首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The annual development of Navelina (Citrus sinensis (L.) Osbeck) trees budded on three hybrid citrus rootstocks was studied. Two rootstocks, named #23 and #24, were obtained from the cross of Troyer citrange (C. sinensis x Poncirus trifoliata (L.) Raf.) x Cleopatra mandarin (C. reshni Hort. ex Tan.). The third rootstock, named F&A 418, came from a cross of Troyer citrange x common mandarin (C. deliciosa Ten.). Rootstocks #23 and F&A 418 are dwarfing rootstocks and reduce the size of the scion by about 75%. Rootstock #24 yields a standard size scion. Major growth differences that influenced tree size were apparent during the first summer after grafting and appeared to be related to fruit productivity, because defruiting the dwarfed scions caused a significant increase in vegetative shoot development, including summer sprouting. The reduced growth of the dwarfed scions was not restored by hormone application, indicating that a hormonal deficiency is unlikely to be the primary reason for scion dwarfing, although differences in gibberellin concentrations were found in actively growing shoots. Leaf photosynthesis was similar in scions on all three rootstocks, but the carbohydrate accumulation in fruits and fibrous roots during the summer sprouting period was significantly greater in the dwarfed trees than in the standard trees. Our results suggest that the dwarfing mechanism induced by the F&A 418 and #23 rootstocks is mediated by enhanced reproductive development and fruit growth, resulting in reduced vegetative development in the summer. Thus, a change in the pattern of assimilate distribution appears to be one of the main components of the dwarfing mechanism.  相似文献   

2.
We examined tolerance to soil drying in clonally propagated apple (Malus domestica Borkh.) rootstocks used to control shoot growth of grafted scions. We measured leaf conductance to water vapor (g(L)) and leaf water potential (Psi(L)) in a range of potted, greenhouse-grown rootstocks (M9, M26, M27, MM111, AR69-7, AR295-6, AR360-19, AR486-1 and AR628-2) as the water supply was gradually reduced. Irrespective of the amount of available water, rootstocks that promoted scion shoot growth (M26 and MM111) generally had higher g(L) and more negative Psi(L) than rootstocks that restricted scion shoot growth (M27 and M9). After about 37 days of reduced water supply, there were significant decreases in g(L) and Psi(L) in all rootstocks compared with well-watered controls. In all treatments, the slope of the relationship between log (g(L)) and Psi(L) was positive, except for rootstocks AR295-6, AR628-2 and AR486-1 in the severe-drought treatment, where the drought-induced change in the relationship suggests that rapid stomatal closure occurred when leaf water potentials fell below -2.0 MPa. This drought response was associated with increased root biomass production. Rootstock M26 showed little stomatal closure even when its water potential fell below -2.0 MPa, and there was no effect of drought on root biomass production. We conclude that differences among rootstocks in the way that g(L) and Psi(L) respond to drought reflect differences in the mechanisms whereby they tolerate soil drying. We suggest that these differences are related to differences among the rootstocks in their ability to control shoot growth.  相似文献   

3.
We investigated the influence of bud position, cultivar, tree age, tree carbohydrate status, sampling date, drought and light exposure on the number of leaf primordia formed in dormant vegetative peach buds (Prunus persica (L.) Batsch) relative to the number of primordia formed after bud break (neoformed). During winter dormancy, vegetative peach buds from California and Italy were dissected and the number of leaf primordia recorded. Between leaf drop and bud break, the number of leaf primordia doubled from about five to about 10. Parent shoot length, number of nodes on the parent shoot, cross-sectional area of the parent shoot, bud position along the parent shoot and bud cross-sectional area were correlated with the number of leaf primordia. Previous season light exposure, drought and tree carbohydrate status did not affect the number of leaf primordia present. The number of leaf primordia differed significantly among peach varieties and tree ages at leaf drop, but not at bud break. Our results indicate that neoformation accounted for all shoot growth beyond about 10 nodes. The predominance of neoformed shoot growth in peach allows this species great plasticity in its response to current-season conditions.  相似文献   

4.
We used long-term in situ (15)N labeling of the soil to investigate the contribution of the two main nitrogen (N) sources (N uptake versus N reserves) to sun shoot growth from bud burst to full leaf expansion in 50-year-old sessile oaks. Recovery of (15)N by growing compartments (leaves, twigs and buds) and presence of (15)N in phloem sap were checked weekly. During the first 2 weeks following bud burst, remobilized N contributed ~90% of total N in growing leaves and twigs. Nitrogen uptake from the soil started concomitantly with N remobilization but contributed only slightly to bud burst. However, the fraction of total N due to N uptake increased markedly once bud burst had occurred, reaching 27% in fully expanded leaves and 18% in developed twigs. In phloem sap, the (15)N label appeared a few days after the beginning of labeling and increased until the end of bud burst, and then decreased at full leaf expansion in June. Of all the shoot compartments, leaves attracted most of the absorbed N, which accounted for 68% of new N in shoots, whereas twigs and new buds accounted for only 28 and 3%, respectively. New N allocated to leaves increased from unfolding to full expansion as total N concentration in the leaves decreased. Our results underline the crucial role played by stored N in rapid leaf growth and in the sustained growth of oak trees. Any factors that reduce N storage in autumn may therefore impair spring shoot growth.  相似文献   

5.
Annual cycles of change in bud morphology, bud burst ability, abscisic acid (ABA) concentration, and starch and water content were studied in mid-crown terminal buds of short shoots and underground basal buds of Betula pubescens Ehrh. In particular, we investigated the roles of ABA and bud water content in the regulation of bud growth. Basal buds differed morphologically from terminal buds of short shoots in that their leaf initials did not develop into embryonic foliage leaves and their total size did not increase significantly during summer. Bud burst ability, measured by forcing detached short shoots and stumps under controlled conditions, was maintained in the basal buds throughout the year, whereas the terminal buds of short shoots remained dormant until October, thereafter their bud burst ability increased gradually and reached a maximum in March-April. The ABA concentration of the basal buds was relatively constant throughout the sampling period (1-3 micro g g(DW) (-1)), whereas that of the terminal buds of short shoots, which was much higher (5-10 micro g g(DW) (-1)), showed a distinct seasonal cycle with a maximum from August to November. Bud ABA concentration decreased during the first 10 days of forcing, especially in basal buds. In both bud types, the amount of starch increased toward the autumn, declined in November, and was negligible in the terminal buds of short shoots between January and March, but in April, the amount was high again in both bud types. Water content varied characteristically in both bud types, although more distinctly in the terminal buds of short shoots, with an increase in spring before bud burst and a decrease during the summer until September. The significant morphological and physiological differences between the mid-crown terminal buds of short shoots and the underground basal buds may partly explain the characteristic growth habit of the basal buds and their development into coppice shoots after cutting the tree. The results also indicate a role for ABA in maintaining dormancy of the terminal buds of short shoots and emphasize the relationship between tissue water status and ABA concentration.  相似文献   

6.
Takenaka A 《Tree physiology》1997,17(3):205-210
Stem length and leaf area of current-year shoots were measured in saplings of eight broad-leaved evergreen tree species growing under a forest canopy. Stem length varied over a range of one to two orders of magnitude within each species. In all species, both the number of leaves and the mean stem length between successive leaves were greater in longer shoots. Mean leaf size and stem length were not correlated in six of eight species, and only weakly positively correlated in the other two species. Thus, total leaf area per stem increased with stem length, but not in direct proportion: leaf area per stem length was smaller in shoots with long stems and larger in shoots with short stems. I conclude that the within-species variation in the leaf-stem balance of current-year shoots is related to variation in shoot functional roles, as has been observed for long and short shoots in many deciduous tree species: shoots with long stems are extension oriented and contribute to the framework of the crown, whereas shoots with short stems serve mainly for leaf display. Among species, large differences were found in the leaf area per stem length ratio. In the species with larger leaf area per stem length ratios, leaves had narrower blades or longer petioles, or both, resulting in a reduction of mutual shading among the leaves on the shoot.  相似文献   

7.
Allometry of shoot extension units (hereafter termed "current shoots") was analyzed in a Malaysian canopy species, Elateriospermum tapos Bl. (Euphorbiaceae). Changes in current shoot allometry with increasing tree height were related to growth and maintenance of tree crowns. Total biomass, biomass allocation ratio of non-photosynthetic to photosynthetic organs, and wood density of current shoots were unrelated to tree height. However, shoot structure changed with tree height. Compared with short trees, tall trees produced current shoots of the same mass but with thicker and shorter stems. Current shoots with thin and long stems enhanced height growth in short trees, whereas in tall trees, thick and short current shoots may reduce mechanical and hydraulic stresses. Furthermore, compared with short trees, tall trees produced current shoots with more leaves of lower dry mass, smaller area, and smaller specific leaf area (SLA). Short trees adapted to low light flux density by reducing mutual shading with large leaves having a large SLA. In contrast, tall trees reduced mutual shading within a shoot by producing more small leaves in distal than in proximal parts of the shoot stem. The production of a large number of small leaves promoted light penetration into the dense crowns of tall trees. All of these characteristics suggest that the change in current shoot structure with increasing tree height is adaptive in E. tapos, enabling short trees to maximize height growth and tall trees to maximize light capture.  相似文献   

8.
We investigated the hydraulic architecture of young olive trees either self-rooted or grafted on rootstocks with contrasting size-controlling potential. Clones of Olea europea L. (Olive) cv 'Leccino' inducing vigorous scion growth (Leccino 'Minerva', LM) or scion dwarfing (Leccino 'Dwarf', LD) were studied in different scion/rootstock combinations (LD, LM, LD/LD, LM/LM, LD/LM and LM/LD). Shoots growing on LD root systems developed about 50% less leaf surface area than shoots growing on LM root systems. Root systems accounted for 60-70% of plant hydraulic resistance (R), whereas hydraulic resistance of the graft union was negligible. Hydraulic conductance (K = 1/R) of LD root systems was up to 2.5 times less than that of LM root systems. Total leaf surface area (A(L)) was closely and positively related to root hydraulic conductance so that whole-plant hydraulic conductance scaled by A(L) did not differ between experimental groups. Accordingly, maximum transpiration rate and minimum leaf water potential did not differ significantly among experimental groups. We conclude that reduced root hydraulic conductance may explain rootstock-induced dwarfing in olive.  相似文献   

9.
The impacts of thinning, fertilization and crown position on seasonal growth of current-year shoots and foliage were studied in a 13-year-old loblolly pine (Pinus taeda L.) plantation in the sixth post-treatment year (1994). Length of new flushes, and their needle length, leaf area, and oven-dry weight were measured in the upper and lower crown from March through November. Total shoot length was the cumulative length of all flushes on a given shoot and total leaf area per shoot was the sum of leaf areas of the flushes.

By the end of June, first-flush foliage reached 70% of the November needle length (14.3 cm) and 65% of the final leaf area (15.0 cm2). Cumulative shoot length of first- and second-flush shoots achieved 95% of the annual length (30.3 cm), whereas total leaf area per shoot was 55% of the final value (75.3 dm2). Fertilization consistently stimulated fascicle needle length, dry weight, and leaf area in the upper crown. Mean leaf area of upper-crown shoots was increased by 64% six years after fertilization. A significant thinning effect was found to decrease mean leaf area per shoot in the crown. For most of the growing season, the thinned-fertilized trees produced substantially more leaf area per shoot throughout the crown than the thinned-nonfertilized trees. These thinned-fertilized trees also had greater needle length and dry weight, longer first flush shoots, and more leaf area per flush than trees in the thinned-nonfertilized plots. Needle length and leaf area of first flush shoots between April and July were linearly related to previous-month canopy air temperature (Ta). Total shoot length strongly depended on vertical light gradient (PPFD) within the canopy, whereas shoot leaf area was a function of both PPFD and Ta. Thus, trees produced larger and heavier fascicles, more and longer flush shoots, and more leaf area per shoot in the upper crown than the lower crown. We conclude that thinning, fertilization, and crown position regulate annual leaf area production of current-year shoots largely by affecting the expansion of first flush shoots and their foliage during the first half of the growing season.  相似文献   


10.
The effect of two training systems (Central Leader with branch pruning versus Centrifugal Training with minimal pruning, i.e., removal of fruiting laterals only) on canopy structure and light interception was analyzed in three architecturally contrasting apple (Malus domestica Borkh.) cultivars: 'Scarletspur Delicious' (Type II); 'Golden Delicious' (Type III); and 'Granny Smith' (Type IV). Trees were 3D-digitized at the shoot scale at the 2004 and 2005 harvests. Shoots were separated according to length (short versus long) and type (fruiting versus vegetative). Leaf area density (LAD) and its relative variance (xi), total leaf area (TLA) and crown volume (V) varied consistently with cultivar. 'Scarletspur Delicious' had higher LAD and xi and lower TLA and V compared with the other cultivars with more open canopies. At the whole-tree scale, training had no effect on structure and light interception parameters (silhouette to total area ratio, STAR; projected leaf area, PLA). At the shoot scale, Centrifugal Training increased STAR values compared with Central Leader. In both training systems, vegetative shoots had higher STAR values than fruiting shoots. However, vegetative and fruiting shoots had similar TLA and PLA in Centrifugal Trained trees, whereas vegetative shoots had higher TLA and PLA than fruiting shoots in Central Leader trees. This unbalanced distribution of leaf area and light interception between shoot types in Central Leader trees partly resulted from the high proportion of long vegetative shoots that developed from latent buds. These shoots developed in the interior shaded zone of the canopy and therefore had low STAR and PLA. In conclusion, training may greatly affect the development and spatial positioning of shoots, which in turn significantly affects light interception by fruiting shoots.  相似文献   

11.
Solari LI  Johnson S  DeJong TM 《Tree physiology》2006,26(10):1343-1350
We investigated hydraulic conductance characteristics and associated dry matter production and distribution of peach trees grafted on different rootstocks growing in the field. A single scion genotype was grown on a low ('K146-43'), an intermediate ('Hiawatha') and a high ('Nemaguard') vigor rootstock. 'K146-43' and 'Hiawatha' rootstocks had 27 and 52% lower mean leaf-specific hydraulic conductances, respectively, than the more vigorous 'Nemaguard' rootstock. Tree growth rates and patterns of biomass distribution varied significantly among rootstocks. Mean dry mass relative growth rates of trees on 'K146-43' and 'Nemaguard' were 66 and 75%, respectively, of the rates of trees on 'Nemaguard', and the scion to rootstock dry mass ratios of trees on 'K146-43' and 'Hiawatha' were 63 and 82%, respectively, of the ratio of trees on 'Nemaguard'. Thus, differences in dry matter distribution between the scion and rootstock, which may be a compensatory response to the differences in leaf specific hydraulic conductance among rootstocks, appeared to be related to differences in growth rates. Correspondingly, there was a positive linear relationship between the scion to rootstock dry mass ratio and the rootstock to scion hydraulic conductance ratio when conductance was normalized for dry mass. This study confirms that rootstock effects on tree water relations and vegetative growth potential result, at least in part, from differences in tree hydraulic conductance associated with specific peach rootstocks.  相似文献   

12.
Kull O  Tulva I 《Tree physiology》2002,22(15-16):1167-1175
We investigated shoot growth patterns and their relationship to the canopy radiation environment and the distribution of leaf photosynthetic production in a 27-m-tall stand of light-demanding Populus tremula L. and shade-tolerant Tilia cordata Mill. The species formed two distinct layers in the leaf canopy and showed different responses in branch architecture to the canopy light gradient. In P. tremula, shoot bifurcation decreased rapidly with decreasing light, and leaf display allowed capture of multidirectional light. In contrast, leaf display in T. cordata was limited to efficient interception of unidirectional light, and shoot growth and branching pattern facilitated relatively rapid expansion into potentially unoccupied space even in the low light of the lower canopy. At the canopy level, T. cordata had higher photosynthetic light-use efficiency than P. tremula, whereas P. tremula had higher nitrogen-use efficiency than T. cordata. However, at the individual leaf level, both species had similar efficiencies under comparable light conditions. Production of new leaf area in the canopy followed the pattern of photosynthetic production. However, the species differed substantially in extension growth and space-filling strategy. Light-demanding P. tremula expanded into new space with a few long shoots, with shoot length strongly dependent on photosynthetic photon flux density (PPFD). Production of new leaf area and extension growth were largely uncoupled in this species because short shoots, which do not contribute to extension growth, produced many new leaves. Thus, in P. tremula, the growth pattern was strongly directed toward the top of the canopy. In contrast, in shade-tolerant T. cordata, shoot growth was weakly related to PPFD and more was invested in long shoot growth on a leaf area basis compared with P. tremula. However, this extension growth was not directed and may serve as a passive means of avoiding self-shading. This study supports the hypothesis that, for a particular species, allocation patterns and crown architecture contribute as much to shade tolerance as leaf-level photosynthetic acclimation.  相似文献   

13.
Callus cultures were established from internodal segments of shoot cultures from two mature black locust Robinia pseudoacacia L. trees. Callus of both trees produced shoots on Murashige and Skoog (MS) medium supplemented with 10 microM 6-benzylaminopurine alone or in combination with 1 microM naphthaleneacetic acid. Regenerated shoots were successfully multiplied on MS medium containing 0.32 microM 6-benzylaminopurine, and produced roots on 0.1 strength MS medium containing 1 microM indole-3-butyric acid. One clone consistently outperformed the other with respect to shoot proliferation and proportion of shoots that produced roots. This distinction had previously been observed in shoots produced from bud explants obtained from the mature trees.  相似文献   

14.
Weekly morphological measurements of trees in permanent growth plots and periodic destructive sampling were used to monitor growth and development of two Populus clones with contrasting morphology and phenology during the establishment year in a short-rotation, intensive-culture system. Tristis (P. tristis Fisch. x P. balsamifera L.) grew rapidly for 48 days before setting bud in July. By contrast, Eugenei (P. x euramericana (Dode) Guinier) grew at a slower rate than Tristis, but maintained this rate for 75 days before setting bud in September. By early October, the total leaf area and dry weight of Eugenei exceeded that of Tristis by 39 and 11%, respectively. In addition, Eugenei had a greater harvest index than Tristis throughout most of the growing season because a larger proportion of photosynthate produced was directed to shoot growth; however, a high shoot/root ratio in Eugenei predisposed it to water stress. Differences in aboveground biomass between clones were largely attributable to clonal differences in seasonal leaf area development.  相似文献   

15.
王邦富 《湖南林业科技》2010,37(5):47-49,52
以银杏核用品种最优单株"宁银1号"为接穗,对宁化县定植12年的银杏核用低产劣质品种的盛果期幼树进行高位嫁接试验,结果表明:嫁接季节、嫁接方法和接穗的年龄、粗度、性别以及接芽部位与砧木接口粗度对嫁接成活率、当年抽梢长度具有极显著影响,但对抽梢率没有影响。嫁接成活率、当年抽梢长度以春季采用粗度为0.8 cm以上接穗的1年生顶芽、接口粗度1.0 cm砧木、嫁接方法采用截干切接或截干舌接进行高位嫁接效果最好;雌株嫁接成活率达98%以上,当年抽梢率达100%,抽梢长度达50 cm以上;雄株成活率达80%以上,当年抽梢率达100%,抽梢长度达40 cm以上。  相似文献   

16.
The number of short shoots per shoot length, or needle density, is species typical, and it shows year‐to‐year variation within species. By modification of the needle trace method, long‐term needle density chronology was produced in a Scots pine (Pinus sylvestris L.) stand, located at the northern timberline in Finland. Treewise, needle density varied between 9 and 14 short shoots per long shoot (stem internode) centimetre, the annual minimum and maximum values being 5 and 37 short shoots cm?1. The stand‐specific long‐term average was 10.5 short shoots cm?1, and the mean annual value varied between 17 and 8 short shoots cm?1 in 1951 and 1984, respectively. The long‐term pattern in needle density was one of decline with time between 1950 and the mid‐1970s, then to slightly increase on entering the 1990s. The years when the density was relatively high were 1957, 1968 and 1981, indicative of some climatic extremes.  相似文献   

17.
We investigated how shoot gross morphology and leaf properties are determined in Fagus japonica Maxim., a deciduous species with flush-type shoot phenology, in which all leaves are produced in a single flush at the start of each season. We examined relationships between current-year shoot properties and local light environment in a 14-m tall beech tree growing in a deciduous forest. Leaf number (LN), total leaf area (TLA), and total leaf length (SL) of the current-year shoot increased with increasing photosynthetic photon flux density (PPFD). Leaf thickness, dry mass per leaf area and nitrogen content on a leaf area basis increased, whereas the chlorophyll/N ratio decreased with increasing PPFD. To separate the effects of current-year PPFD from those of previous year(s), we artificially shaded a part of the uppermost leaf tier. Reciprocal transfers of beech seedlings between controlled PPFD regimes were also made. Characteristics of shoot gross morphology such as LN, TLA and SL were largely determined by the PPFD of the previous year. The exception was the length of the longest "long shoots" with many leaves, in which elongation appeared to be influenced by both previous-year and current-year PPFD. In contrast, leaf properties were determined by current-year PPFD. The ecological implications of our findings are discussed.  相似文献   

18.
为建立色木槭芽直接增殖的诱导培养体系,以色木槭野生树木休眠芽萌发枝条为材料,进行芽增殖的培养条件研究。结果表明,4月份是适宜休眠芽培养的取材时期。嫩茎在2%次氯酸钠浸泡20 min是最佳消毒方案。NAA浓度对休眠芽萌发和嫩茎生长的影响具有显著差异。MS+0.1 mg/L NAA+20 g/L蔗糖(pH5.8)是适合休眠芽萌发和嫩茎伸长的培养基。培养30天时,腋芽萌发率可达63.3%,嫩茎平均高度可达15.9 mm。6-BA对芽直接增殖的促进效果好于KT。不同激素组合中,IBA与6-BA组合对芽增殖和丛生芽生长的效果好于NAA与6-BA组合、NAA与KT组合、IBA与KT组合。MS+0.1 mg/L IBA+1 mg/L 6-BA+20 g/L蔗糖是适合芽增殖和丛生芽生长的培养基。培养30天时,芽增殖率可达90%,增殖倍数可达3.19,且茎芽生长正常。  相似文献   

19.
The literature on rootstock effects (on scions) in conifers was reviewed, specifically: graft success, compatibility, size, reproduction, phenology, crown and needle characters, mineral contents, organic compounds, water relations, disease resistance and wood properties. Scions usually had higher graft success and less incompatibility on more closely related rootstocks although there were exceptions. Even intergeneric grafts have succeeded on occasion. Although there were marked rootstock effects on growth and reproduction, the effects did not follow a pattern with increasing relationship. It is also likely that some crown characters and the nutrient content of scions can be manipulated by the use of rootstocks. For many characters, a specific rootstock may give a desired result only for a limited number of scion types (species, cultivars or clones). With some exceptions, the review shows that the subject has not been comprehensively studied. Many of the studies were either short-term, inadequately replicated, or poorly designed to allow firm conclusions about rootstock effects. The physiological and biochemical mechanisms, which cause the changes seen in morphology, are not well understood. Further research and more comprehensive study of rootstock effects on scion biology are recommended.  相似文献   

20.
We studied relationships between diurnal patterns of stem water potential (PsiSTEM) and stem extension growth of the same scion cultivar growing on three rootstocks with differing size-controlling potentials. The peach trees (Prunus persica (L.) Batsch) used in this field experiment consisted of an early-maturing freestone cultivar, 'Flavorcrest,' grafted onto three different rootstocks: Nemaguard (a vigorous seed-propagated control, P. persica x P. davidiana hybrid), Hiawatha (an intermediate vigor rootstock, derived from an open pollinated seedling of a P. besseyi x P. salicina hybrid) and K-146-43 (a semi-dwarfing rootstock, P. salicina x P. persica hybrid). Diurnal patterns of PsiSTEM and stem extension growth were measured on six dates (March 29, April 12, April 26, May 10, May 24 and June 18) during the primary period of peach shoot extension growth. Rootstocks clearly affected diurnal patterns of PsiSTEM and stem extension growth. Trees on K-146-43 had the lowest midday PsiSTEM and stem extension growth. Differences among rootstocks in the amount of diurnal oscillation in PsiSTEM explained stem extension rate differences induced by the three rootstocks. The sensitivity of shoot extension growth to tree water relations tended to decrease as the season progressed and was not apparent by mid-June. The results of the study indicate that water relations may play an important role in the dwarfing mechanism induced by size-controlling peach rootstocks.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号