首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We characterized the scintigraphic and sonographic appearance of the thyroid gland in clinically normal horses to establish the value of these modalities for assessment of the thyroid gland in this species. Horses were divided into two age groups. One group consisted of eight horses between 3 and 10 years of age and the other of seven horses between 11 and 20 years of age. Total T4 concentrations were within the laboratory reference interval in all horses. Thyroid to salivary (T/S) ratio, percent dose uptake of pertechnetate (Na99mTcO4) and thyroid lobe volume were calculated. The echogenicity of thyroid lobes and presence of nodules was documented. The two groups were compared using appropriate parametric and nonparametric statistics. Mean total T4 concentration was lower in older horses. Sixty minute mean±standard deviation (SD) T/S ratios for old vs. young horses were 5.8±3.0 and 5.3±2.2, respectively. Sixty‐minute median and interquartile ranges for percent dose uptake of pertechnetate for old vs. young horses were 3.64% (1.5–3.98%) and 2.55% (2.33–2.90%), respectively. Mean±SD thyroid lobe volume for old vs. young horses were 18.93±5.16 cm 3 and 13.55±3.56 cm3, respectively. Differences between groups were not significant. Most thyroid lobes were hyper or isoechoic to the sternocephalicus muscle. Prevalence of thyroid nodules did not differ between groups. Further study is needed to determine if thyroidal percent dose uptake is significantly different in horses with thyroid dysfunction and if it is clinically useful.  相似文献   

2.
High-resolution ultrasonography was evaluated as an alternative to 99mTcO-4 scintigraphy for examining size and appearance of thyroid glands in hyperthyroid cats. Thyroid ultrasound examinations were performed on 6 normal cats and 14 cats with hyperthyroidism. Thyroid lobe volume was estimated from ultrasound images using the equation for a prolate ellipsoid, π/6 (length * height * width). Total thyroid volume was estimated by adding the volume estimations of the left and right lobes. Thyroid lobes of hyperthyroid cats were considered abnormal if estimated volume exceeded the 99% confidence interval for normal thyroid volume determined from the control group. Scintigraphic examinations performed on hyperthyroid cats were evaluated for unilateral versus bilateral disease and for the presence of ectopic activity. Mean thyroid lobe volume and total thyroid volume for normal cats was 85 and 169 mm3, respectively. Mean thyroid lobe volume and total thyroid volume for hyperthyroid cats was 578 and 889 mm3. There was a significant difference in mean estimated total thyroid volume of normal and hyperthyroid cats. Thyroid lobes with greater than normal TcO-4 uptake on scintigraphy were larger and had variable homogeneity, echogenicity, and margination on ultrasound examination. There also was an 85.7% agreement of scintigraphy and ultrasonography in differentiating normal from abnormal thyroid lobes. A fair correlation between estimated total thyroid volume of hyperthyroid cats and most recent pretherapy serum thyroxine values were also found. This preliminary study indicates that thyroid ultrasound examination may provide information that is useful for diagnosis and treatment of feline hyperthyroidism. Although ultrasound provides accurate evaluation of the thyroid glands, it cannot replace 99mTcO-4 scintigraphy for screening of metastatic lesions and ectopic glands.  相似文献   

3.
The aim of this study was to compare the accuracy of two methods used to estimate testicular volume in the collared peccary. Calliper and ultrasonographic measurements of testicular dimensions (length, width and height) of both testes were taken on five adult collared peccaries. The testicular volume was calculated by Lambert's empiric formula: length (L) × width (W) × height (H) × 0.71, the formula of an ellipsoid L × W × H × 0.52, and Hansen's formula: L × W2 × 0.52. The calculated volumes were then compared with the actual ones, which were estimated by water displacement. The mean of true testicular volume was 22.65 ± 1.52 ml. Lambert's formula estimated testicular volume more accurately when ultrasound measurements were taken. However, when the calliper was the methodology used, the results were closest to the true volume, especially when Ellipsoid formula and Hansen's formula were applied, and underestimated the true volumes by 1.53 ± 1.75 ml and 1.53 ± 1.65 ml, respectively. This specific application of technologies in wild animals has the potential to revolutionize the selection process for the collared peccary entering artificial insemination or natural breeding programmes.  相似文献   

4.
In humans and pets, magnetic resonance imaging (MRI) provides important adjunctive anatomic information about the thyroid and its adjacent structures. To the best of our knowledge, however, no studies have been reported regarding the use of MRI for thyroid evaluation in horses. The aim of this study was to obtain qualitative and quantitative parameters of healthy thyroid gland in adult horses by MRI. Eleven horses were submitted to thyroid MRI evaluation. The healthy thyroid of these animals was ensured by normal examinations performed before (free thyroxine and ultrasound) and after (cytology) to MRI. It was concluded that the dorsal spin-echo T1-weighted, fast spin-echo T2-weighted, sagittal STIR and a three-dimensional T1-weighted gradient echo were the sequences that best characterized the thyroid lobes. Qualitatively, there was a significant variation in the elliptical format of some lobes considering the sagittal plane, which oscillated between rounded and flattened conformation. Excellent reproducibility of the quantitative thyroid parameters obtained was verified. The thyroid gland total volume mean of observers was 14.31 cm3 (±0.69). In relation with comparisons between quantitative parameters of left and right lobes, only differences regarding their respective lengths were observed. Thus, we can infer that the difference in some thyroid lobes format can be explained by the significant variation identified between left and right lobes lengths.  相似文献   

5.
The present experiment was designed to study the pharmacokinetics of levofloxacin in six healthy cross bred female cow calves (4 to 6 months age) weighing between 40 to 80 kg. Plasma from blood was separated by centrifugation at 10,000 rpm. Quantitative estimation of levofloxacin was done by UV-VIS spectrophotometer at 286 nm. The mean maximum plasma concentration (Cpmax ) of levofloxacin in febrile calves (5.28?±?0.32 µg/ml) did not differ significantly as compared with healthy calves (4.50?±?0.22 µg/ml) after single dose (20 mg/kg) oral administration. The mean therapeutic plasma concentration ( Cpther ) of levofloxacin was maintained for longer period in febrile calves (10 h) as compared to healthy calves ( 8 h). The mean maximum urine concentration (Cumax) in febrile (40.86?±?2.19 µg/ml) also did not differ significantly as compared with healthy calves (39.38?±?2.43 µg/ml). No significant difference in various pharmacokinetic parameters of plasma was observed in healthy calves ( β?=?0.23?±?0.01/h ; t1/2 β?=?3.00?±?0.17 h and MRT?=?4.66?±?0.14 h ) and febrile calves ( β?=?0.23?±?0.01/ h; t1/2 β?=?3.05?±?0.16 h and MRT?=?5.04?±?0.14 h ) . The mean value of β, and t ½ β calculated in urine also did not differ between healthy and febrile calves. However, the value of MRT(3.79?±?0.07 h) and ClB(1.65?±?0.09 ml/kg/min) calculated in urine of febrile calves significantly(p?B?=?2.09?±?0.13 ml/kg/min). Based on kinetic profile levofloxacin may be given orally at the dose rate of 1.49 mg/kg B.W.at 8 h intervals in febrile calves.  相似文献   

6.
Summary

The oral absorption and bioavailability of flumequine was studied in 1‐, 5‐ and 18‐week‐old calves following intravenous and oral administration of different formulations of flumequine (Flumix®, Flumix C® and pure flumequine). Increasing age had a negative influence on the Cmax after the administration of Flumix®, based on a larger VD in the older calves. The Cmax decreased from 5.02 ± 1.46 μg/ml in the first week to 3.28 ± 0.42 μg/ml in the 18th week. Adding colistin sulfate to the flumequine formulation and administring pure flumequine mixed with milk replacer had a negative effect on the Cmax of flumequine after oral administration of 5 and 10 mg/kg body weight. The bioavailability of the orally administered flumequine formulations was 100% in all cases except after the administration of Flumix C®, for which it was 75.9 ± 18.2%. The urinary recovery of flumequine after intravenous injection of a 10% solution varied from 35.2 ± 2.3% for Group B. to 41.2 ± 6.3% for Group C.

The dosage of 5 mg/kg body weight Flumix® twice daily in 1‐week‐old veal calves is sufficient to reach therapeutic plasma concentrations, based on a MIC value of 0.8 μg/ml of the target bacteria.

In older calves it is advisable to increase the dosage 7.5 or 10 mg/kg body weight every 12 hours. In combination with colistin sulfate it is also advisable to increase the dosage slightly because of the negative effect of the colistin sulfate on the Cmax of flumequine.  相似文献   

7.
OBJECTIVE: To determine ultrasonographic characteristics of the thyroid gland in healthy small-, medium-, and large-breed dogs and evaluate the relationships of thyroid gland size and volume with body weight and body surface area (BSA). ANIMALS: 72 dogs of small (6 Toy and 6 Miniature Poodles), medium (12 Beagles), and large breeds (12 Akitas and 36 Golden Retrievers). PROCEDURE: Each dog's thyroid gland was examined ultrasonographically with a 10- to 5-MHz multifrequency linear-array transducer. Size, shape, echogenicity, and homogeneity of thyroid lobes were evaluated on longitudinal and transverse images. Thyroid lobe volume was estimated by use of the equation for an ellipsoid (pi/6 [length x height x width]). RESULTS: Thyroid lobes appeared fusiform or elliptical on longitudinal images and triangular or round to oval on transverse images. In most dogs, thyroid lobes were hyperechoic or isoechoic, compared with surrounding musculature, and had a homogeneous echogenic pattern. Mean length, width, height, and volume of thyroid lobes were significantly greater in Akitas and Golden Retrievers, compared with findings in Beagles or Poodles; mean length, width, and height were significantly greater in Beagles, compared with findings in Poodles. Total thyroid gland volume correlated with body weight (r = 0.73) and BSA (r = 0.74). CONCLUSIONS AND CLINICAL RELEVANCE: Among the dog breeds examined ultrasonographically, thyroid lobe size and volume were more variable than shape, echogenicity, and homogeneity. The correlation of thyroid gland volume with BSA suggests that size of the dog, rather than breed, should be considered when assessing thyroid glands ultrasonographically.  相似文献   

8.
Administration of iodinated contrast medium interferes with iodide uptake in the human thyroid gland and compromises diagnostic thyroid scintigraphy and radioiodine treatment for 4–6 weeks. However, the degree and duration of inhibition of thyroid uptake of pertechnetate (99mTcO4?) by iodinated contrast medium has not been established in any species. The main objective of this study was to better understand the temporal characteristics and magnitude of inhibition of feline thyroid uptake of 99mTcO4? due to iohexol administration. Routine thyroid scintigraphy was performed in eight cats by intravenous (IV) injection of 185 MBq (5 mCi) of 99mTcO4? both 4 days before and 0,1, 3, 7,14, and 28 days after IV administration of 880 mg I/kg iohexol (240 mg I/ml). Thyroid scintigraphy data were used to calculate thyroid:salivary gland ratios (T:S) and the percentage of total injected 99mTcO4? dose uptake within the thyroid (%TU) at 20 min postinjection. After iohexol administration, mean T:S was significantly decreased below baseline only on day 1. At no point during the study did any cat have a T:S that fell below the published normal reference range of 0.71±0.14. There was a significant decrease in %TU on day 1, 3, and 14; however, at no point during the study, did any cat have a %TU that fell below the published normal reference ranges of 0.64±0.57, 0.68±0.9, or 0.75±1.38.  相似文献   

9.
The effects of maturation on the intravenous (IV) and intramuscular (IM) pharmacokinetics of ceftiofur sodium following a dose of 2.2 mg ceftiofur equivalents/kg body weight were evaluated in 16 one-day-old Holstein bull calves (33-53 kg body weight initially; Group 1) and 14 six-month-old Holstein steers (217-276 kg body weight initially; Group 2). Group 1 calves were fed unmedicated milk replacer until 30 days of age and were then converted to the same roughage/concentrate diet as Group 2. Groups 1-IV and 2-IV received ceftiofur sodium IV, and Groups 1-IM and 2-IM received ceftiofur sodium IM. Group 1 calves were dosed at 7 days of age and at 1 and 3 months of age; group 2 calves were dosed at 6 and 9 months of age. Blood samples were obtained serially from each calf, and plasma samples were analysed using an HPLC assay that converts ceftiofur and all desfuroylceftiofur metabolites to desfuroylceftiofur acetamide. Cmax values were similar in all calves, and were no higher in younger calves than in older calves. Plasma concentrations remained above 0.150 μg ceftiofur free acid equivalents/mL for 72 h in 7-day-old calves, but were less than 0.150 μg/mL within 48 h following IV or IM injection for 6- and 9-month-old calves. Intramuscular bioavailability, assessed by comparing the model-derived area under the curve (AUCmod) from IM and IV injection at each age, appeared to be complete. After IV administration, the AUCmod in 7-day-old and 1-month-old calves (126.92±21.1 μg-h/mL and 135.0±21.6 μg.h/mL, respectively) was significantly larger than in 3-, 6- and 9-month-old calves (74.0±10.7 μg.h/mL, 61.0±17.7 μg.h/mL and 68.5±12.8 μg.h/mL, respectively; P< 0.0001). The Vd(ss) decreased linearly within the first 3 months of life in cattle (0.345±0.0616 L/kg, 0.335±0.919 L/kg and 0.284±0.0490 L/kg, respectively; P= 0.031), indicative of the decreasing extracellular fluid volume in maturing cattle. The Clb was significantly smaller in 7-day-old and 1-month-old calves (0.0178±0.00325 L/h.kg and 0.0167±0.00310 L/h.kg, respectively) than in 3-, 6- and 9-month-old calves (0.0303±0.0046 L/h.kg, 0.0398±0.0149 L/h.kg and 0.0330±0.00552 L/h.kg, respectively; P≦0.001). This observation may be indicative of maturation of the metabolism and/or excretion processes for ceftiofur and desfuroylceftiofur metabolites. The approved dosage regimens for ceftiofur sodium of 1.1-2.2 mg/kg administered once daily for up to 5 consecutive days will provide plasma concentrations above the MIC for bovine respiratory disease pathogens for a longer period of time in neonatal calves than in older calves. Peak plasma concentrations of ceftiofur and desfuroylceftiofur metabolites were no higher in neonatal calves than in more mature cattle, highly suggestive that peak tissue concentrations would be no higher in neonatal calves than in more mature cattle.  相似文献   

10.
Ultrasonography is useful for assessing the morphology of the thyroid gland in hyperthyroid cats. Our aim was to describe the ultrasonographic changes of the thyroid gland in hyperthyroid cats after 131I therapy. Ultrasonography was performed in 15 hyperthyroid cats at initial presentation and 6 months after 131I using a multifrequency linear transducer set at 12 MHz. The following criteria were evaluated: length, width, height, volume, shape, homogeneity, and vascularity, using Power Doppler. Pretreatment, 10 cats had bilaterally abnormal thyroid lobes, four cats one abnormal lobe with the contralateral lobe being normal or reduced in size, and one cat with one normal lobe and one lobe not visible. Six months after 131I therapy, there was a reduction in median volume from 819 to 210 mm3, reduced rounding, reduced heterogeneity, and decreased vascularity. In conclusion, ultrasonography may be used to monitor thyroid changes in order to assess 131I treatment response. Further studies are necessary to determine whether ultrasonography could contribute to the detection of a relapsing course of hyperthyroidism.  相似文献   

11.
OBJECTIVE: To develop and validate an ultrasonographic method for measuring abomasal volume, location, and emptying rate in suckling calves. ANIMALS: 9 male Holstein calves < 40 days of age. PROCEDURE: Before and after calves were fed different volumes of milk replacer or 2 L of oral electrolyte solutions, ultrasonographic measurements of abomasal dimensions (width, length, and height) were obtained by applying a 3.5-MHz sector probe to the ventral aspect of the abdomen in the transverse and sagittal planes. Abomasal volume was calculated from the ultrasonographic measurements by modeling the abomasum as an ellipsoid and by use of a power exponential equation to calculate the half-time of abomasal emptying (t1/2). RESULTS: Preprandial abomasal volume was 20 to 137 mL. All 3 abomasal dimensions increased during feeding and after suckling, and the abomasum was symmetrically located about the midline of the ventral aspect of the abdomen. Strong linear relationships were identified between ultrasonographic and suckled volumes, between ultrasonographic and scintigraphic heights, and between ultrasonographic and scintigraphic lengths. Ultrasonographic t1/2 was linearly related to scintigraphic t1/2; the latter is regarded as the gold standard measure of gastric emptying rate. CONCLUSIONS AND CLINICAL RELEVANCE: Ultrasonographic evaluation of the abomasum appears to provide a practical, rapid, noninvasive, and accurate method for determination of abomasal volume, location, and emptying rate in suckling calves.  相似文献   

12.
The pharmacokinetics of difloxacin (Dicural) was studied in a crossover study using three groups (n = 4) of male and female Friesian calves after intravenous (i.v.), intramuscular (i.m.) and subcutaneous (s.c.) administrations of 5 mg/kg body weight. Drug concentration in plasma was determined by high-performance liquid chromatography using fluorescence detection. The plasma concentration–time data following i.v. administration were best fitted to a two-compartment open model and those following i.m. and s.c. routes were best fitted using one-compartment open model. The collected data were subjected to a computerized kinetic analysis. The mean i.v., i.m. and s.c. elimination half-lives (t 1/2β) were 5.56 ± 0.33 h, 6.12 ± 0.42 h and 7.26 ± 0.6 h, respectively. The steady-state volume of distribution (V dss) was 1.12 ± 0.09 L/kg and total body clearance (ClB) was 2.19 ± 0.1 ml/(min. kg). The absorption half lives (t 1/2ab) were 0.38 ± 0.027 h and 2.1 ± 0.09 h, with systemic bioavailabilities (F) of 96.5% ± 6.4% and 84% ± 5.5% after i.m. and s.c. administration, respectively. After i.m. and s.c. dosing, peak plasma concentrations (C max) of 3.38 ± 0.13 μg/ml and 2.18 ± 0.12 μg/ml were attained after (t max) 1.22 ± 0.20 h and 3.7 ± 0.52 h. The MIC90 of difloxacin for Mannheimia haemolytica was 0.29 ± 0.04 μg/ml. The AUC/MIC90 and C max/MIC90 ratios for difloxacin following i.m. administration were 120 and 11.65, respectively and following s.c. administration were 97.58 and 7.51, respectively. Difloxacin was 31.7–36.8% bound to calf plasma protein. Since fluoroquinolones display concentration-dependent activities, the doses of difloxacin used in this study are likely to involve better pharmacodynamic characteristics that are associated with greater clinical efficacy following i.m. administration than following s.c. administration.  相似文献   

13.
Thyroid disease is common in dogs and conventional ultrasonography is a standard diagnostic test for diagnosis and treatment planning. Strain elastography can provide additional information about tissue stiffness noninvasively after applying external or internal compression. However, natural carotid artery pulsations in the canine thyroid gland are too weak to maintain sufficient internal compression force. The objective of the present study was to describe the feasibility of strain elastography for evaluating the canine thyroid gland and the repeatability of dobutamine‐induced carotid artery pulsation as an internal compression method. In seven healthy Beagle dogs, strain on each thyroid lobe was induced by external compression using the ultrasound probe and internal compression using carotid artery pulsation after dobutamine infusion. The thyroid appeared homogeneously green and the subcutaneous fat superficial to the thyroid lobe appeared blue. Strain values and strain ratios did not differ among dogs or between the left and right lobes. Interobserver repeatability was excellent for both compression methods. Intraobserver repeatability of the strain ratio measured using the carotid artery pulsation method (intraclass coefficient correlation = 0.933) was higher than that measured using the external compression method (0.760). Mean strain values of thyroid lobes for the external compression method (142.93 ± 6.67) differed from the internal method (147.31 ± 8.24; P < 0.05). Strain ratios between the two methods did not differ. Strain elastography was feasible for estimating thyroid stiffness in dogs. Carotid artery pulsation induced by dobutamine infusion can be used for canine thyroid strain elastography with excellent repeatability.  相似文献   

14.
The pharmacokinetics and urinary excretion of gatifloxacin were investigated after a single intravenous injection of 4 mg/kg body weight in buffalo calves. The therapeutic plasma drug concentration was maintained for up to 12 h. Gatifloxacin rapidly distributed from blood to tissue compartments, which was evident from the high values of the distribution rate constant, α1 (11.1 ± 1.06 h−1) and the rate constant of transfer of drug from central to peripheral compartment, k 12 (6.29 ± 0.46 h−1). The area under the plasma drug concentration–time curve and apparent volume of distribution were 17.1 ± 0.63 (μg.h)/ml and 3.56 ± 0.95 L/kg, respectively. The elimination half-life (t 1/2 β), total body clearance (ClB) and the ratio of drug present in tissues and plasma (T/P) were 10.4 ± 2.47 h, 235.1 ± 8.47 ml/(kg.h) and 10.1 ± 2.25, respectively. About 19.7% of the administered drug was excreted in urine within 24 h. A satisfactory intravenous dosage regimen for gatifloxacin in buffalo calves would be 5.3 mg/kg at 24 h intervals. Abbreviations for pharmacokinetic parameters are given in the footnote of Table I  相似文献   

15.
The pharmacokinetics and bioavailability of gentamicin sulphate (5 mg/kg body weight) were studied in 50 female broiler chickens after single intravenous (i.v.), intramuscular (i.m.), subcutaneous (s.c.) and oral administration. Blood samples were collected at time 0 (pretreatment), and at 5, 15 and 30 min and 1, 2, 4, 6, 8, 12, 24 and 48 h after drug administration. Gentamicin concentrations were determined using a microbiological assay and Bacillus subtillis ATCC 6633 as a test organism. The limit of quantification was 0.2 μg/ml. The plasma concentration–time curves were analysed using non-compartmental methods based on statistical moment theory. Following i.v. administration, the elimination half-life (t 1/2β), the mean residence time (MRT), the volume of distribution at steady state (V ss), the volume of distribution (V d,area) and the total body clearance (ClB) were 2.93 ± 0.15 h, 2.08 ± 0.12 h, 0.77 ± 0.05 L/kg, 1.68 ± 0.39 L/kg and 5.06 ± 0.21 ml/min per kg, respectively. After i.m. and s.c. dosing, the mean peak plasma concentrations (C max) were 11.37 ± 0.73 and 16.65 ± 1.36 μg/ml, achieved at a post-injection times (t max) of 0.55 ± 0.05 and 0.75 ± 0.08 h, respectively. The t 1/2β was 2.87 ± 0.44 and 3.48 ± 0.37 h, respectively after i.m. and s.c. administration. The V d,area and ClB were 1.49 ± 0.21 L/kg and 6.18 ± 0.31 ml/min per kg, respectively, after i.m. administration and were 1.43 ± 0.19 L/kg and 4.7 ± 0.33 ml/min per kg, respectively, after s.c. administration. The absolute bioavailability (F) of gentamicin after i.m. administration was lower (79%) than that after s.c. administration (100%). Substantial differences in the resultant kinetics data were obtained between i.m. and s.c. administration. The in vitro protein binding of gentamicin in chicken plasma was 6.46%.  相似文献   

16.
The pharmacokinetic properties of ketoprofen were determined in 4‐week‐old calves after intramuscular (i.m.) injection of a racemic mixture at a dose of 3 mg/kg body weight. Due to possible enantioselective disposition kinetics and chiral inversion, the plasma concentrations of the R(?) and S(+) enantiomer were quantified separately, using a stereospecific HPLC‐UV assay. A distinct predominance of the S(+) enantiomer was observed, as well as significantly different pharmacokinetic parameters between R(?) and S(+) ketoprofen. More in specific, a greater value for the mean area under the plasma concentration–time curve (AUC0→∞) (46.92 ± 7.75 and 11.13 ± 2.18 μg·h/mL for the S(+) and R(?) enantiomer, respectively), a lower apparent clearance (Cl/F) (32.8 ± 5.7 and 139.0 ± 25.1 mL/h·kg for the S(+) and R(?) enantiomer, respectively) and a lower apparent volume of distribution (Vd/F) (139 ± 14.7 and 496 ± 139.4 mL/kg for the S(+) and R(?) enantiomer, respectively) were calculated for the S(+) enantiomer, indicating enantioselective pharmacokinetics for ketoprofen in calves following i.m. administration.  相似文献   

17.
The purpose of this study is to characterize the sonographic appearance of canine parathyroid glands using high‐resolution ultrasonography. Ten cadaver dogs were studied after euthanasia for reasons not relating to the parathyroid. The cervical region was examined using a 13–5 MHz linear transducer in right and left recumbency. Ultrasonographic features of the parathyroid and thyroid glands were compared with the gross and histopathologic findings. Thirty‐five structures were identified sonographically as parathyroid glands but only 26 of 35 glands (74% positive predictive value) were proven to be normal parathyroid glands histopathologically. Of the nine false positives, five (14%) were proven to be lobular thyroid tissue. The remaining four (11%) structures were visible grossly or found histopathologically. There were no statistical differences between ultrasonographic and gross measurements of the parathyroid glands. The average size as seen sonographically was 3.3 × 2.2 × 1.7 mm and the average gross size was 3.7 × 2.6 × 1.6 mm (length, width, height). The average size of the thyroid lobules assessed sonographically was 2.3 × 1.6 × 0.8 mm (length, width, height). Normal parathyroid glands can be identified using high‐resolution ultrasonography. But some thyroid lobules will be misinterpreted as parathyroid glands; this will result in false positives when identifying parathyroid glands with ultrasonography.  相似文献   

18.
The thyroid gland was assessed by ultrasound in healthy euthyroid mixed‐breed medium size dogs in different age groups. The objective was to verify ultrasonographic imaging patterns in these groups, as well as to identify possible changes in imaging features resulting from ageing. Thirty dogs – 10 young (<1 year), 10 adult and 10 elderly – without clinical signs or history of thyroid gland disease with complete blood count and thyroid function tests within the reference values were evaluated. Each thyroid lobe was examined by ultrasound for shape, size, echogenicity and echotexture. The analysis of echogenicity and echotexture was made by histogram. Thyroid volume was estimated by the equation for ellipsoid (length × width × height) π/6. The thyroid volume of the young dogs in this study had a tendency to be higher than in adult dogs (P = 0.068) and older dogs (P = 0.120). The height of the thyroid lobe in the longitudinal plane was significantly higher (P = 0.026) in young dogs compared with the other dogs. The echotexture and echogenicity had no significant differences between groups, but the echogenicity was greater in older dogs. The results point out that ultrasound imaging of the thyroid volume is influenced by age in euthyroid dogs.  相似文献   

19.
Background: Numerous clinical abnormalities occur in cloned calves during the neonatal period. Objectives: Describe respiratory diseases affecting cloned calves. Animals: Twenty‐five cloned Holstein calves. Methods: Retrospective clinical study of the cloned calves born at the Veterinary Teaching Hospital, Saint‐Hyacinthe, QC. Results: Records of 31 cloned calves were reviewed. Twenty‐five records were included. Four stillborn calves and 2 calves euthanized at birth were excluded. Twenty‐two calves suffered from respiratory diseases. Nineteen calves received intranasal oxygen treatment (INO). They were tachypneic (78 breaths per minute) and 5 of them were hypoxemic (PaO2 < 55 mmHg). Two of 19 calves remained hypoxemic despite INO. Thirteen calves were weaned from INO after a median of 70 hours and were discharged at a median of 5 days of age. Nine calves required ventilatory support: 3 from birth and 6 after INO. Five were successfully weaned from the ventilator after a median of 32 hours and were discharged at a median of 8 days of age. Three calves died and 1 was euthanized because of respiratory disease. Necropsy revealed atelectasis, pulmonary congestion, and alveolar damages. Conclusion and Clinical Importance: Respiratory disease occurs frequently in cloned calves. The most frequent abnormality is hypoxemia because of V/Q mismatch. It is possible to successfully support these calves by INO and mechanical ventilation.  相似文献   

20.
The objective of this study was to investigate the pharmacokinetics and tissue disposition of meloxicam after repeated oral administration in calves. Thirteen male British × Continental beef calves aged 4 to 6 months and weighing 297–392 kg received 0.5 mg/kg meloxicam per os once daily for 4 days. Plasma meloxicam concentrations were determined in 8 calves over 6 days after first treatment. Calves were randomly assigned to be euthanized at 5, 10, 15 (n = 3/timepoint), and 19 days (n = 4) after final administration. Meloxicam concentrations were determined in plasma (LOQ= 0.025 μg/mL) and muscle, liver, kidney, and fat samples (LOQ = 2 ng/g) after extraction using validated LC–MS–MS methods. The mean (± SD) Cmax, Cmin, and Caverage plasma meloxicam concentrations were 4.52 ± 0.87 μg/mL, 2.95 ± 0.77 μg/mL, and 3.84 ± 0.81 μg/mL, respectively. Mean (± SD) tissue meloxicam concentrations were highest in liver (226.67 ± 118.16 ng/g) and kidney samples (52.73 ± 39.01 ng/g) at 5 days after final treatment. Meloxicam concentrations were below the LOQ in all tissues at 15 days after treatment. These findings suggest that tissue from meloxicam‐treated calves will have low residue concentrations by 21 days after repeated oral administration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号