首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
When operating water recirculating systems (RAS) with high make-up water flushing rates in locations that have low alkalinity in the raw water, such as Norway, knowledge about the required RAS alkalinity concentration is important. Flushing RAS with make-up water containing low alkalinity washes out valuable base added to the RAS (as bicarbonate, hydroxide, or carbonate), which increases farm operating costs when high alkalinity concentrations are maintained; however, alkalinity must not be so low that it interferes with nitrification or pH stability. For these reasons, a study was designed to evaluate the effects of alkalinity on biofilter performance, and CO2 stripping during cascade aeration, within two replicate semi-commercial scale Atlantic salmon smolt RAS operated with moving bed biological filters. Alkalinity treatments of nominal 10, 70, and 200 mg/L as CaCO3 were maintained using a pH controller and chemical dosing pumps supplying sodium bicarbonate (NaHCO3). Each of the three treatments was replicated three times in each RAS. Both RAS were operated at each treatment level for 2 weeks; water quality sampling was conducted at the end of the second week. A constant feeding of 23 kg/day/RAS was provided every 1–2 h, and continuous lighting, which minimized diurnal fluctuations in water quality. RAS hydraulic retention time and water temperature were 4.3 days and 12.5 ± 0.5 °C, respectively, typical of smolt production RAS in Norway.It was found that a low nominal alkalinity (10 mg/L as CaCO3) led to a significantly higher steady-state TAN concentration, compared to when 70 or 200 mg/L alkalinity was used. The mean areal nitrification rate was higher at the lowest alkalinity; however, the mean TAN removal efficiency across the MBBR was not significantly affected by alkalinity treatment. The CO2 stripping efficiency showed only a tendency towards higher efficiency at the lowest alkalinity. In contrast, the relative fraction of total inorganic carbon that was removed from the RAS during CO2 stripping was much higher at a low alkalinity (10 mg/L) compared to the higher alkalinities (70 and 200 mg/L as CaCO3). Despite this, when calculating the total loss of inorganic carbon from RAS, it was found that the daily loss was about equal at 10, and 70 mg/L, whereas it was highest at 200 mg/L alkalinity. pH recordings demonstrated that the 10 mg/L alkalinity treatment resulted in the lowest system pH, the largest increase in [H+] across the fish culture tanks, as well as giving little response time in case of alkalinity dosing malfunction. Rapid pH changes under the relatively acidic conditions at 10 mg/L alkalinity may ultimately create fish health issues due to e.g. CO2 or if aluminium or other metals are present. In conclusion, Atlantic salmon smolt producers using soft water make-up sources should aim for 70 mg/L alkalinity considering the relatively low loss of inorganic carbon compared to 200 mg/L alkalinity, and the increased pH stability as well as reduced TAN concentration, compared to lower alkalinity concentrations.  相似文献   

2.
《Aquacultural Engineering》2008,38(3):234-251
Convenient, economical, and reduced labor fish harvest and transfer systems are required to realize operating cost savings that can be achieved with the use of much larger and deeper circular culture tanks. To achieve these goals, we developed a new technology for transferring fish based on their avoidance behavior to elevated concentrations of dissolved carbon dioxide (CO2). We observed this behavioral response during controlled, replicated experiments that showed dissolved CO2 concentrations of 60–120 mg/L induced rainbow trout (Oncorhynchus mykiss) to swim out of their 11 m3 “growout” tank, through a transfer pipe carrying a flow with ≤23 mg/L dissolved CO2, into a second 11 m3 “harvest” tank. The research was conducted using separate groups of rainbow trout held at commercially relevant densities (40–60 kg/m3). The average weight of fish ranged from 0.15 to 1.3 kg during the various trials. In all trials that used a constant flow of low CO2 water (≤23 mg/L) entering the growout tank from the harvest tank, approximately 80–90% of the fish swam from the growout tank, through the transfer pipe, and into the harvest tank after the CO2 concentration in the growout tank had exceeded 60 mg/L. The fish that remained in the growout tank stayed within the area of relatively low CO2 water at the entrance of the transfer pipe. However, the rate of fish transfer from the growout tank to the harvest tank was more than doubled when the diameter of the transfer pipe was increased from 203 to 406 mm. To consistently achieve fish transfer efficiencies of 99%, water flow rate through the fish transfer pipe had to be reduced to 10–20% of the original flow just before the conclusion of each trial. Reducing the flow of relatively low CO2 water near the end of each fish transfer event, restricted the zone of relatively low CO2 water about the entrance of the fish transfer pipe, and provided the stimulus for all but a few remaining fish to swim out of the growout tank. Results indicate that the CO2 avoidance technique can provide a convenient, efficient, more economical, and reduced labor approach for fish transfer, especially in applications using large and well mixed circular culture tanks.  相似文献   

3.
An optimal flow domain in culture tanks is vital for fish growth and welfare. This paper presents empirical data on rotational velocity and water quality in circular and octagonal tanks at two large commercial smolt production sites, with an approximate production rate of 1000 and 1300 ton smolt/yr, respectively. When fish were present, fish density in the two circular tanks under study at Site 1 were 35 and 48 kg/m3, and that in four octagonal tanks at Site 2 were 54, 74, 58 and 64 kg/m3, respectively. The objective of the study was twofold. First, the effect of biomass on the velocity distribution was examined, which was accomplished by repeating the measurements in empty tanks under same flow conditions. Second, the effect of operating conditions on the water quality was studied by collecting and analysing the water samples at the tank’s inlet and outlet. All tanks exhibited a relatively uniform water velocity field in the vertical water column at each radial location sampled. When fish were present, maximum (40 cm/s) and minimum (25–26 cm/s) water rotational velocities were quite similar in all tanks sampled, and close to optimum swimming speeds, recommended for Atlantic salmon-smolt, i.e., 1–1.5 body lengths per second. The fish were found to decrease water velocity by 25% compared to the tank operated without fish. Flow pattern was largely affected by the presence of fish, compared to the empty tanks. Inference reveals that the fish swimming in the tanks is a major source of turbulence, and nonlinearity. Facility operators and culture tank designers were able to optimize flow inlet conditions to achieve appropriate tank rotational velocities despite a wide range of culture tank sizes, HRT’s, and outlet structure locations. In addition, the dissolved oxygen profile was also collected along the diametrical plane through the octagonal tank’s centre, which exhibits a close correlation between the velocity and oxygen measurements. All tanks were operated under rather intensive conditions with an oxygen demand across the tank (inlet minus outlet) of 7.4–10.4 mg/L. Estimates of the oxygen respiration rate in the tank appears to double as the TSS concentration measured in the tank increases from 3.0 mg/L (0.3 kg O2/kg feed) up to 10–12 mg/L (0.7 kg O2/kg feed). Improving suspended solids control in such systems may thus dramatically reduce the oxygen consumption and CO2 production.  相似文献   

4.
Further growth in Atlantic salmon (Salmo salar) aquaculture production is expected, and as a response to limited freshwater resources, recirculating aquaculture systems (RAS) are increasingly applied in smolt production. Knowledge of the general composition and quality of inlet-water is important for designing water-treatment to obtain optimal water quality in both flow-through and RAS systems. Based on water quality surveys in Norway (96 water sources, 1999–2006) and Chile (120 water sources, 2006–2008) inlet-water quality was evaluated. Norwegian smolt production is characterized by almost exclusively utilizing surface waters as inlet-water sources, with lake inlets constituting 88% and river inlets 12%. This results in large seasonal variations in both temperature, and inlet-water quality. In Chile, production is based on inlet-water from groundwater wells (32%), natural springs (40%) and rivers (28%). Norwegian inlet-water quality shows significantly lower pH and buffering capacity. The content of total organic carbon and total nitrogen is generally higher in Norway, while the levels the main metals of concern, aluminium (Al) and iron (Fe), show large between-site variability in both countries. In low pH waters in Norway, the concentration of inorganic (labile) aluminium exceeds recommended level (10 μg/L) in 15% of the samples. The Norwegian database documents highly variable production intensity in smolt production. The measured levels of carbon dioxide (CO2, 11.6 ± 6.2 mg/L) and total ammonia nitrogen (TAN, 499 ± 485 μg N/L) (mean ± SD), exceed current legislative recommendations in 30% and 10.5% of the cases, respectively. RAS technology has the potential to improve a variable water quality if it proves reliable for the time intervals and production volumes needed. Thus, if necessary adjustments in water treatment to the local water quality are implemented, RAS production may well constitute a substantial part of smolt production in the future.  相似文献   

5.
Common off-flavor compounds, including geosmin (GSM) and 2-methylisoborneol (MIB), bioaccumulate in Atlantic salmon Salmo salar cultured in recirculating aquaculture systems (RAS) resulting in earthy and musty taints that are unacceptable to consumers. To remediate off-flavor from market-ready salmon, RAS facilities generally relocate fish to separate finishing systems where feed is withheld and makeup water with very low to nondetectable GSM and MIB levels is rapidly exchanged, a process known as depuration. Several procedural aspects that affect salmon metabolism and the associated rate of off-flavor elimination, however, have not been fully evaluated. To this end, a study was carried out to assess the effects of swimming speed and dissolved oxygen (DO) concentration on GSM levels in water and fish flesh during a 10-day depuration period. Atlantic salmon (5–8 kg) originally cultured in a semi-commercial-scale RAS (150 m3 tank) were exposed to a concentrated GSM bath before being transferred to 12 replicated partial reuse depuration systems (5.4 m3 total volume). Two swimming speeds (0.3 and 0.6 body lengths/sec) and two DO levels (90% and 100% O2 saturation) were applied using a 2 × 2 factorial design (N = 3), and each system was operated with a 5-h hydraulic retention time, creating a water flushing to biomass ratio of 151 L/kg fish biomass/day. Geosmin was assessed at Days 0, 3, 6, and 10 in system water and salmon flesh. A borderline effect (P = 0.064; 0.068) of swimming speed was measured for water and fish, respectively, at Day 3, where slightly lower GSM was associated with low swimming speed (0.3 body lengths/sec); however, differences were not detected at Days 6 or 10 when salmon are commonly removed for slaughter. Overall, this research indicates that significant improvements in GSM depuration from RAS-produced Atlantic salmon are not expected when purging with swimming speeds and DO concentrations similar to those tested during this trial.  相似文献   

6.
A partial-reuse system for coldwater aquaculture   总被引:7,自引:0,他引:7  
A model partial-reuse system is described that provides an alternative to salmonid production in serial-reuse raceway systems and has potential application in other fish-culture situations. The partial-reuse system contained three 10 m3 circular ‘Cornell-type’ dual-drain culture tanks. The side-wall discharge from the culture tanks was treated across a microscreen drum filter, then the water was pumped to the head of the system where dissolved carbon dioxide (CO2) stripping and pure oxygen (O2) supplementation took place before the water returned to the culture tanks. Dilution with make-up water controlled accumulations of total ammonia nitrogen (TAN). An automatic pH control system that modulated the stripping column fan ‘on’ and ‘off’ was used to limit the fractions of CO2 and unionized ammonia nitrogen (NH3---N). The partial-reuse system was evaluated during the culture of eight separate cohorts of advanced fingerlings, i.e., Arctic char, rainbow trout, and an all female brook trout × Arctic char hybrid. The fish performed well, even under intensive conditions, which were indicated by dissolved O2 consumption across the culture tank that went as high as 13 mg/L and fish-culture densities that were often between 100 and 148 kg/m3. Over all cohorts, feed conversion rates ranged from 1.0 to 1.3, specific growth rates (SGR) ranged from 1.32 to 2.45% body weight per day, and thermal growth coefficients ranged from 0.00132 to 0.00218. The partial-reuse system maintained safe water quality in all cases except for the first cohort—when the stripping column fan failed. The ‘Cornell-type’ dual-drain tank was found to rapidly (within only 1–2 min) and gently concentrate and flush approximately 68–88% (79% overall average) of the TSS produced daily within only 12–18% of the tank’s total water flow. Mean TSS concentrations discharged through the three culture tanks’ bottom-center drains (average of 17.1 mg/L) was 8.7 times greater than the TSS concentration discharged through the three culture tanks’ side-wall drains (average of 2.2 mg/L). Overall, approximately 82% of the TSS produced in the partial-reuse system was captured in an off-line settling tank, which is better TSS removal than others have estimated for serial-reuse systems (approximately 25–50%). For the two cohorts of rainbow trout, the partial-reuse system sustained a production level of 35–45 kg per year of fish for every 1 L/min of make-up water, which is approximately six to seven times greater than the typical 6 kg per year of trout produced for every 1 L/min of water in Idaho serial-reuse raceway systems.  相似文献   

7.
The Northeastern U.S. has the ideal location and unique opportunity to be a leader in cold water marine finfish aquaculture. However, problems and regulations on environmental issues, mandatory stocking of 100% native North American salmon, and disease have impacted economic viability of the U.S. salmon industry. In response to these problems, the USDA ARS developed the National Cold Water Marine Aquaculture Center (NCWMAC) in Franklin, Maine. The NCWMAC is adjacent to the University of Maine Center for Cooperative Aquaculture Research on the shore of Taunton Bay and shares essential infrastructure to maximize efficiency. Facilities are used to conduct research on Atlantic salmon and other cold water marine finfish species. The initial research focus for the Franklin location is to develop a comprehensive Atlantic salmon breeding program from native North American fish stocks leading to the development and release of genetically improved salmon to commercial producers. The Franklin location has unique ground water resources to supply freshwater, brackish water, salt water or filtered seawater to fish culture tanks. Research facilities include office space, primary and secondary hygiene rooms, and research tank bays for culturing 200+ Atlantic salmon families with incubation, parr, smolt, on-grow, and broodstock tanks. Tank sizes are 0.14 m3 for parr, 9 m3 for smolts, and 36, 46 and 90 m3 for subadults and broodfish. Culture tanks are equipped with recirculating systems utilizing biological (fluidized sand) filtration, carbon dioxide stripping, supplemental oxygenation and ozonation, and ultraviolet sterilization. Water from the research facility discharges into a wastewater treatment building and passes through micro-screen drum filtration, an inclined traveling belt screen to exclude all eggs or fish from the discharge, and UV irradiation to disinfect the water. The facility was completed in June 2007, and all water used in the facility has been from groundwater sources. Mean facility discharge has been approximately 0.50 m3/min (130 gpm). The facility was designed for stocking densities of 20–47 kg/m3 and a maximum biomass of 26,000 kg. The maximum system density obtained from June 2007 through January 2008 has approached 40 kg/m3, maximum facility biomass was 11,021 kg, water exchange rates have typically been 2–3% of the recirculating system flow rate, and tank temperatures have ranged from a high of 15.4 °C in July to a low of 6.6 °C in January 2008 without supplemental heating or cooling.  相似文献   

8.
Land-based Atlantic salmon, Salmo salar, grow-out facilities utilize depuration to remediate off-flavor. Water used in this process is either discharged or repurposed as supply water in recirculating aquaculture systems (RAS). Both approaches require an understanding of water quality and waste production for water treatment decisions and compliance with pollution discharge standards; however, these data were lacking. Therefore, a study was carried out to characterize these parameters. To begin, 311 salmon (5–6 kg) originally cultured in freshwater RAS were stocked at 100 kg/m3 in an 18 m3 depuration tank. Feed was withheld 1 day before transfer and throughout the 7-day study period. Hours after stocking, total suspended solids (TSS), total phosphorus (TP), and total ammonia nitrogen (TAN) levels spiked, and concentrations declined thereafter. Delta TSS and TP were negligible by the end of the trial; however, TAN plateaued, indicating that salmon began to catabolize somatic tissue in the absence of feeding. Geosmin and 2-methylisoboreol levels in water and fish were low throughout the study. This research indicates that residual waste production occurs while depurating Atlantic salmon. Procedural refinements and recommendations were gleaned including locality for introducing depuration system water within RAS and extension of the feed withholding period before depuration.  相似文献   

9.
The main aim of the study was to decide the effect of specific water consumption (L/kg/min) and feed load per water flow (g/m3) on the water quality parameters pH, CO2, total ammonia nitrogen (TAN) and suspended solids (SS) in two large semi-closed containment systems (S-CCS). The reported production parameters (range) in the two S-CCS were specific water consumption (q): 0.04–0.47 L/kg/min and feed load per water flow: 9.0–64 g/m3. The study period was split in two sub-periods; January–May (4.4–7.5 °C), and June–September (7.5–13.2 °C) before a regression model was used to determine the relationship between production intensity (q, feed load) and water quality (pH, CO2). With the acceptable level of CO2 defined as ≤10 mg/L, the model predicted a minimum specific water consumption (L/kg/min) between 0.07 (winter) and 0.2 (summer). The predicted maximum feed load per water flow (g/m3) was between 35 (summer) and 45 g/m3 (winter). These calculated limits for production intensity were close to the values earlier reported for smolt or post-smolt production in large, onshore tanks.  相似文献   

10.
A survey was conducted to determine the geometry, operating parameters, and other key features of large circular or octagonal culture tanks used to produce Atlantic salmon smolt and post-smolt at six major Norwegian Atlantic salmon production companies. A total of 55 large tanks were reported at seven land-based hatchery locations, i.e., averaging 7.9 (range of 4–12) large tanks per land-based site. In addition, one 21,000 m3 floating fiberglass tank in sea was reported. Culture volume ranged from 500 to 1300 m3 for each land-based tank. Most tanks were circular, but one site used octagonal tanks. Land-based tank diameters ranged from 14.5 to 20 m diameter, whereas the floating tank was 40 m diameter. Maximum tank depths ranged from 3.5 to 4.5 m at land-based facilities, which produced diameter-to-average-depth ratios of 3.6:1 to 5.5:1 m:m. The floating tank was much deeper at 20 m, with a diameter-to-average-depth ratio of only 2.4:1 m:m. All land-based tanks had floors sloping at 4.0–6.5% toward the tank center and various pipe configurations that penetrated the culture tank water volume at tank center. These pipes and sloping floors were used to reduce labor when removing dead fish and harvesting fish.Maximum flow ranged from 3 to 19 m3/min per land-based tank, with 400 m3/min at the floating tank, but tank flow was adjustable at most facilities. Land-based tanks were flushed at a mean hydraulic retention time (HRT) of 35–170 min. Maximum feed load on each land-based tank ranged from 525 to 850 kg/day, but the floating tank reached 3700 kg/day. Almost half of the large tanks reported in this survey were installed or renovated since 2013, including the three tank systems with the highest flow rate per tank (greater than 17.6 m3/min). These more recent tanks were operated at more rapid tank HRT’s, i.e., from 34.8 to 52.5 min, than the 67–170 min HRT typical of the large tanks built before 2013. In addition, flow per unit of feed load in land-based tanks that began operating before 2010 were lower (19–30 m3 flow/kg feed) than in tanks that began operating later (33–40 m3 flow/kg feed). In comparison, the floating tank operates at a maximum daily tank flow to feed load of 160 m3 flow/kg feed, which is the least intensive of all tanks surveyed. Survey results suggest that the recently built tanks have been designed to operate at a reduced metabolic loading per unit of flow, a tendency that would improve water quality throughout the culture tank, all else equal. This trend is possible due to the ever increasing application of water recirculating systems.  相似文献   

11.
Application of the regulatory principle of ‘best available technology’ (BAT) to fish farm effluent control has, to some extent, been a driving force for the development of new culture and treatment technology. In Norway today, there are a number of farms for the production of Atlantic salmon, Salmo salar L., smolts and brown trout, Salmo trutta L., fingerlings that utilize microstrainers for the removal of particles from the effluent water. At least one commercial farm also utilizes a simplified recirculation system called BIOFISH as a demonstration of new and alternative technology for the production of brown trout restocking fish. In this paper, calculated effluent discharge and rates of waste production from the biofish demostration trials are compared to literature data and to measurements on un-treated as well as microstrained effluents from the production of Atlantic salmon smolts in a traditional flow-through tank system. Rates of fish waste production in the biofish trials were obtained from mass-balance calculations based on measured concentrations of water quality parameters at several points in the system. The results of these calculations show fish waste production rates that are low, but comparable to data found in the literature. Given the level of waste treatment that takes place in the biofish tanks, the specific effluent discharge levels from those tanks, in terms of grams per kilogram biomass and grams per kilogram feed, are considerably lower than those found for salmon smolt production in traditional flow-through tanks. There are also substantial differences in hydraulic self-cleaning properties of the two systems and a corresponding difference in the distribution of effluent discharge during normal tank operation and during tank/effluent pipeline flushing. The results presented here give valuable information related to: (1) waste output characterization; (2) the long-term efficiency of commercially available particle separation systems; and (3) the capabilities of the simplified biofish recirculation technology under field conditions.  相似文献   

12.
A low‐head recirculating aquaculture system (RAS) for the production of Florida pompano, Trachinotus carolinus, from juvenile to market size was evaluated. The 32.4‐m3 RAS consisted of three dual‐drain, 3‐m diameter culture tanks of 7.8‐m3 volume each, two 0.71‐m3 moving bed bioreactors filled with media (67% fill with K1 Kaldness media) for biofiltration, two degassing towers for CO2 removal and aeration, a drum filter with a 40‐µm screen for solids removal, and a 1‐hp low‐head propeller pump for water circulation. Supplemental oxygenation was provided in each tank by ultrafine ceramic diffusers and system salinity was maintained at 7.0 g/L. Juvenile pompano (0.043 kg mean weight) were stocked into each of the three tanks at an initial density of 1.7 kg/m3 (300 fish/tank). After 306 d of culture, the mean weight of the fish harvested from each tank ranged from 0.589 to 0.655 kg with survival ranging from 57.7 to 81.7%. During the culture period, the average water use per kilogram of fish was 3.26 or 1.82 m3 per fish harvested. Energy consumption per kilogram of fish was 47.2 or 22.4 kwh per fish harvested. The mean volumetric total ammonia nitrogen (TAN) removal rate of the bioreactors was 127.6 ± 58.3 g TAN removed/m3 media‐d with an average of 33.0% removal per pass. Results of this evaluation suggest that system modifications are warranted to enhance production to commercial levels (>60 kg/m3).  相似文献   

13.
Commercial production of Atlantic salmon smolts, post-smolts, and market-size fish using land-based recirculation aquaculture systems (RAS) is expanding. RAS generally provide a nutrient-rich environment in which nitrate accumulates as an end-product of nitrification. An 8-month study was conducted to compare the long-term effects of “high” (99 ± 1 mg/L NO3-N) versus “low” nitrate-nitrogen (10.0 ± 0.3 mg/L NO3-N) on the health and performance of post-smolt Atlantic salmon cultured in replicate freshwater RAS. Equal numbers of salmon with an initial mean weight of 102 ± 1 g were stocked into six 9.5 m3 RAS. Three RAS were maintained with high NO3-N via continuous dosing of sodium nitrate and three RAS were maintained with low NO3-N resulting solely from nitrification. An average daily water exchange rate equivalent to 60% of the system volume limited the accumulation of water quality parameters other than nitrate. Atlantic salmon performance metrics (e.g. weight, length, condition factor, thermal growth coefficient, and feed conversion ratio) were not affected by 100 mg/L NO3-N and cumulative survival was >99% for both treatments. No important differences were noted between treatments for whole blood gas, plasma chemistry, tissue histopathology, or fin quality parameters suggesting that fish health was unaffected by nitrate concentration. Abnormal swimming behaviors indicative of stress or reduced welfare were not observed. This research suggests that nitrate-nitrogen concentrations  100 mg/L do not affect post-smolt Atlantic salmon health or performance under the described conditions.  相似文献   

14.
A data set from commercial Atlantic salmon (Salmo salar L.) producers on production intensity and production strategies in smolt tanks (N = 63–94) was obtained during 1999–2006. The effects of production intensity on subsequent fish mortality and growth during the early sea phase (90 days) were examined by principal component analysis and subsequent generalized linear model analysis. Levels of accumulated metabolites (CO2, total ammonia nitrogen and NH3), and information provided by producers (production density (kg fish m3−1), specific water use (l kg fish−1 min−1) and oxygen drop (mg l−1) from tank inlet to tank outlet), were used as predictor variables. In addition, several other welfare relevant variables such as disease history, temperature during freshwater and sea stage; season (S1) or off-season (S0) smolt production; and the use of seawater addition during the freshwater stage were analyzed. No strong intensity effects on mortality or growth were found. CO2 levels alone (P < 0.001, R 2 = 0.16), and in combination with specific water use (R 2 = 0.20), had the strongest effect on mortality. In both cases, mortality decreased with increasing density. For growth, the intensity model with the most support (R 2 = 0.17) was O2 drop, density and their interaction effects, resulting in the best growth at low and high intensity, and poorer growth at intermediate levels. Documented viral disease outbreaks (infectious pancreatic necrosis and two cases of pancreas disease) in the sea phase resulted in significantly higher mortalities at 90 days compared with undiagnosed smolt groups, although mortalities were highly variable in both categories. The temperature difference between the freshwater stage and seawater had a small, but significant, effect on growth with the best growth in groups stocked to warmer seawater (P = 0.04, R 2 = 0.06). S0 and S1 smolt groups did not differ significantly in growth, but the mortality was significantly (P = 0.02) higher in S1 groups. Seawater addition as a categorical variable had no significant effects, but when analyzed within the seawater addition group, intermediate salinities (15–25 ppt) gave the best results on growth (p = 0.04, R 2 = 0.15). Production intensity had small explanatory power on subsequent seawater performance in the analyzed smolt groups. If anything, the analysis shows a beneficial effect of intensive production strategies on subsequent performance. Analysis of the various production strategies indicates better survival of S0 compared with S1 smolt groups, improved growth when stocked in seawater warmer than freshwater, and a negative effect of viral disease outbreaks on survival. The results clearly demonstrate the difficulty of extrapolating results from experimental work on fish welfare and production intensity variables to commercial production. On the other hand, the presented results may simply demonstrate that the traditional fish welfare criteria growth and mortality may not suffice to evaluate welfare consequences of suboptimal water quality or production strategies in the aquaculture industry.  相似文献   

15.
Three different commercially available structural plastic media were evaluated in triplicate in moving bed biofilters under low salinity (11–12 ppt) warm water culture conditions and two different feed loading rates. The culture system consisted of nine separate modules that include a double drain fish culture tank paired to a moving bed biofilter. The biofilters were filled with 0.11 m3 of one of three different types of floating plastic structured media. The three types of media evaluated were K1 kaldnes media, MB3 media, and AMB media. Volumetric total ammonia nitrogen (TAN) removal rates (g TAN removed/m3 media-day), TAN removal efficiency, and biofilm kinetic constants, Ki (h−1) were determined for the three media types at two different daily feed load rates of 3.5 and 8.2 kg feed/m3 media. The feed provided was a 4.8 mm slow sinking marine grower diet pellet (45% protein, 17% fat). Average (±standard deviation, SD) volumetric TAN removal rates (VTR) at the lower feed load for the three media types were 92.2 ± 26.3, 86.1 ± 27.5, and 82.5 ± 25.9 for the MB3, AMB, and K1 kaldnes media, respectively. At the higher feed load the average VTR for the three media types was 186.4 ± 53.7, 172.9 ± 47.8, and 139.9 ± 38.9 for the MB3, AMB, and K1 kaldnes media, respectively. Influent TAN concentrations varied by the feed load rate and ranged from 0.55 to 0.93 mg/L and 0.83 to 1.87 mg/L for the low and higher feed loads, respectively. The percent TAN removal rates for the MB3 media was the highest of the three media types at both the low and high feed load rates averaging 12.3% and 14.4%, respectively. The MB3 media was selected for use in the moving bed biofilters because of the greater VTR and removal efficiency results for use in the 0.11 m3 moving bed biofilters of the hatchery recirculating aquaculture system.  相似文献   

16.
We evaluated the effect of low pH and low and high total ammonia nitrogen (TAN) concentrations on the physiology, stress status and the growth performance of turbot in RAS. Two experiments were conducted. In Experiment 1, turbot (466 g) were grown at control (pH 7.5; TAN ~0.5 mg/L) or low pH and high TAN (pH 5.7; TAN ~50 mg/L) for 55 days. In Experiment 2, turbot (376 g) were grown at control (pH 7.5; TAN ~0.5 mg/L), low pH and low TAN (pH 5.7; TAN ~5 mg/L) or low pH and high TAN (pH 5.7; TAN ~50 mg/L) for 59 days. In Experiment 1, final body weight, feed intake and growth were significantly lower and FCR significantly higher in turbot exposed to low pH and high TAN. In Experiment 2, only growth was significantly lower in turbot exposed to treatment low pH and high TAN as compared to fish in the control treatment and low pH and low TAN. Osmoregulation and stress indicators measured were within normal levels. In conclusion, turbot grew equally well in a water pH of 7.5 or 5.7 provided a low TAN. In contrast, low pH combined with a high TAN impaired turbot performance.  相似文献   

17.
Diurnal variation of carbon dioxide (CO2) and total ammonia production in Atlantic salmon post‐smolt were studied at different water flow rates. The experiment comprised four groups each with two replicates representing specific flow levels of 0.5, 0.4, 0.3 and 0.2 L kg?1 min?1. During the first diurnal cycle, the seawater samples were collected eight times during 21 hr. In the second diurnal cycle, six samplings were performed during a prolonged sampling period of 35 hr. The highest CO2 concentrations were observed in the lowest water flow group (0.2 L kg?1 min?1) between 4 and 10 p.m. for the first sampling period and at about 2 p.m. for the second sampling period. The overall real CO2 production rates were in the range 1.7–5.5 mg kg?1 min?1 including diurnal variation in all groups for both sampling periods. In general, a second‐order polynomial model describes the relationship between specific water flow and real mean CO2 production rate (p < 0.001). Maximum concentrations of total ammonia nitrogen (TAN) occurred around 7 and 8 p.m. in all groups and was highest for the 0.2 L kg?1 min?1 group for both sampling periods. Note that maximum concentration of TAN and CO2 both occurred in the afternoon. The TAN production rates were in the range 0.06–0.44 mg kg?1 min?1 including both sampling cycles.  相似文献   

18.
We have investigated the possibility of using a consortium of marine bacterium and periphytic microalgae to improve the water quality and increase the growth and survival of the shrimp Penaeus monodon in a hatchery system. Three treatments were evaluated for their effect on P. monodon postlarvae (PL) when the culture water was not changed: Bacillus pumilus alone (B); periphytic microalgae alone (M); B. pumilus + periphytic microalgae (BM). P. monodon PL raised in a tank of unchanged water without bacterium and periphytic microalgae served as the control. The water in tanks of the M and BM treatments had significantly low levels of total ammonia-nitrogen (TAN) (0.03 and 0.01 mg l−1, respectively) and nitrite-nitrogen (NO2-N) (0.03, 0.01 mg l−1, respectively) than that in the B (TAN 0.80, NO2-N 0.68 mg l−1) and control (TAN 1.11, NO2-N 1.12 mg l−1) tanks. Moreover, PL cultured in tanks M and BM had significantly higher survival and specific growth rates and a significantly higher resistance to the reverse salinity stress test than those in the B and control tanks. Compared to the control PL, the PL cultured in the BM tanks had significantly higher levels of protein, lipid, polyunsaturated fatty acids, ecosapentaenoic acid, and docosahexaenoic acid. The culture water in tanks BM also contained significantly less Vibrio than the control water. Our results illustrate the beneficial effects of a B. pumilus and periphytic microalgae consortium on improving the water quality and the growth and survival of shrimp PL grown in a hatchery system.  相似文献   

19.
Successful operation of recirculating aquaculture systems is dependent on frequent monitoring of the optimal function of water treatment processes in order to maintain environmental conditions for optimal growth and welfare of the fish. Real time monitoring of fish status is however usually not an integrated part of automatized systems within RAS. The aim of this study was to evaluate the use of implanted acoustic acceleration transmitters to monitor Atlantic salmon swimming activity. Twelve salmon post-smolts were individually tagged and distributed in three tanks containing salmon at start density of 50 kg m−3. The tagging did not cause any mortality and all individuals increased their body weight during this study. Following initial recovery, acceleration data were continuously logged for one month, including treatment periods with exposure to hyperoxic (170% O2 saturation) and hypoxic (60% O2 saturation) conditions, and different tank hydraulic retention times (HRT; 23 and 58 min). Changes in-tank dissolved oxygen levels to hyperoxic and hypoxic conditions reduced the total activity of Atlantic salmon in this study. On the contrary, increased and reduced tank HRT increased the total activity levels. Feeding periods induced a sharp increase in the Atlantic salmon swimming activity, while irregular feeding caused larger oscillations in activity and also lead to increased swimming activity of the tagged fish. Atlantic salmon responded with a maximum recorded total activity to stress caused by technical problems within the system and consequent changes in the RAS environment. The results of this study indicate that Atlantic salmon respond quickly with changed swimming activity to changes in the water quality and acute stress caused by normal management routines within RAS. The use of acoustic acceleration transmitters for real time monitoring of swimming activity within aquaculture production systems may allow for rapid detection of changes in species-specific behavioural welfare indicators and assist in the refinement of best management practices. In addition, acceleration tag could potentially serve as a valuable research tool for behavioural studies, studies on stress and welfare and could allow for better understanding of interaction between fish and RAS environment.  相似文献   

20.
Previous research and experience has linked elevated dissolved carbon dioxide (CO2) to reduced growth performance, poor feed conversion, and a variety of health issues in farm-raised fish, including Atlantic salmon Salmo salar. Supplemental control measures in water recirculation aquaculture systems (RAS) to reduce CO2 accumulation, however, such as increased water pumping to decrease tank hydraulic retention time, can represent significant costs for operators. We exposed post-smolt S0 Atlantic salmon (197 ± 2 g, 423 days post-hatch) to either high (20 ± 1 mg/L) or low (8 ± <1 mg/L) dissolved CO2 in six replicated freshwater RAS for 384 days to investigate differences in performance and health as the salmon were grown to harvest size. All RAS were operated at moderate water exchange rates (1.0% of the total recirculating flow), a 24-h photoperiod was provided, fish were fed to satiation, and densities were maintained between 40 and 80 kg/m3. Over the study period, dissolved oxygen was kept at saturation, mean water temperature was 14.1 ± 0.1 °C, and alkalinity averaged 237 mg/L as CaCO3. At study’s end, no significant differences in fish weight (high CO2 mean weight = 2879 ± 35 g; low CO2 mean weight = 2896 ± 12 g), feed conversion ratio (1.14 ± 0.12 vs. 1.22 ± 0.13, respectively), or thermal growth coefficient (1.45 ± 0.01 vs. 1.46 ± 0.01, respectively), were observed. No significant differences in survival (high CO2 mean survival = 99.1 ± 0.4%; low CO2 mean survival = 98.9 ± 0.3%) or culls due to saprolegniasis (3.5 ± 1% vs. 3.0 ± 1%, respectively) were determined, and no nephrocalcinosis was observed through histopathological evaluation. Blood gas and chemistry evaluation revealed higher pCO2, bicarbonate, and total CO2, and lower chloride and glucose, in the high CO2 cohort. Molecular analyses of gill enzyme regulation showed significantly higher expression of Na+/K+ ATPase α1a in high CO2 fish at 3-weeks post-challenge, indicating physiological adaptation to the higher CO2 environment without any noticeable long-term impacts on health or performance. Overall, the results of this study suggest that, at 237 mg/L as CaCO3 mean alkalinity, post-smolt Atlantic salmon can be raised in freshwater RAS to harvest size with up to 20 mg/L CO2 without significantly impacting fish health and performance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号