首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Lipid hydroperoxides are important factors in lipid oxidation due to their ability to decompose into free radicals. In oil-in-water emulsions, the physical location of lipid hydroperoxides could impact their ability to interact with prooxidants such as iron. Interfacial tension measurements show that linoleic acid, methyl linoleate, and trilinolein hydroperoxides are more surface-active than their non-peroxidized counterparts. In oil-in-water emulsion containing surfactant (Brij 76) micelles in the continuous phase, linoleic acid, methyl linoleate, and trilinolein hydroperoxides were solubilized out of the lipid droplets into the aqueous phase. Brij 76 solubilization of the different hydroperoxides was in the order of linoleic acid > trilinolein > or = methyl linoleate. Brij 76 micelles inhibited lipid oxidation of corn oil-in-water emulsions with greater inhibition of oxidation occurring in emulsions containing linoleic acid hydroperoxides. Surfactant solubilization of lipid hydroperoxides could be responsible for the ability of surfactant micelles to inhibit lipid oxidation in oil-in-water emulsions.  相似文献   

2.
Microemulsions are of growing interest to the food industry as vehicles for delivering and enhancing solubilization of natural food supplements with nutritional and health benefits. The incorporation of molecular phytosterols, cholesterol-lowering agents, in food products is of great interest to the food industry. In this work is demonstrated the use of water dilutable food-grade microemulsions consisting of ethoxylated sorbitan ester (Tween 60), water, R-(+)-limonene, ethanol, and propylene glycol as vehicles for enhancing the phytosterols solubilization. Phytosterols were solubilized up to 12 times more than the dissolution capacity of the oil [R-(+)-limonene] for the same compounds. The solubilization capacity of phytosterols and cholesterol along a dilution line in a pseudo-ternary phase diagram [on this dilution line the weight ratio of R-(+)-limonene/ethanol/Tween 60 is constant at 1:1:3] was correlated to the microstructure transitions along the dilution line. Structural aspects were studied by self-diffusion NMR spectroscopy. The ability of phytosterols to compete with cholesterol for penetration into bile salt micelles in the gut may be limited to rich aqueous systems (O/W microemulsion).  相似文献   

3.
During their rehydration in aqueous media, active dry yeasts (ADY) may be supplemented with inactive yeasts, yeast derivatives, or other optional complementary nutrients to improve their fermentation capacity. We found that yeast sterols solubilized in situ during ADY rehydration were particularly efficient for stimulating the fermenting capacity of ADY. Spontaneous solubilization of sterols during rehydration occurred by the formation of micelles by membrane phospholipids and specific cell wall polysaccharides and sterols, both compounds being provided by inactive dry yeasts (IDY). These micelles contained a specific distribution of the initial sterols from the inactive yeasts. Above a concentration of 100 mg L(-1) in the rehydration medium, these micelles acted as emulsifiers. Their critical micellar concentration (cmc) was found to be about 4 g L(-1). During rehydration, purified micelles, at a concentration near the cmc, were able to interact quickly with yeast cell membranes by modifying the yeast plasma membrane order [monitored by steady-state fluorescence anisotropy of 1-(4-trimethylammoniumphenyl)-6-phenyl-1,3,5-hexatriene-p-toluenesulfonate (TMA-DPH) probe] and by increasing the sterol contents of ADY. Such an enrichment of ADY by very low concentrations of solubilized sterols was very efficient for the completion of fermentations. This is useful when musts are limited in available phytosterols or when micro-oxygenation is not desirable during fermentation.  相似文献   

4.
Quillaja saponin in aqueous solution enhanced cholesterol solubility by as much as a factor of 10(3) at room temperature. Increased temperature and [NaCl] increased cholesterol solubility, whereas solubility was greatest at an aqueous pH of 4.6 at 298 K. Although various saponin sources were observed to differ in their abilities to solubilize cholesterol, trends in their solubilization properties with changing aqueous phase parameters were consistent. Surfactant molecules containing fused-ring structures as their hydrophobic portion, such as sodium cholate, sodium deoxycholate, and quillaja saponin, solubilized cholesterol significantly better than the linear hydrocarbon chain surfactants Tween 20 and Triton X-100. Mixtures of surfactants studied were found to exhibit synergistic effects: they formed micelles at lower concentrations than did those formed by the individual surfactants themselves, and they had a better ability to solubilize cholesterol. The knowledge obtained from these studies improves our understanding of cholesterol association with saponin and other types of surfactants and enhances the potential for using saponins for the solubilization and extraction of hydrophobic solutes in various pharmacological and industrial applications.  相似文献   

5.
The effects of citrus flavonoids on P-glycoprotein (P-gp)-mediated drug efflux were examined in human intestinal Caco-2 cells. The cellular accumulation of rhodamine-123 was measured using 10 citrus flavonoids for preliminary screening. Among the flavonoids tested, diosmin significantly increased the accumulation of rhodamine-123 in Caco-2 cells. In the bidirectional transport of digoxin, diosmin increased the apical-to-basal (A-to-B) transport but decreased the basal-to-apical (B-to-A) transport in both concentration- and time-dependent manners. The digoxin transport ratio (B-A/A-B) was estimated to be 2.3 at a concentration of 50 microM of diosmin, which was significantly lower than the 15.2 found in the control. The apparent Ki values for P(app,A-B) and P(app,B-A) were 16.1 and 5.7 microM, respectively. These results demonstrated that diosmin effectively inhibited the P-gp-mediated efflux in Caco-2 cells. Diosmin is one of the main components in citrus fruits, and the intake of food supplements containing this compound may potentially increase the absorption of drugs able to act as P-gp substrates. The clinical relevance of this interaction should be further evaluated using in vivo experiments.  相似文献   

6.
Reports supporting folklore beliefs that buckwheat (BW) can significantly contribute solubilized phosphorus (P) from sparingly soluble soil P to subsequent crops remain anecdotal. To quantify P solubilized by BW from five inorganic and three organic pools in a Fargo silty clay, spring wheat (Triticum aestivum L.) (WHT) was grown as a reference crop to compare P mineralized and P uptake in a complete randomized design. Following fractionation and analysis, P changes between pools indicated solubilization from recalcitrant to less recalcitrant P pools. Calcium-bound P contributed the most P (72% of inorganic pool) to the available fraction, and P uptake by BW (40 kg ha?1) was significantly greater than wheat (16 kg ha?1) from the inorganic pools, whereas WHT uptake was significantly greater (P < 0.05) from the organic pool. Following harvest, more P was found in available P pools after BW compared to WHT, suggesting potential solubilization of P to subsequent crops compared with WHT.  相似文献   

7.
Abstract

The natural phenomenon of defoliation of mature soybean leaves onto the soil surface provides a large quantity of easily decomposable organic matter in the form of leaf litter. The potential of decomposing soybean leaf litter (SLL) to solubilize phosphorus (P) from two low‐grade rock phosphates, Jhabua rock phosphate (JRP) and Hirapur rock phosphate (HRP), alone or amended with pyrite, was assessed in an incubation study. Decomposing SLL solubilized P both from JRP and HRP and concurrently increased water‐soluble as well as organic P contents. Amending rock phosphates with pyrite (in a 1∶2 P to S ratio) promoted P solubilization. Approximately 71 to 92% of the total solubilized P was converted to organic P. The rate of P solubilization increased with SLL decomposition time, reaching its peak at 60 days with rock phosphates alone and at 90 days with pyrite‐blended rock phosphates. The maximum P solubilization (as a percentage of total P added) with different rock phosphates and their mixtures with pyrite followed this order: HRP (11.4%)<HRP+pyrite (16.5%)<JRP (20.2%)<JRP+pyrite (26.5%). These findings clearly suggest that the decomposing SLL has the potential to solubilize P from the otherwise insoluble low‐grade rock phosphates and can offer a natural opportunity for direct use of rock phosphates in the cropping systems that have soybean as a component crop.  相似文献   

8.
The impact of varying levels of endoxylanase activity in wheat flour on arabinoxylan (AX) in mixed and rested dough was studied using eight industrially milled wheat flour fractions with varying endoxylanase activity levels. Analysis of the levels of reducing end xylose (RX) and solubilized AX (S-AX) formed during mixing and resting and their correlation with the endoxylanase activity in the flour milling fractions showed that solubilization of AX during the mixing phase is mainly due to mechanical forces, while solubilization of AX during resting is caused by endoxylanase activity. Moreover, solubilization of AX during the dough resting phase is more outspoken than that during the mixing phase. Besides endoxylanase activity, there were significant xylosidase and arabinofuranosidase activities during the dough resting phase. The results indicate that wheat flour-associated endoxylanases can alter part of the AX in dough, thereby changing their functionality in bread making and potentially affecting dough and end product properties.  相似文献   

9.
Water-dilutable food-grade microemulsions consisting of ethoxylated sorbitan esters, and in some cases blended with other emulsifiers, water, (R)-(+)-limonene, ethanol, and propylene glycol, have been prepared. These microemulsions are of growing interest to the food industry as vehicles for delivering and enhancing solubilization of natural food supplements with nutritional and health benefits. Lycopene, an active natural lipophilic antioxidant from tomato, has solubilized in water-in-oil, bicontinuous, and oil-in-water types of microemulsions up to 10 times the oil [(R)-(+)-limonene] dissolution capacity. The effects of aqueous-phase dilution, nature of surfactant (hydrophilic-lypophilic balance), and mixed surfactant on solubilization capacity and solubilization efficiency were studied. Structural aspects studied by self-diffusion NMR were correlated to the solubilization capacity, and transformational structural changes were identified.  相似文献   

10.
Sulfentrazone and metolachlor have been detected in groundwater due to extensive leaching. To reduce herbicide leaching and increase weed control, we have developed, designed, and tested controlled release formulations (CRFs) for both herbicides based on their solubilizion in cationic micelles and adsorption of the mixed micelles (surfactant and herbicide) on a clay mineral, montmorillonite. A better understanding of solubilizing anionic (sulfentrazone) and nonionic (metolachlor) organic molecules in cationic micelles was reached. The percent of active ingredient in the formulations was much higher than previously designed CRFs due to the enhanced solubilization of the herbicides in the micelles and due to their adsorption on the clay. Both CRFs demonstrated controlled release (compared to the commercial formulations) when applied to a thin soil layer. A bioassay in soil columns determined that the new sulfentrazone and metolachlor CRFs significantly improve weed control and reduce leaching (for the latter) in comparison with the commercial formulations.  相似文献   

11.
β‐Glucan can be solubilized from barley by warm water, with increasing solubilization as the temperature is increased. Substantially less glucan is extracted if the barley is dehusked using sulfuric acid, particularly if the dehusked barley is denatured. This indicates that enzymes capable of solubilizing glucan are present in barley. Various purified enzymes promote the solubilization of glucan from denatured and dehusked barley. Apart from endo‐β‐(1→3)(1→4)‐glucanase, these enzymes include endo‐xylanases, arabinofuranosidase, xyloacetylesterase, and feruloyl esterase. Ferulic acid and, probably, acetyl groups are esterlinked to arabinoxylan, not β‐glucan, in the cell walls of barley starchy endosperm, so the ability of the esterases, xylanases, and arabinofuranosidase to solubilize glucan indicates the pentosan component of the cell wall can restrict the extraction of glucan.  相似文献   

12.
In this study, factors influencing the disruption and aggregation of casein micelles during high-pressure (HP) treatment at 250 MPa for 40 min were studied in situ in serum protein-free casein micelle suspensions. In control milk, light transmission increased with treatment time for approximately 15 min, after which a progressive partial reversal of the HP-induced increase in light transmission occurred, indicating initial HP-induced disruption of casein micelles, followed by reformation of casein aggregates from micellar fragments. The extent of HP-induced micellar disruption was negatively correlated with the concentration of casein micelles, milk pH, and levels of added ethanol, calcium chloride, or sodium chloride and positively correlated with the level of added sodium phosphate. The reformation of casein aggregates during prolonged HP treatment did not occur when HP-induced disruption of casein micelles was limited (<60%) or very extensive (>95%) and was promoted by a low initial milk pH or added sodium phosphate, sodium chloride, or ethanol. On the basis of these findings, a mechanism for HP-induced disruption of casein micelles and subsequent aggregation of micellar fragments is proposed, in which the main element appears to be HP-induced solubilization of micellar calcium phosphate.  相似文献   

13.
Previous work has shown that rice plants growing in reduced soil are able to solubilize P by inducing an acidification in the rhizosphere through H+ produced in Fe2+ oxidation by root–released O2, and by the direct release of H+ from the roots to balance excess intake of cations over anions. In this paper, equations for the diffusion and interaction of P and acid in soil are developed to predict the resultant increase in P uptake by the roots. Good agreement was obtained between the profiles of P and pH in the rhizosphere measured in the previous experiments, and those predicted using the equations with independently measured parameter values. The equations showed that solubilization accounted for over 80% of the P taken up. Measurements of the solubilization parameters in a range of reduced rice soils showed that H+ addition increased the quantity of P that could be desorbed per unit weight of soil and the concentration of P in solution, in all the soils tested. The quantity of P solubilized per unit H+ added at a given solution P concentration varied about 50–fold between soils, with a median of 11.9 mmol P per mol H+. The native soil solution P concentration varied 50–fold (median = 0.91 UM) and the soil pP buffer power (the quantity of P desorbed per unit decrease in –log of the P concentration in solution) varied 100–fold (median = 0.36 mmol kg?1 pP?1); the soil pH buffer power varied 7–fold (median = 0.075 mmol kg?1 pH?1). Calculations indicated that, in most of the soils tested, rice plants would depend upon solubilization for the bulk of their P.  相似文献   

14.
In oil-in-water emulsions, the physical location of antioxidants can be an important determinant in their activity. Surfactants can potentially influence the physical location of antioxidants in oil-in-water emulsions by causing solubilization of lipid-soluble antioxidants into the aqueous phase. Excess Brij micelles in an oil-in-water emulsion were found to increase the partitioning of phenolics into the continuous phase with polar antioxidants (propyl gallate) partitioning more than nonpolar antioxidants (butylated hydroxyltoluene). Solubilization of propyl gallate was rapid coming to equilibrium in less than 5 min. Increasing surfactant micelle concentrations from 0.3 to 2.8% increased the solubilization of propyl gallate by 2.3-fold. Solubilization of phenolic antioxidants into the aqueous phase by Brij micelles did not alter the oxidative stability of salmon oil-in-water emulsions, suggesting that surfactant micelles influenced oxidation rates by mechanisms other than antioxidant solubilization.  相似文献   

15.
In the course of studies on the antioxidant mechanism of curcumin, its radical reaction was investigated. Curcumin was reacted with radical species, which were generated from the pyrolysis of 2, 2'-azobis(isobutyronitrile) under an oxygen atmosphere, and the reaction products from curcumin were followed by HPLC. The reaction at 70 degrees C gave several products, three of which were structurally identified to be vanillin, ferulic acid, and a dimer of curcumin after their isolation. The dimer was a newly identified compound bearing a dihydrofuran moiety, and its chemical structure was elucidated using spectroscopic analyses, especially 2D NMR techniques. A mechanism for the dimer production is proposed and its relation to curcumin's antioxidant activity discussed. The time course and gel permeation chromatography studies of the reaction were also investigated, and the results indicate that the dimer is a radical-terminated product in the initial stage.  相似文献   

16.
In order to develop surfactant-enhanced remediation for nitrogen heterocyclic compounds (NHCs) (aniline, indole, and quinolone), the solubilization properties of micellar solutions of five surfactants, namely sodium dodecyl sulfate (SDS), rhamnolipid (RL), polysorbate (Tween 80), sorbitan monolaurate (Span 20), and iso-octyl phenoxy polyethoxy ethanol (TX-100) were investigated in this work. The solubilization capacities were quantified using critical micelle concentration (CMC) as well as thermodynamic and kinetic experiments. Besides, nuclear magnetic resonance (1H NMR) spectra were used to infer the locus of NHCs solubilized by SDS and TX-100. The results from the properties of five surfactants indicated that CMC was affected by temperature, while the micellization was spontaneous and could be both endothermic and exothermic based on the type of surfactant and temperature. Furthermore, the difference in compensation temperature was caused by different solubilization mechanism for various surfactants. The solubilization results showed that the solubilization of NHCs in the surfactant solutions followed a pseudo-first-order kinetic model. Meanwhile, the change in proton’s chemical shift depended on the structure of NHCs and the solubilization ability of surfactants. Finally, the orthogonal experiment (L16(43)) was elementarily designed to optimize the solubilization conditions of indole and the results showed that RL could be a better choice for solubilizing NHCs.
Graphical Abstract ?
  相似文献   

17.
Curcumin is a natural bioactive compound with many health-promoting benefits. Its low oral bioavailability limits its application in functional foods. In the present study, novel organogel-based nanoemulsions have been developed for oral delivery of curcumin and improvement of its bioavailability. Recently developed curcumin organogel was used as the oil phase in the curcumin nanoemulsion formulation. Tween 20 was selected as the emulsifier on the basis of maximum in vitro bioaccessibility of curcumin in the nanoemulsion. In vitro lipolysis profile revealed that the digestion of nanoemulsion was significantly faster and more complete than the organogel. Permeation experiments on Caco-2 cell monolayers suggested that digestion-diffusion was the major absorption mechanism for curcumin in the nanoemulsion. Furthermore, in vivo pharmacokinetics analysis on mice confirmed that the oral bioavailability of curcumin in the nanoemulsion was increased by 9-fold compared with unformulated curcumin. This novel formulation approach may also be used for oral delivery of other poorly soluble nutraceuticals with high loading capacity, which has significant impact in functional foods, dietary supplements and pharmaceutical industries.  相似文献   

18.
Lutein, a naturally occurring carotenoid, is widely distributed in fruits and vegetables and is particularly concentrated in the Tagetes erecta flower. Epidemiological studies suggest that a high lutein intake (6 mg/day) increases serum levels that are associated with a lower risk of cataract and age-related macular degeneration. Lutein can either be free or esterified (myristate, palmitate, or stearate). Both are practically insoluble in aqueous systems, and their solubility in food grade solvents (oils) is very limited, resulting is low bioavailability. To improve its solubility and bioavailability, lutein was solubilized in U-type food grade microemulsions based on ethoxylated sorbitan fatty acid esters, glycerol, R-(+)-limonene, and ethanol. Some of the main findings are as follows: (1) reverse micellar and W/O compositions solubilized both luteins better than an O/W microemulsion, and maximum solubilization is obtained within the bicontinuous phase; (2) free lutein is solubilized better than the esterified one, in the W/O microemulsions, whereas the esterified lutein is better accommodated within the O/W microemulsion; (3) vegetable oils decrease the solubilization of free lutein; (4) glycerol and alcohol enhance the solubilization of both luteins; (5) solubilization is surfactant-dependent in all mesophase structures, but its strongest effect is in the bicontinuous phase.  相似文献   

19.
A high plasma cholesterol level, especially low-density lipoprotein cholesterol, indicates increased risk of cardiovascular diseases. Plasma cholesterol levels are influenced by diet and cholesterol biosynthesis, uptake, and secretion. Cholesterol uptake involves solubilization into complex phospholipid spherical bodies termed micelles that facilitate the transport of lipids through the gut brush border membrane into enterocytes. In vitro assays reported to date to determine potential cholesterol-lowering effects of various compounds require artificial micelle preparations that are elaborate and time-consuming to prepare. The aims of this study were to compare the efficacy of artificially prepared micelles with naturally derived micelles from pig's bile and to test their ability to assess potential inhibitors of cholesterol uptake. The suitability of pig's bile-derived micelles was tested both at the level of the micelle and at cellular uptake using cultured Caco-2 cells. Known cholesterol uptake inhibitors at the micelle (green tea catechins) and at the Caco-2 cell (beta-lactoglobulin-derived peptide, IIAEK) were used as reference inhibitory compounds. It was concluded that pig's bile was a rapid, reproducible, convenient, and cost-effective source of micelles for cholesterol micelle solubility and cellular uptake assay systems and is suitable for screening purposes focused on identifying potential cholesterol-lowering agents.  相似文献   

20.
Rock phosphate (RP) is a low efficiency P fertilizer that is directly applied to the soil and can be solubilized by phosphate-solubilizing microorganisms (PSMs) in fermentation or soil conditions. This study investigated dynamic solubilization of 2 concentrations of rock phosphate in a liquid culture with different dosages of glucose by two fungal isolates,Aspergillus niger P39 and Penicillium oxalicum P66, from soybean and wheat rhizosphere soil. Although during the 20 day culture period A. niger P39 had a stronger ability to acidify the culture media than P. ozalicum P66, soluble P concentrations at glucose dosages of 30 and 50 g L^-1 with RP of 15 g L^-1 in the culture solution were much higher by P. oxalicum P66. The greater effectiveness of P. oxalicum P66 compared to A. niger P39 in the solubilization of RP was strongly associated with the production of organic acids. This study suggested that for RP solubilization the type rather than the concentration of PSM-produced organic acids was more important.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号