首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We assessed gastric and intestinal permeability and performed gastroscopy to evaluate the effects of sustained strenuous exercise on the gastrointestinal tract in racing sled dogs. Three teams of racing Alaskan sled dogs were examined approximately 1 week before and 24 hours after the 2003 Iditarod sled dog race (1,100 miles in 10 days). Each examination consisted of the administration of a solution of sucrose, lactulose, and rhamnose to evaluate gastric and intestinal permeability, as well as gastroscopy to visually inspect the gastric mucosa. Of the 54 dogs examined before the race, 16 completed the course and contributed data to the analysis. Sustained strenuous exercise was associated with an increased frequency of gastric erosions or ulcerations seen endoscopically (0% prerace versus 61% postrace). A significant postrace increase occurred in the median lactulose to rhamnose ratio in both serum and urine (0.11 versus 0.165, P = .0363; 0.11 versus 0.165, P = .0090, respectively). No significant differences were found in median serum or urinary sucrose concentrations when pre- and postrace values were compared. No correlation was found between visible gastric lesions and the concentration of sucrose in serum or urine samples obtained 4-5 hours after administration of the sugar solutions. We conclude that sustained strenuous exercise is associated with increased intestinal permeability, but the sucrose permeability test as we performed it did not correlate with visible gastric lesions.  相似文献   

2.
OBJECTIVE: To determine the effects of training and sustained submaximal exercise on hematologic values in racing sled dogs. DESIGN: Cohort study. ANIMALS: 39 Alaskan sled dogs bred for endurance racing. Procedures-Blood samples were collected prior to initiation of a 7-month training regimen (n=39), after completion of the training regimen (19), and after completion of an 1,100-mile race (9), and a CBC, differential cell count, and flow cytometry for leukocyte surface antigens were performed. RESULTS: Both training and exercise caused significant decreases in PCV and hemoglobin concentration and significant increases in total WBC count. In contrast, training and exercise were not found to have significant effects on absolute numbers or fractions of CD4+ or CD8+ lymphocytes, other than a significant increase in the fraction of CD8+ lymphocytes associated with training. CONCLUSIONS AND CLINICAL RELEVANCE: Results suggested that training and exercise induced changes in several hematologic values in racing sled dogs. Extracellular fluid volume expansion was the likely explanation for the training-induced decrease in PCV, and acute blood loss secondary to gastrointestinal tract bleeding was likely responsible for the decrease in PCV associated with acute exercise.  相似文献   

3.
BACKGROUND: Alterations in the appearance and function of gastrointestinal mucosa are common after strenuous exercise. However, the duration of exercise required to alter the gastrointestinal mucosa has not been reported. HYPOTHESIS: We used 42 sled dogs to test the hypothesis that the magnitude of exercise-induced gastrointestinal mucosal dysfunction is related to exercise duration. ANIMALS: Six dogs served as conditioned controls, and the remaining dogs were randomly chosen for examination after 1-5 consecutive days of running at 100 miles/d. METHODS: Gastroduodenoscopy and measurement of gastric permeability were performed 24 hours after cessation of exercise. Intestinal protein loss (represented by fecal alpha-1 protease inhibitor concentration) was measured within 6 hours of cessation of exercise. Twelve of the 42 dogs were examined again after 5 months of detraining to determine the effect of training on gastrointestinal mucosal function. RESULTS: Exercise increased gastric permeability (P = .04) and endoscopic severity of gastric lesions (P < .0001), but neither variable was significantly affected by distance traveled. Acute exercise had no effect on intestinal protein loss. Untrained dogs had significantly lower fecal alpha-1 protease inhibitor concentrations compared with trained, unexercised dogs. Training had no effect on gastric permeability to sucrose or the endoscopic appearance of the stomach. CONCLUSIONS AND CLINICAL IMPORTANCE: These data suggest that relatively modest exercise is required to increase intestinal protein loss, but more substantial exercise is required to cause alterations in the proximal gastrointestinal tract. However, none of these alterations appear to progress with increasing exercise duration.  相似文献   

4.
5.
6.
7.
Fasting dogs do transport vitamin A (VA) in plasma not only as retinol but predominantly as retinyl esters. Contrary to retinol, nothing is known concerning the effects of athletic performance on plasma retinyl ester concentrations. The aim of this study was therefore to examine whether physical stress because of exercise and modification of the oxidative stress by supplementation of alpha-tocopherol influences the concentrations of retinol and retinyl esters in plasma of sled dogs. The study was carried out on 41 trained adult sled dogs, which were randomly assigned into two groups. One group (19 dogs) was daily substituted with 50 mg dl-alpha-tocopheryl acetate per kilogram body weight and the control group (22 dogs) was maintained on a basal diet during 3 months prior to exercise. The plasma concentrations of retinol, retinyl esters, alpha-tocopherol and triglycerides were measured immediately before, directly after and 24 h after exercise. The supplementation of alpha-tocopheryl acetate had no effect on plasma retinol and retinyl ester concentrations at any measurement time point. However, retinyl ester levels doubled in the non-supplemented group immediately after the race (p < 0.001), whereas in the supplemented group similar high levels were observed not until 24 h post-racing (p < 0.001). The high levels of retinyl esters were paralleled to some extent by an increase in plasma triglyceride concentrations, which were significantly higher 24 h post-racing than immediately before (p < 0.001) and after exercise (p < 0.001) in both groups. The increase in retinyl ester concentrations might be indicative of their mobilization from liver and adipose tissue. Whether plasma retinyl esters can be used as an indicator for the extent of nutrient mobilization during and post-exercise in sled dogs remains to be elucidated.  相似文献   

8.
The present study was designed to compare basal and stimulated concentrations of 3,5,3'-triiodothyronine (T3), thyroxine (T4), and cortisol in serum of dogs fasted 12 or 18 hours (to represent overnight fasting) or 24 or 36 hours (to represent prolonged inappetence) with those of dogs that were not fasted. Twenty-five adult Beagle bitches were allotted to 5 experimental fasting groups (0, 12, 18, 24, and 36 hours). Blood samples for hormonal analyses were obtained 4, 3, 2, and 1 hour before food was removed; at the time of food removal; 1 hour after food was removed; and every 2 hours during experimental fasting until 0800 hours on the day fasting ended. Dogs were injected with 5 IU of thyrotropin, IV, and 2.2 IU of adrenocorticotropin/kg, IM, to evaluate thyroidal and adrenocortical endocrine reserves. Additional blood samples were collected 0.5, 1, 2, 3, and 4 hours after injections were given. Serum concentrations of T3, T4, and cortisol were determined by validated radioimmunoassays. Body weights and ages of the dogs and food consumption during a 2-hour preliminary feeding period before dogs were fasted did not differ among fasting groups. Length of fasting did not affect serum concentrations of T3 or T4 in dogs at 12, 18, 24, or 36 hours after food was removed. Mean serum concentrations of cortisol in dogs fasted 12 or 24 hours were lower than those in dogs that were not fasted. Serum concentrations of the hormones after thyrotropin and adrenocorticotropin were injected were not affected by fasting.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
In human athletes significant changes in cytokine concentrations secondary to exercise have been observed. This prospective study evaluated the effect of a multi-day stage sled dog race on plasma concentrations of monocyte chemoattractant protein-1 (MCP-1), tumor necrosis factor-alpha (TNF-α), interleukin-2 (IL-2), interleukin-6 (IL-6), interleukin-8 (IL-8), and interleukin-10 (IL-10). Samples from 20 dogs were harvested prior to and on days 2 and 8 of an 8-day race. Exercise resulted in significantly decreased TNF-α and IL-8 as well as increases of MCP-1, IL-6, and IL-10 concentrations (P-value between 0.01 and < 0.0001 for all parameters). The proportion of values for IL-2 that were below the detection limit increased from 40% on day 0 to 75% on day 2 and decreased on day 8 to 40% (P = 0.04). Racing sled dogs show cytokine-concentration changes that are different from those in humans.  相似文献   

10.
OBJECTIVE: To determine the effects of racing and nontraining on plasma thyroxine (T4), free thyroxine (fT4), thyroid-stimulating hormone (TSH), and thyroglobulin autoantibody (TgAA) concentrations in sled dogs and compare results with reference ranges established for dogs of other breeds. DESIGN: Cross-sectional study. ANIMALS: 122 sled dogs. PROCEDURE: Plasma thyroid hormone concentrations were measured before dogs began and after they finished or were removed from the Iditarod Trail Sled Dog Race in Alaska and approximately 3 months after the race. RESULTS: Concentrations of T4 and fT4 before the race were less than the reference range for nonsled dogs in 26% and 18% of sled dogs, respectively. Immediately after racing, 92% of sled dogs had plasma T4 concentrations less than the reference range. Three months after the race, 25% of sled dogs had plasma T4 concentrations less than the reference range. For T4, fT4, TSH, and TgAA, significant differences were not detected in samples collected before the race versus 3 months later. CONCLUSIONS AND CLINICAL RELEVANCE: Plasma T4, fT4, and TSH concentrations decreased in dogs that complete a long distance sled dog race. Many clinically normal sled dogs have plasma T4 and fT4 values that are lower than the reference range for nonsled dogs. We suggest that the reference ranges for sled dogs are 5.3 to 40.3 nmol/L and 3.0 to 24.0 pmol/L for plasmaT4 and fT4 concentrations, respectively, and 8.0 to 370 mU/L for TSH.  相似文献   

11.
OBJECTIVE: To determine whether repetitive endurance exercise in sled dogs was associated with substantial lipid peroxidation, decreases in antioxidant capacity of the serum, and skeletal muscle damage. ANIMALS: 24 lightly trained sled dogs. PROCEDURE: 16 dogs completed a 58-km run on each of 3 consecutive days; the other 8 dogs (control) did not exercise during the study. Blood samples were collected before the first exercise run and after the first and third exercise runs. Plasma isoprostane and serum vitamin E concentrations, total antioxidant status of plasma, and serum creatine kinase activity were measured. RESULTS: Plasma isoprostane concentrations in dogs in the exercise group were significantly increased after the first exercise run and further significantly increased after the third exercise run. Serum vitamin E concentration was significantly decreased after the first exercise run in dogs in the exercise group, and this change persisted after the third exercise run. There was a significant linear relationship between plasma isoprostane concentration and the logarithm of serum creatine kinase activity (adjusted ? = 0.84). CONCLUSIONS AND CLINICAL RELEVANCE: Results demonstrate that repetitive endurance exercise in dogs is associated with lipid peroxidation and a reduction in plasma antioxidant concentrations. We interpret these results as indicating that the antioxidant mechanisms of minimally trained dogs may, in some instances, be inadequate to meet the antioxidant requirements of repetitive endurance exercise.  相似文献   

12.
OBJECTIVE: To assess changes in muscle glycogen (MG) and triglyceride (MT) concentrations in aerobically conditioned sled dogs during prolonged exercise. ANIMALS: 54 Alaskan sled dogs fed a high-fat diet. PROCEDURES: 48 dogs ran 140-km distances on 4 consecutive days (cumulative distance, up to 560 km); 6 dogs remained as nonexercising control animals. Muscle biopsies were performed immediately after running 140, 420, or 560 km (6 dogs each) and subsequently after feeding and 7 hours of rest. Single muscle biopsies were performed during recovery at 28 hours in 7 dogs that completed 560 km and at 50 and 98 hours in 7 and 6 dogs that completed 510 km, respectively. Tissue samples were analyzed for MG and MT concentrations. RESULTS: In control dogs, mean +/- SD MG and MT concentrations were 375 +/- 37 mmol/kg of dry weight (kgDW) and 25.9 +/- 10.3 mmol/kgDW, respectively. Compared with control values, MG concentration was lower after dogs completed 140 and 420 km (137 +/- 36 mmol/kgDW and 203 +/- 30 mmol/kgDW, respectively); MT concentration was lower after dogs completed 140, 420, and 560 km (7.4 +/- 5.4 mmol/kgDW; 9.6 +/- 6.9 mmol/kgDW, and 6.3 +/- 4.9 mmol/kgDW, respectively). Depletion rates during the first run exceeded rates during the final run. Replenishment rates during recovery periods were not different, regardless of distance; only MG concentration at 50 hours was significantly greater than the control value. CONCLUSIONS AND CLINICAL RELEVANCE: Concentration of MG progressively increased in sled dogs undergoing prolonged exercise as a result of attenuated depletion.  相似文献   

13.
14.
OBJECTIVE: To evaluate the effect of trilostane on serum concentrations of aldosterone, cortisol, and potassium in dogs with pituitary-dependent hyperadrenocorticism (PDH), compare the degree of reduction of aldosterone with that of cortisol, and compare aldosterone concentrations of healthy dogs with those of dogs with PDH. ANIMALS: 17 dogs with PDH and 12 healthy dogs. PROCEDURE: For dogs with PDH, the initial dose of trilostane was selected in accordance with body weight. A CBC count, serum biochemical analyses, and ACTH stimulation tests were performed in each dog. Dogs were evaluated 1, 3 to 4, 6 to 8, and 10 to 12 weeks after initiation of treatment. Healthy dogs were evaluated only once. RESULTS: Serum aldosterone concentrations before ACTH stimulation did not change significantly after initiation of treatment with trilostane. At each evaluation after initiation of treatment, serum aldosterone concentrations after ACTH stimulation were significantly lower than corresponding concentrations before initiation of treatment. The overall effect of trilostane on serum aldosterone concentration was less pronounced than the effect on serum cortisol concentration. Median potassium concentrations increased slightly after initiation of treatment with trilostane. Dogs with PDH had significantly higher serum aldo sterone concentrations before and after ACTH stimulation than healthy dogs. CONCLUSIONS AND CLINICAL RELEVANCE: Treatment with trilostane resulted in a reduction in serum cortisol and aldosterone concentrations in dogs with PDH, although the decrease for serum aldosterone concentration was smaller than that for serum cortisol concentration. There was no correlation between serum concentrations of aldosterone and potassium during treatment.  相似文献   

15.
The inhibitory effect of the somatostatin analogue octreotide on the secretion of insulin could be used in the treatment of insulinoma. However, current information on the effectiveness of octreotide in dogs is conflicting. Therefore, the endocrine effects of a single subcutaneous dose of 50 microg octreotide were studied in healthy dogs in the fasting state (n=7) and in dogs with insulinoma (n=12). Octreotide did not cause any adverse effects. In healthy dogs in the fasting state, both plasma insulin and glucagon concentrations declined significantly. Basal (non-pulse related) GH and ACTH concentrations were not affected. A slight but significant decrease in the plasma glucose concentrations occurred. Dogs with insulinoma had significantly higher baseline insulin concentrations and lower baseline glucose concentrations than healthy dogs in the fasting state. Plasma glucagon, GH, ACTH, and cortisol concentrations did not differ from those in healthy dogs. Baseline plasma insulin concentrations decreased significantly in dogs with insulinoma after octreotide administration, whereas plasma concentrations of glucagon, GH, ACTH, and cortisol did not change. In contrast to the effects in the healthy dogs, in the dogs with insulinoma plasma glucose concentrations increased. Thus, the consistent suppression of plasma insulin concentrations in dogs with insulinoma, in the absence of an suppressive effect on counter-regulatory hormones, suggests that further studies on the effectiveness of slow-release preparations in the long-term medical treatment of dogs with insulinoma are warranted.  相似文献   

16.
OBJECTIVE: To evaluate plasma concentrations and urinary excretion of vasopressin and cortisol and urinary excretion of catecholamines in dogs with dilated cardiomyopathy (DCM). ANIMALS: 15 dogs with clinical signs of DCM, 15 dogs with preclinical DCM, and 15 control dogs. PROCEDURE: Physical examinations, thoracic radiography, ECG, and echocardiography were performed on all dogs. Blood and urine samples were collected. RESULTS: Plasma concentration of vasopressin and the urine cortisol-to-urine creatinine ratio were significantly increased in dogs with clinical signs of DCM and dogs with preclinical DCM, compared with control dogs. Plasma vasopressin concentration was significantly higher in dogs with clinical signs of DCM, compared with dogs with preclinical DCM. Urine vasopressin-to-urine creatinine ratio was significantly increased in dogs with clinical signs of DCM, compared with dogs with preclinical DCM and control dogs. Urine epinephrine-to-urine creatinine ratio and urine norepinephrine-to-urine creatinine ratio were significantly increased in dogs with clinical signs of DCM, compared with control dogs. Plasma concentration of cortisol and urine dopamine-to-urine creatinine ratio did not differ significantly among groups. CONCLUSIONS AND CLINICAL RELEVANCE: According to this study, the neuroendocrine pattern is changed in dogs with preclinical DCM. These changes are even more pronounced in dogs with clinical signs of DCM. Analysis of concentrations of vasopressin, cortisol, and catecholamines may aid in identification of the clinical stages of DCM. These findings may also provide a basis for additional studies of the possible beneficial effects of vasopressin antagonists and beta-adrenergic receptor antagonists in the treatment of dogs with congestive heart failure and DCM.  相似文献   

17.
OBJECTIVE: To determine the lowest of 5 doses of cosyntropin (1.0, 0.5, 0.1, 0.05, or 0.01 microg/kg) administered IV that stimulates maximal cortisol secretion in clinically normal dogs. ANIMALS: 10 clinically normal dogs. PROCEDURES: 5 dose-response experiments were performed in each of the dogs. Each dog received 5 doses of cosyntropin (1.0, 0.5, 0.1, 0.05, and 0.01 microg/kg) IV in random order (2-week interval between each dose). Serum samples for determination of cortisol concentrations were obtained before (baseline) and at 10, 20, 30, 40, 50, 60, 120, and 240 minutes after cosyntropin administration. RESULTS: Compared with baseline values, mean serum cortisol concentration in the study dogs increased significantly after administration of each of the 5 cosyntropin doses. Mean peak serum cortisol concentration was significantly lower after administration of 0.01, 0.05, and 0.1 microg of cosyntropin/kg, compared with findings after administration of 0.5 and 1.0 microg of cosyntropin/kg. After administration of 0.5 and 1.0 microg of cosyntropin/kg, mean peak serum cortisol concentration did not differ significantly; higher doses of cosyntropin resulted in more sustained increases in serum cortisol concentration, and peak response developed after a longer interval. CONCLUSIONS AND CLINICAL RELEVANCE: Administration of cosyntropin IV at a dose of 0.5 microg/kg induced maximal cortisol secretion in healthy dogs. Serum cortisol concentration was reliably increased in all dogs after the administration of each of the 5 doses of cosyntropin. These data should be useful in subsequent studies to evaluate the hypothalamic-pituitary-adrenal axis in healthy and critically ill dogs.  相似文献   

18.

Background

Sled dogs performing endurance races have been reported to have a high incidence of gastric erosions or ulcerations and an increased risk of gastro intestinal bleeding leading to death in some cases. In addition, these dogs also become hypothyroid during training and exercise. Canine hypothyroidism has been shown to correlate with decreased von Willebrand factor antigen and potentially increased bleeding tendency. Whether increased gastro intestinal bleeding risk is exacerbated due to changes in the hemostatic balance is unknown. The aim of this study was to investigate the hemostatic balance in sled dogs before and after exercise and in addition evaluate any correlation to thyroid status. Twenty sled dogs have been assessed in untrained and trained condition and immediately after exercise. The first sample was collected in the autumn following a resting period, and subsequently the dogs were exposed to increased intensity of training. After four months the peak of physical condition was reached and a 68 km long sled pulling exercise was performed. Samples were collected before and immediately after the exercise. Evaluated parameters were: plasma thromboelastographic (TEG) R, SP, α and MA, activated partial thromboplastin time (aPTT), prothrombin time (PT), fibrinogen, von Willebrand factor (vWf), D-dimer, platelet number, thyroid hormones, hematocrit and C-reactive protein (CRP).

Results

Exercise induced an overall hypercoagulable state characterized by significant decreases of TEG R and SP and an increase of α, increased concentrations of plasma vWf and decreased aPTT. In addition, a proinflammatory status was seen by a significant increase of serum CRP concentrations. Thyroid status was confirmed to be hypothyroid as training and exercise induced significant decrease of thyroxin (T4), free thyroxin (fT4) and thyroxin stimulating hormone (TSH) concentrations. Fibrinogen decreased significantly and PT increased. The training-induced changes showed correlation between T4, fT4 and aPTT and correlation between TSH and fibrinogen. Exercise-induced changes showed correlation between T4 and PT.

Conclusions

Exercise was associated with a hypercoagulable state and an increase of vWf concentration in this group of sled dogs. Decreased thyroid hormone concentrations after training and exercise were confirmed, but were associated with increased and not decreased vWf in this group of sled dogs.  相似文献   

19.
OBJECTIVE: To determine effects of athletic conditioning on thyroid hormone concentrations in a population of healthy sled dogs. ANIMALS: 19 healthy adult sled dogs. PROCEDURE: Serum concentrations of thyroxine (T4), triiodothyronine (T3), thyroid-stimulating hormone (TSH), free T4 (fT4), free T3 (fT3), and autoantibodies directed against T3, T4, and thyroglobulin were measured in sled dogs that were not in training (ie, nonracing season) and again after dogs had been training at maximum athletic potential for 4 months. RESULTS: Analysis revealed significant decreases in T4 and fT4 concentrations and a significant increase in TSH concentration for dogs in the peak training state, compared with concentrations for dogs in the untrained state. Serum concentrations of T4 and fT4 were less than established reference ranges during the peak training state for 11 of 19 and 8 of 19 dogs, respectively; fT4 concentration was greater than the established reference range in 9 of 19 dogs in the untrained state. CONCLUSIONS AND CLINICAL RELEVANCE: Decreased total T4 and fT4 concentrations and increased serum concentrations of TSH were consistently measured during the peak training state in healthy sled dogs, compared with concentrations determined during the untrained state. Although thyroid hormone concentrations remained within the established reference ranges in many of the dogs, values that were outside the reference range in some dogs could potentially lead to an incorrect assessment of thyroid status. Endurance training has a profound impact on the thyroid hormone concentrations of competitive sled dogs.  相似文献   

20.
Plasma thyroxine (T4), 3,5,3'-triiodothyronine (T3), total protein, and albumin concentrations were measured in 15 dogs both before and after completion, and in an additional 16 dogs before and 24 dogs after completion, of a long-distance sled dog race. The plasma T4 concentration (mean +/- SD) decreased significantly from 18.2 +/- 5.4 nmol/L before to 14.3 +/- 3.5 nmol/L after the race in dogs evaluated at both times and decreased significantly from 21.8 +/- 10.5 nmol/L before to 15.8 +/- 4.9 nmol/L after the race in dogs sampled only before or only after the race. The mean plasma T3 concentrations in dogs measured twice decreased significantly from 1.20 +/- 0.48 nmol/L before to 0.74 +/- 0.42 nmol/L after the race, as well as in dogs measured either before (1.28 +/- 0.36 nmol/L) or after (0.69 +/- 0.28 nmol/L) the race, respectively. Plasma total protein and albumin concentrations decreased significantly after completion of the race. No significant change was noted in 4 control dogs that did not compete in the race and were tested during a similar time period. The plasma concentrations of T4 and T3 were lower than the normal reference range established for this laboratory in 23 and 39%, respectively, of Alaskan sled dogs tested before the race. Plasma thyroid hormone concentrations frequently are below normal in conditioned Alaskan sled dogs and are further reduced after prolonged submaximal exercise.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号