion CO, HR and MAP were 3.20 ± 0.83 L minute?1, 78 ± 14 beats minute?1 and 89 ± 16 mmHg, respectively. No differences were found in respiratory rates, PaO2, PaCO2, pH, base excess, bicarbonate, sodium, potassium, chloride, calcium or lactate measurements before or during infusion.Conclusions and clinical relevanceDexmedetomidine infusion using a loading dose of 0.5 μg kg?1 IV followed by a constant rate infusion of 0.5 μg kg?1 hour?1 does not cause any significant changes beyond those associated with an IM premedication dose of 10 μg kg?1, in propofol–isoflurane anesthetized dogs. IM dexmedetomidine given 108 ± 2 minutes before onset of infusion showed typical significant effects on cardiovascular parameters.  相似文献   

8.
ObjectiveTo investigate the cardiorespiratory, nociceptive and endocrine effects of the combination of propofol and remifentanil, in dogs sedated with acepromazine.Study designProspective randomized, blinded, cross-over experimental trial.AnimalsTwelve healthy adult female cross-breed dogs, mean weight 18.4 ± 2.3 kg.MethodsDogs were sedated with intravenous (IV) acepromazine (0.05 mg kg?1) followed by induction of anesthesia with IV propofol (5 mg kg?1). Anesthesia was maintained with IV propofol (0.2 mg kg?1 minute?1) and remifentanil, infused as follows: R1, 0.125 μg kg?1 minute?1; R2, 0.25 μg kg?1 minute?1; and R3, 0.5 μg kg?1 minute?1. The same dogs were administered each dose of remifentanil at 1-week intervals. Heart rate (HR), mean arterial pressure (MAP), respiratory rate (fR), end tidal CO2 (Pe′CO2), arterial hemoglobin O2 saturation, blood gases, and rectal temperature were measured before induction, and 5, 15, 30, 45, 60, 75, 90, and 120 minutes after beginning the infusion. Nociceptive response was investigated by electrical stimulus (50 V, 5 Hz and 10 ms). Blood samples were collected for plasma cortisol measurements. Statistical analysis was performed by anova (p < 0.05).ResultsIn all treatments, HR decreased during anesthesia with increasing doses of remifentanil, and increased significantly immediately after the end of infusion. MAP remained stable during anesthesia (72–98 mmHg). Antinociception was proportional to the remifentanil infusion dose, and was considered satisfactory only with R2 and R3. Plasma cortisol concentration decreased during anesthesia in all treatments. Recovery was smooth and fast in all dogs.Conclusions and clinical relevanceInfusion of 0.25–0.5 μg kg?1 minute?1 remifentanil combined with 0.2 mg kg?1 minute?1 propofol produced little effect on arterial blood pressure and led to a good recovery. The analgesia produced was sufficient to control the nociceptive response applied by electrical stimulation, suggesting that it may be appropriate for performing surgery.  相似文献   

9.
ObjectiveTo evaluate total intravenous anesthesia with propofol alone or in combination with S(+)-ketamine in rabbits undergoing surgery.Study designProspective, randomized, blinded trial.AnimalsNine 6-month-old New Zealand white rabbits, weighing 2.5–3 kg.MethodsAnimals received acepromazine (0.1 mg kg?1) and buprenorphine (20 μg kg?1) IM, and anesthesia was induced with propofol (2 mg kg?1) and S(+)-ketamine (1 mg kg?1) IV. Rabbits received two of three treatments: propofol (0.8 mg kg?1 minute?1) (control treatment, P), propofol (0.8 mg kg?1 minute?1) + S(+)-ketamine (100 μg kg?1 minute?1) (PK100) or propofol (0.8 mg kg?1 minute?1) + S(+)-ketamine (200 μg kg?1 minute?1) (PK200). All animals received 100% O2 during anesthesia. Heart rate, mean arterial pressure, hemoglobin oxygen saturation and respiratory rate were measured every 5 minutes for 60 minutes. Blood-gas parameters were measured at zero time and 60 minutes. Additional propofol injections, if necessary, and recovery time were recorded.ResultsAn increase in heart rate was observed in P and PK200 up to 10 minutes after induction of anesthesia. Blood pressure decreased from baseline values during the first 10 minutes in P and PK200, and during the first 15 minutes and between 45 and 55 minutes in PK100. A reduction in respiratory rate was observed after 5 minutes in all treatments. Respiratory acidosis was observed in all treatments. Six (2.8) [median (interquartile range)] further propofol injections were necessary in P, which differed statistically from PK100 [1 (0.2)] and PK200 [2 (0.6)]. Recovery time was shorter in P compared with PK100 and PK200, being [7.5 minutes (4.11)], [17.5 minutes (10.30)], and [12 minutes (10.30)], respectively.Conclusions and clinical relevanceS(+)-ketamine potentiates propofol-induced anesthesia in rabbits, providing better maintenance of heart rate. All of these techniques were accompanied by clinically significant respiratory depression.  相似文献   

10.
ObjectiveTo describe the hypnotic effects of a single bolus dose of propofol in Japanese macaques, and to develop a pharmacokinetic model.Study designProspective experimental trial.AnimalsFour male macaques (5-6 years old, 8.0-11.2 kg).MethodsThe macaque was restrained and 8 mg kg?1 of propofol was administrated intravenously at 6 mg kg?1 minute?1. Behavioural changes without stimuli (first experiment) then responses to external stimuli (the second experiment) were assessed every 2 minutes for 20 minutes. Venous blood samples were collected before and at 1, 5, 15, 30, 60, 120 and 210 minutes after drug administration, and plasma concentrations of propofol were measured (third experiment). Pharmacokinetic modelling was performed using NONMEM VI.ResultsMacaques were recumbent without voluntary movement for a mean 14.0 ± 2.7 SD (range 10.5-16.2) or 10.0 ± 3.4 (7.2-14.5) minutes and recovered to behave as pre-administration by 25.1 ± 3.6 (22.1-30.1) or 22.2 ± 1.5 (21.1-24.3) minutes after the end of propofol administration without or with stimuli, respectively. Respiratory and heart rates were stable throughout the experiments (28-68 breaths minute?1 and 72-144 beats minute?1, respectively). Our final pharmacokinetic model included three compartments and well described the plasma concentration of propofol. The population pharmacokinetic parameters were: V1 = 10.4 L, V2=8.38 L, V3=72.7 L, CL1= 0.442 L minute?1, CL2= 1.14 L minute?1, CL3= 0.313 L minute?1, (the volumes of distribution and the clearances for the central, rapid and slow peripheral compartments, respectively).ConclusionsIntravenous administration of propofol (8 mg kg?1) at 6 mg kg?1 minute?1 to Japanese macaques had a hypnotic effect lasting more than 7 minutes. A three-compartment model described propofol plasma concentrations over more than 3 hours.Clinical relevanceThe developed pharmacokinetic parameters may enable simulations of administration protocols to maintain adequate plasma concentration of propofol.  相似文献   

11.
ObjectiveTo compare the dose, cardiopulmonary effects and quality of anaesthetic induction in dogs using propofol (10 mg mL–1) and diluted propofol (5 mg mL–1).Study designRandomized, blinded, clinical study.AnimalsA total of 28 client-owned dogs (12 males/16 females).MethodsFollowing intramuscular acepromazine (0.02 mg kg–1) and methadone (0.2 mg kg–1), propofol (UP, 10 mg mL–1) or diluted propofol (DP, 5 mg mL–1) was administered intravenously (0.2 mL kg–1 minute–1) by an anaesthetist unaware of the allocated group to achieve tracheal intubation. Sedation, intubation and induction quality were scored from 0 to 3. Pre- and post-induction pulse rate (PR), respiratory rate (fR) and systolic (SAP), mean (MAP) and diastolic (DAP) arterial blood pressure were compared. Time to first breath and induction dose were recorded. Data were analysed for normality and Mann–Whitney U or Student t tests were performed where appropriate. Significance was set at p < 0.05. Data are presented as mean ± standard deviation or median (range).ResultsThe propofol dose administered to achieve induction was lower in the DP group (2.62 ± 0.48 mg kg–1) than in the UP group (3.48 ± 1.17 mg kg–1) (p = 0.021). No difference was observed in pre- and post-induction PR, SAP, MAP, DAP and fR between groups. The differences between post-induction and pre-induction values of these variables were also similar between groups. Time to first breath did not differ between groups. Sedation scores were similar between groups. Quality of tracheal intubation was marginally better with UP 0 (0–1) than with DP 1 (0–2) (p = 0.036), but overall quality of induction was similar between groups [UP 0 (0–1) and DP 0 (0–1), p = 0.549].Conclusion and clinical relevanceDiluting propofol reduced the dose to induce anaesthesia without significantly altering the cardiopulmonary variables.  相似文献   

12.
ObjectiveTo establish the correlation between the bispectral index (BIS) and different rates of infusion of propofol in dogs.Study designProspective experimental trial.AnimalsEight adult dogs weighing 6–20 kg.MethodsEight animals underwent three treatments at intervals of 20 days. Propofol was used for induction of anesthesia (10 mg kg−1 IV), followed by a continuous rate infusion (CRI) at 0.2 mg kg−1 minute−1 (P2), 0.4 mg kg−1 minute−1 (P4) or 0.8 mg kg−1 minute−1 (P8) for 55 minutes. The BIS values were measured at 10, 20, 30, 40, and 50 minutes (T10, T20, T30, T40, and T50, respectively) after the CRI of propofol was started. Numeric data were submitted to analysis of variance followed by Tukey test (p < 0.05).ResultsThe BIS differed significantly among groups at T40, when P8 was lower than P2 and P4. At T50, P8 was lower than P2. The electromyographic activity (EMG) in P2 and P4 was higher than P8 at T40 and T50.ConclusionsAn increase in propofol infusion rates decreases the BIS values and EMG.  相似文献   

13.
ObjectiveTo describe the anesthetic and adverse effects of an injectable anesthetic protocol in dogs as part of a high-volume sterilization program under field conditions in Belize.Study designProspective, observational, field study.AnimalsA total of 23 female and eight male dogs (14.2 ± 7.7 kg; age ≥ 8 weeks).MethodsUsing a volume per kg-based dose chart, dogs were administered ketamine (4.5 mg kg−1), medetomidine (0.04 mg kg−1) and hydromorphone (0.09 mg kg−1) intramuscularly. After induction of anesthesia, an endotracheal tube was inserted and dogs were allowed spontaneous breathing in room air. Monitoring included peripheral oxygen saturation (SpO2), mean arterial pressure (MAP), heart rate (HR), respiratory rate, rectal temperature and end-tidal carbon dioxide (Pe′CO2). Meloxicam (0.2 mg kg−1) was administered subcutaneously after surgery. Data were analyzed with linear models and chi-square tests (p < 0.05).ResultsOnset of lateral recumbency (3.4 ± 2 minutes) was rapid. Desaturation (SpO2 < 90%) was observed at least once in 64.5% of dogs and was more frequent in large dogs (p = 0.019). Hypercapnia (Pe′CO2 ≥ 50 mmHg; 6.7 kPa) was observed in 48.4% of dogs. MAP was 111 ± 19 mmHg, mean ± standard deviation. Hypertension (MAP ≥ 120 mmHg), bradycardia (HR ≤ 60 beats minute−1) and tachycardia (HR ≥ 140 beats minute−1) were observed in 45.2%, 16.1% and 3.3% of dogs, respectively. Hypotension and hypothermia were not observed. Sex was not significantly associated with any complication. Return of swallowing reflex and time to standing were 71 ± 23 and 152 ± 50 minutes after injection, respectively. Return of swallowing was significantly longer in large dogs.Conclusions and clinical relevanceAt the doses used, ketamine–medetomidine–hydromorphone was effective in dogs for high-volume sterilization. In this field setting, adverse effects included hypoventilation, hypoxemia and prolonged recovery.  相似文献   

14.
ObjectiveTo compare the propofol infusion rate and cardiopulmonary effects during total intravenous anesthesia with propofol alone and propofol combined with methadone, fentanyl or nalbuphine in domestic chickens undergoing ulna osteotomy.Study designProspective, randomized, experiment trial.AnimalsA total of 59 healthy Hissex Brown chickens weighing 1.5 ± 0.2 kg.MethodsAnesthesia was induced with propofol (9 mg kg–1) administered intravenously (IV) and maintained with propofol (1.2 mg kg–1 minute–1) for 30 minutes. Birds were intubated and supplemented with 100% oxygen through a nonrebreathing circuit under spontaneous ventilation. Thereafter, each animal was randomly assigned to one of four groups: group P, no treatment; group PM, methadone (6 mg kg–1) intramuscularly (IM); group PN, nalbuphine IM (12.5 mg kg–1); and group PF, fentanyl IV (30 μg kg–1 loading dose, 30 μg kg–1 hour–1 constant rate infusion). During the osteotomy surgery, the propofol infusion rate was adjusted to avoid movement of birds and provide adequate anesthesia. Pulse rate, invasive blood pressure, respiratory frequency, end-tidal carbon dioxide partial pressure (Pe′CO2) and hemoglobin oxygen saturation (SpO2) were recorded.ResultsData were available from 58 chickens. The mean ± standard deviation propofol infusion rate (mg kg–1 minute–1) for the duration of anesthesia was: group P, 0.81 ± 0.15; group PM, 0.66 ± 0.11; group PN, 0.60 ± 0.14; and group PF, 0.80 ± 0.07. Significant differences were P versus PM (p = 0.042), P versus PN (p = 0.002) and PF versus PN (p = 0.004). Pulse rate, blood pressure and SpO2 remained acceptable for anesthetized birds with minor differences among groups. Values of Pe′CO2 >60 mmHg (8 kPa) were observed in all groups.Conclusions and clinical relevanceMethadone and nalbuphine, but not fentanyl, decreased the propofol infusion rate required for anesthesia maintenance, but resulted in no obvious benefit in physiological variables.  相似文献   

15.
ObjectiveTo evaluate the effects of intravenous lidocaine (L) and ketamine (K) alone and their combination (LK) on the minimum alveolar concentration (MAC) of sevoflurane (SEVO) in dogs.Study designProspective randomized, Latin-square experimental study.AnimalsSix, healthy, adult Beagles, 2 males, 4 females, weighing 7.8 – 12.8 kg.MethodsAnesthesia was induced with SEVO in oxygen delivered by face mask. The tracheas were intubated and the lungs ventilated to maintain normocapnia. Baseline minimum alveolar concentration of SEVO (MACB) was determined in duplicate for each dog using an electrical stimulus and then the treatment was initiated. Each dog received each of the following treatments, intravenously as a loading dose (LD) followed by a constant rate infusion (CRI): lidocaine (LD 2 mg kg−1, CRI 50 μg kg−1minute−1), lidocaine (LD 2 mg kg−1, CRI 100 μgkg−1 minute−1), lidocaine (LD 2 mg kg−1, CRI 200 μg kg−1 minute−1), ketamine (LD 3 mg kg−1, CRI 50 μg kg−1 minute−1), ketamine (LD 3 mgkg−1, CRI 100 μg kg−1 minute−1), or lidocaine (LD 2 mg kg−1, CRI 100 μg kg−1 minute−1) + ketamine (LD 3 mg kg−1, CRI 100 μg kg−1 minute−1) in combination. Post-treatment MAC (MACT) determination started 30 minutes after initiation of treatment.ResultsLeast squares mean ± SEM MACB of all groups was 1.9 ± 0.2%. Lidocaine infusions of 50, 100, and 200 μg kg−1 minute−1 significantly reduced MACB by 22.6%, 29.0%, and 39.6%, respectively. Ketamine infusions of 50 and 100 μg kg−1 minute−1 significantly reduced MACB by 40.0% and 44.7%, respectively. The combination of K and L significantly reduced MACB by 62.8%.Conclusions and clinical relevanceLidocaine and K, alone and in combination, decrease SEVO MAC in dogs. Their use, at the doses studied, provides a clinically important reduction in the concentration of SEVO during anesthesia in dogs.  相似文献   

16.
ObjectiveTo describe ketamine–propofol total intravenous anaesthesia (TIVA) following premedication with acepromazine and either medetomidine, midazolam or morphine in rabbits.Study designRandomized, crossover experimental study.AnimalsA total of six healthy female New Zealand White rabbits (2.2 ± 0.3 kg).MethodsRabbits were anaesthetized on four occasions, each separated by 7 days: an intramuscular injection of saline alone (treatment Saline) or acepromazine (0.5 mg kg–1) in combination with medetomidine (0.1 mg kg–1), midazolam (1 mg kg–1) or morphine (1 mg kg–1), treatments AME, AMI or AMO, respectively, in random order. Anaesthesia was induced and maintained with a mixture containing ketamine (5 mg mL–1) and propofol (5 mg mL–1) (ketofol). Each trachea was intubated and the rabbit administered oxygen during spontaneous ventilation. Ketofol infusion rate was initially 0.4 mg kg–1 minute–1 (0.2 mg kg–1 minute–1 of each drug) and was adjusted to maintain adequate anaesthetic depth based on clinical assessment. Ketofol dose and physiological variables were recorded every 5 minutes. Quality of sedation, intubation and recovery times were recorded.ResultsKetofol induction doses decreased significantly in treatments AME (7.9 ± 2.3) and AMI (8.9 ± 4.0) compared with treatment Saline (16.8 ± 3.2 mg kg–1) (p < 0.05). The total ketofol dose to maintain anaesthesia was significantly lower in treatments AME, AMI and AMO (0.6 ± 0.1, 0.6 ± 0.2 and 0.6 ± 0.1 mg kg–1 minute–1, respectively) than in treatment Saline (1.2 ± 0.2 mg kg–1 minute–1) (p < 0.05). Cardiovascular variables remained at clinically acceptable values, but all treatments caused some degree of hypoventilation.Conclusions and clinical relevancePremedication with AME, AMI and AMO, at the doses studied, significantly decreased the maintenance dose of ketofol infusion in rabbits. Ketofol was determined to be a clinically acceptable combination for TIVA in premedicated rabbits.  相似文献   

17.
ObjectiveTo evaluate the effects of a constant rate infusion (CRI) of lidocaine alone or in combination with ketamine on the minimum infusion rate (MIR) of propofol in dogs and to compare the hemodynamic effects produced by propofol, propofol-lidocaine or propofol-lidocaine-ketamine anesthesia.Study designProspective, randomized cross-over experimental design.AnimalsFourteen adult mixed-breed dogs weighing 15.8 ± 3.5 kg.MethodsEight dogs were anesthetized on different occasions to determine the MIR of propofol alone and propofol in combination with lidocaine (loading dose [LD] 1.5 mg kg?1, CRI 0.25 mg kg?1 minute?1) or lidocaine (LD 1.5 mg kg?1, CRI 0.25 mg kg?1 minute?1) and ketamine (LD 1 mg kg?1, CRI 0.1 mg kg?1 minute?1). In six other dogs, the hemodynamic effects and bispectral index (BIS) were investigated. Each animal received each treatment (propofol, propofol-lidocaine or propofol-lidocaine-ketamine) on the basis of the MIR of propofol determined in the first set of experiments.ResultsMean ± SD MIR of propofol was 0.51 ± 0.08 mg kg?1 minute?1. Lidocaine-ketamine significantly decreased the MIR of propofol to 0.31 ± 0.07 mg kg?1 minute?1 (37 ± 18% reduction), although lidocaine alone did not (0.42 ± 0.08 mg kg?1 minute?1, 18 ± 7% reduction). Hemodynamic effects were similar in all treatments. Compared with the conscious state, in all treatments, heart rate, cardiac index, mean arterial blood pressure, stroke index and oxygen delivery index decreased significantly, whereas systemic vascular resistance index increased. Stroke index was lower in dogs treated with propofol-lidocaine-ketamine at 30 minutes compared with propofol alone. The BIS was lower during anesthesia with propofol-lidocaine-ketamine compared to propofol alone.Conclusions and clinical relevanceLidocaine-ketamine, but not lidocaine alone, reduced the MIR of propofol in dogs. Neither lidocaine nor lidocaine in combination with ketamine attenuated cardiovascular depression produced by a continuous rate infusion of propofol.  相似文献   

18.
ObjectiveTo investigate an infusion of propofol for anesthesia in comparison to tiletamine-zolazepam anesthesia, evaluating physiological variables and recovery in squirrel monkeys.Study designProspective non-blinded randomized study.AnimalsEight healthy squirrel monkeys (Saimiri sciureus), aged 3 years and weighing 0.340–0.695 kg.MethodsPremedication was intramuscular midazolam (0.5 mg) and meperidine (4 mg). Anesthesia was induced with intravenous (IV) propofol (4 mg kg?1 minute?1) and maintained with propofol starting at 0.4 mg kg?1 minute?1 (PRO, n = 4) or IV tiletamine-zolazepam (5 mg kg?1) and maintained with supplementary doses of TZ (TZ, n = 4). Cardiopulmonary variables were measured continuously. Arterial blood gases and lactate concentration were measured at the end of anesthesia. Quality and times of recovery were determined. Repeatedly measured data for significant differences were tested between groups with t-test and within groups by anova.ResultsMedian time for induction of anesthesia in PRO was 180 seconds. Mean maintenance infusion rate of propofol was 0.43 ± 0.05 mg kg?1 minute?1, varying during the 1 hour period. One monkey died after administration of TZ; others required 1, 4, or 8 supplemental doses. Cardiopulmonary variables were similar between groups, but hypotension was recorded. Recovery times to ventral recumbency in PRO (32 ± 17 minutes) and TZ (84 ± 11 minutes) and normal ambulation in PRO (58 ± 22 minutes) and TZ (358 ± 109minutes) were significantly different (p < 0.05). Recovery quality was superior in PRO, with less ataxia and fewer unsuccessful attempts to stand. Lactate concentration was not different between treatments.Conclusions and clinical relevanceCardiopulmonary variables were similar between protocols, aside from the higher incidence of hypotension in PRO, indicating that further studies with a larger number of animals are required. Compared to tiletamine-zolazepam, propofol anesthesia provided faster and superior anesthetic recovery in these animals.  相似文献   

19.
ObjectivePropofol may cause adverse effects (e.g. apnoea, hypotension) at induction of anaesthesia. Co-induction of anaesthesia may reduce propofol requirements. The effect of fentanyl or midazolam on propofol dose requirements and cardiorespiratory parameters was studied.Study designRandomized, controlled, blinded clinical study.AnimalsSixty-six client owned dogs (35 male, 31 female, ASA I-II, age 6–120 months, body mass 4.7–48.0 kg) were selected.MethodsPre-medication with acepromazine (0.025 mg kg−1) and morphine (0.25 mg kg−1) was administered by intramuscular injection. After 30 minutes group fentanyl-propofol (FP) received fentanyl (2 μg kg−1), group midazolam-propofol (MP) midazolam (0.2 mg kg−1) injected over 30 seconds via a cephalic catheter and in a third group, control-propofol (CP), the IV catheter was flushed with an equivalent volume of heparinized saline. Anaesthesia was induced 2 minutes later, with propofol (4 mg kg−1minute−1) administered to effect. After endotracheal intubation anaesthesia was maintained with a standardized anaesthetic protocol. Pulse rate, respiratory rate (RR) and mean arterial pressure (MAP) were recorded before the co-induction agent, before induction, and 0, 2 and 5 minutes after intubation. Apnoea ≥30 seconds was recorded and treated. Sedation after pre-medication, activity after the co-induction agent, quality of anaesthetic induction and endotracheal intubation were scored.ResultsPropofol dose requirement was significantly reduced in FP [2.90 mg kg−1(0.57)] compared to CP [3.51 mg kg−1 (0.74)] and MP [3.58 mg kg−1(0.49)]. Mean pulse rate was higher in MP than in CP or FP (p = 0.003). No statistically significant difference was found between groups in mean RR, MAP or incidence of apnoea. Activity score was significantly higher (i.e. more excited) (p = 0.0001), and quality of induction score was significantly poorer (p = 0.0001) in MP compared to CP or FP. Intubation score was similar in all groups.Conclusions and clinical relevanceFentanyl decreased propofol requirement but did not significantly alter cardiovascular parameters. Midazolam did not reduce propofol requirements and caused excitement in some animals.  相似文献   

20.
ObjectiveTo compare induction targets, and the haemodynamic and respiratory effects, of propofol, or as an admixture with two different concentrations of alfentanil, delivered via a propofol target-controlled infusion (TCI) system.Study designProspective blinded randomized clinical study.Animals Sixty client-owned dogs scheduled for elective surgery under general anaesthesia. Mean body mass (SD) 28.5 kg (8.7) and mean age (SD) 3.5 years (2.4).MethodsDogs received pre-anaesthetic medication of acepromazine (0.03 mg kg−1) and morphine (0.2 mg kg−1) administered intramuscularly. Animals were randomly assigned to receive one of three induction protocols: propofol alone (group 1), a propofol/alfentanil (11.9 μg mL−1) admixture (group 2), or a propofol/alfentanil (23.8 μg mL−1) admixture (group 3), via a TCI system. Blood target concentrations were increased until endotracheal intubation was achieved, and induction targets were recorded. Heart rate (HR), respiratory rate (fr) and non-invasive arterial blood pressure were recorded pre-induction, at endotracheal intubation (time 0) and at 3 and 5 minutes post-intubation (times 3 and 5, respectively). Data were analysed using anova for normally distributed data or Kruskal–Wallis test, with significance assumed at p < 0.05.ResultsThere were no significant differences between groups with respect to age, body mass, HR, fr, systolic and diastolic blood pressure. The blood propofol targets to achieve endotracheal intubation were significantly higher in group 1 compared with groups 2 and 3. Mean arterial blood pressure (MAP) was significantly higher in group 1 at time 0 when compared with groups 2 and 3.Conclusions and clinical relevanceInduction of anaesthesia with a TCI system can be achieved at lower blood propofol targets when using a propofol/alfentanil admixture compared with using propofol alone. However, despite reduced targets with both propofol/alfentanil admixture groups, MAP was lower immediately following endotracheal intubation than when using propofol alone.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号