首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
M. Schuster    H. Flachowsky    D. Köhler 《Plant Breeding》2007,126(5):533-540
Sweet cherries are self-incompatible because of a gametophytic self-incompatibility system. S alleles in the style and pollen determine the crossing relationships. Knowledge of the S allele constitution of cultivars is very important for cherry growers and breeders, and recently, molecular methods have been developed to distinguish the S alleles in sweet cherries. The S allele genotypes of 149 sweet cherry cultivars and clones, including 126 not previously genotyped, were determined by using PCR analysis. Thirteen different S alleles in 40 combinations were distinguished and nine new incompatibility groups were documented. Two new S alleles were identified in five local sweet cherry processing cultivars from southwestern Germany using the second intron primers. The sequence of these alleles was determined and compared to all known sequences available in the NCBI database. The sequences obtained showed high similarities to the alleles S 19 and S 22, previously described only in wild cherries, Prunus avium L.  相似文献   

2.
S-allele identification by PCR analysis in sweet cherry cultivars   总被引:3,自引:0,他引:3  
Gametophytic self‐incompatibility, governed by the S‐locus, operates in sweet cherry. The knowledge of the S‐genotype of sweet cherry cultivars is therefore essential to establish productive orchards by defining compatible combinations. The isolation of sweet cherry S‐R Nases has allowed the use of different molecular techniques to characterize the S‐genotypes of sweet cherry cultivars. Previously, incompatibility group assignment could only be carried out on mature trees through pollination tests. In this work, PCR analysis with primers designed on the conserved sequences of sweet cherry S‐R Nases has been used to characterize the S‐genotype of 71 sweet cherry cultivars, including 26 cultivars whose S‐allele constitution had not been previously described. This approach has allowed the detection of alleles that had not been amplified by PCR before, to identify six putative new S‐alleles, to define three new self‐incompatibility groups and to compile the standards for a PCR‐based S‐allele typing method in sweet cherry.  相似文献   

3.
甜樱桃品种SSR指纹图谱数据库的建立   总被引:6,自引:0,他引:6  
为了建立甜樱桃品种指纹图谱数据库,从而对不同甜樱桃品种进行分子鉴定,以“红灯”、“萨米脱”、“吉塞拉5号”、“吉塞拉6号”等24个甜樱桃主要栽培品种为试材,利用2.5%琼脂糖凝胶电泳进行SSR引物的筛选,选择差异明显且等位基因数目少(2个)的SSR标记,从38对SSR引物中筛选出能够扩增出稳定带型且不同材料之间差异明显的SSR引物,并从中选出10对SSR引物进行甜樱桃分子指纹分析,根据各甜樱桃DNA样品的电泳条带结果进行赋值,利用Visual Basic和Access软件进行数据库编程,创建一个数据库,入选的10对引物对样品的扩增结果赋值排列起来,即成为甜樱桃的“基因身份证”号码,从而根据分子身份证对不同甜樱桃种质进行鉴别。  相似文献   

4.
Breeding for higher levels of health-promoting components are among the priorities for many fruit crops. Such an approach requires breeding material displaying great variations in the trait to be improved. Commercial sweet cherry cultivars demonstrate only limited variability in fruit antioxidant parameters and hence this study was carried out to characterize some Ukrainian sweet cherry cultivars for their antioxidant and antiradical capacity and total phenolic and anthocyanin contents. Ukrainian cultivars had significantly higher ferric reducing antioxidant power and total phenolic contents compared with commercial cultivars. Levels of all four parameters varied considerably in the Ukrainian germplasm, with some cultivars having outstanding values. A total of eight different self-incompatibility genotypes were assigned to the 14 accessions tested. Assigning cultivars to the appropriate incompatibility groups allowed the design of parental combinations which may result in new genotypes with enhanced functional properties and other valuable fruit traits. Based on the S-genotypes, parental combinations were proposed to ensure 50 or 100 % self-compatible seedlings in the offspring population. The most perspective Ukrainian cultivars like ‘Dagestanka’ and ‘Kodrinskaya’ also had reasonable fruit weight (over 8 g), high flesh to pit ratio (approx. 18) and soluble solid contents (over 16 %). Our results demonstrated that adequate variation is available in Ukrainian germplasm for improving fruit health benefits in sweet cherry through directed hybridizations.  相似文献   

5.
Summary Protein stylar extracts of 16 cultivars of sweet cherry (Prunus avium), from the 10 different incompatibility groups to which incompatibility alleles have been assigned, were separated on acrylamide gels using isoelectric focusing (IEF) and were stained for ribonuclease activity. When two cultivars from the same incompatibility group were analyzed they gave identical zymograms and the cultivars of the 10 different incompatibility groups gave in all eight distinct zymograms. The ribonuclease polymorphism could be correlated with the reported S allele constitutions of the cultivars. Three ribonuclease bands were identified that each consistently corresponded to one of the six known incompatibility alleles (S 1, S2 and S 6), a fourth band apparently corresponded to S 3 and to the combination of S 4 and S 5, and a fifth band to S 4 and S 5 in other combinations. Thus, it seems that S alleles of cherry have ribonuclease activity and that IEF is useful for distinguishing S allele constitutions. The ribonuclease pattern of Summit, a cultivar of unknown incompatibility group, indicated its incompatibility genotype to be S 1S2, and this was confirmed by controlled pollination. The same band corresponded to S 4 and S 4', the mutant allele in self-compatible cultivars. IEF and ribonuclease staining promise to be useful tools for exploring the incompatibility relationships of cherry cultivars and perhaps of other self-incompatible Prunus crops.  相似文献   

6.
Sweet cherry (Prunus avium L.) has stylar gametophytic self‐incompatibility, which is controlled by the multi‐allelic S‐locus and encompasses the highly polymorphic genes for the S‐ribonuclease (S‐RNase) and S‐haplotype‐specific F‐box (SFB), which are female and male determinants, respectively. The self‐compatible mutant SFB4′ corresponds to an allele variant of SFB4 and presents a frameshift mutation. Even though male‐determinant molecular markers can discriminate between SFB4 and SFB4′ alleles, the methods required are laborious, time‐consuming and expensive, and not suitable for massive analysis and integration into breeding programmes. Our aim was to develop molecular markers for the evaluation of self‐compatibility alleles in sweet cherry, that could be used as a high‐throughput screening strategy to identify SFB4 and SFB4′ alleles, based on a marker for male determinacy. Our results were consistent using primers flanking the mutation responsible for the SFB4′ allele. We designed a specific molecular marker and confirmed it in sweet cherry commercial varieties. This new molecular marker is feasible for self‐compatibility alleles in the male determinant in sweet cherry‐assisted breeding programs.  相似文献   

7.
It is important to couple phenotypic analysis with genetic diversity for germplasm conservation in gene bank collections. The use of molecular markers supports the study of genetic marker-trait associations of biological and agronomic interest on diverse genetic material. In this report, 19 Greek traditional sweet cherry cultivars and two international cultivars, which were used as controls, were grown in Greece and characterized for 17 morpho-physiological traits, 15 simple sequence repeat (SSR) loci and 10 inter simple sequence repeat (ISSR) markers. To our knowledge, this is the first report on molecular genetic diversity studies in sweet cherry in Greece. Principal component analysis (PCA) of nine qualitative and eight quantitative morphological parameters explain over 77.33% of total variability in the first five axes. The SSR markers yielded a combined matching probability ratio (MPR) of 9.569 × e−12. The 15 SSR loci produced a total of 92 alleles. Ten ISSR primers generated 91 bands, with an average of 9.1 bands per primer. Expected heterozygosity (gene diversity) values of 15 SSR loci and 10 ISSR markers averaged at 0.683 and 0.369, respectively. Based on stepwise multiple regression analysis (MRA), SSR alleles were found associated with harvest time and fruit polar diameter. Furthermore, three ISSR markers were correlated with fruit harvest and soluble solids and four ISSR markers were correlated with fruit skin color. Stepwise MRA identified six SSR alleles associated with harvest time with a high correlation (P < 0.001), with linear associations with high F values. Hence, data analyzed by the use of MRA could be useful in marker-assisted breeding programs when no other genetic information is available.  相似文献   

8.
Prunus avium is primarily cultivated for its fruit, sweet cherries. However, it is also used to produce high‐quality timber. In a P. avium seed orchard, gametophytic self‐incompatibility is a restriction for free pollen flow and should be considered when establishing basic forest materials. In this study, S‐locus diversity and cross‐incompatibility of wild cherry individuals in clonal banks established for breeding for timber production were investigated. Wild cherry trees (140) with outstanding forest growth habit, collected in northern Spain, grafted and planted in two clonal banks, were genotyped at the S‐locus. The self‐incompatibility S‐locus genes, S‐RNase and SFB, were analysed by PCR. Twenty‐two S‐haplotypes, resulting in 72 different S‐genotypes, were identified. The genotypes were grouped into 33 incompatibility groups and 39 unique genotypes. This initial S‐locus analysis revealed large genetic diversity of wild cherry trees from the Spanish northern deciduous forest, and provides useful information for seed orchard design. Wild P. avium displays significantly more genetic diversity than what is detected in local cultivars, revealing a narrowing of genetic diversity during local domestication.  相似文献   

9.
A total of 17 pollen incompatibility groups in sweet cherry (Prunusavium L.) were identified among 46 accessions by PCR based S-alleletyping analysis and by controlled test pollinations. Two putativeS-alleles different from S 1 to S 6,S z and S y were identified. Five S-genotypes, S 1 S 5, S 1 S 6,S 2 S 6, S 4 S 6, andS 5 S 6, combinations of S 1 toS 6 alleles that had not previously been identified from cultivars in NYSAES, were positively confirmed by PCR based S-genotyping analysis. Also, the S-genotypes of cultivars in some pollen incompatibility groups that had previously been incorrectly reported have been clarified. Several popular cultivars, which were previously used as testers for S-allele typing analysis, were found to have been inaccurately genotyped. In addition, the S-genotypes and self-incompatibility groups of some relatively recentlyintroduced cultivars were identified. The molecular typing system ofS-genotypes based on PCR is a useful and rapid method for identifying newS-alleles and incompatibility groups in sweet cherry.  相似文献   

10.
The Latvian and the Swedish sweet cherry (Prunus avium L.) genetic resources collections comprise valuable material for breeding. The collections represent local Latvian and Scandinavian genetic resources: semi-wild samples, landraces, and cultivars developed in local breeding programmes, as well as diverse germplasm from the northern temperate zone. The objective of this investigation was to determine which S 1 –S 6 alleles are most important in the sweet cherry genetic resources collections and to compare the identified allelic and genotypic frequencies in material of different origin. Accessions in the two collections were screened for the presence of the self-incompatibility (S) S 1 to S 6 alleles, using PCR based typing. Significant differences (P < 0.05) between screened collections were found in frequencies of S 4 and S 5 alleles. Analysis of allele combinations identified the high occurrence of selections with the S-genotype S 3 S 6 in both collections. Compared to the S-allele frequencies published for over 250 sweet cherry cultivars from Western and Southern Europe, the Latvian and Swedish germplasm appeared to have a high frequency of the S 6 allele in both collections, and a relatively high frequency of the S 5 allele in Latvian germplasm. This study represents the first comprehensive S-allele screening for the sweet cherry genetic resources collections in Latvia and Sweden. Both sweet cherry collections contain high proportion of accessions adapted to north central European growing conditions, not typical for the majority of the documented sweet cherry genetic resources, which explains differences in certain S-allele occurrence.  相似文献   

11.
Chloroplast DNA variation in 96 Prunus avium L. cultivars was assessed and compared with the results of a previous study of cpDNA diversity in 23 wild populations of the species. The polymerase chain reaction‐restriction fragment length polymorphism method was used in these studies. Approximately 9% of the chloroplast genome was analyzed, using five universal primer pairs and three restriction enzymes. Ten polymorphic fragments were common to both the wild and sweet cherry; eight polymorphic fragments were found only in the wild cherry. In the cultivars, all mutations were small (5‐30 bp) indels. In the wild populations, a point mutation was also detected in addition to indels. The mutational combinations revealed three haplotypes in the cultivars, which are the main haplotypes in the wild cherry populations. Chloroplast DNA diversity in wild cherry is higher (16 haplotypes) than in sweet cherry cultivars (three haplotypes). The probable wild origin of the sweet cherry cultivars in the maternal line, on the basis of haplotypic similarity, was discussed.  相似文献   

12.
The self-incompatible RNase S-alleles of Brazilian apple cultivars   总被引:1,自引:0,他引:1  
Apple plants are self-incompatible because a genetic mechanism allows the female reproductive organ to recognize and reject self-pollen or pollen from genetic related individuals and allows non-self pollen to effect fertilization. Thus, there are implications to both breeding strategies and orchard management for fruit production. The purpose of this study was to identify and to characterize the S-RNase alleles of the gametophytic incompatibility among apple cultivars developed in Brazil, seeking to give support for choosing right combinations of parent in the apple breeding programs. It also sought to identify correct combinations of scion/pollinator cultivars of commercial apple orchards. A total of 16 specific S-RNase alleles primers were tested against DNA extracted from 12 Brazilian cultivars and their parents. The molecular analysis confronted to the reference cultivars, showed that the cultivars Daiane, Imperatriz and Princesa have the same incompatibility S3 and S5 alleles, while ‘Lisgala’ showed the alleles S2 and S5; ‘Suprema’, S1 and S9; ‘Catarina’, S1 and S19; ‘Joaquina’ and ‘Fred Hough’, S5 and S19; ‘Baronesa’, S3 and S9; ‘Duquesa’, S2 and S3. For ‘Primícia’ and ‘Condessa’ it was only possible to identify one of the S-alleles, namely S24 and S2, respectively, with the second allele remaining to be identified. Progeny test indicated the Mendelian inheritance for RNase alleles. Results of this study will be helpful to judiciously choose parents in apple breeding programs to improve compatibility.  相似文献   

13.
为获得甜樱桃PaGAST 基因的cDNA 序列,并预测该基因编码蛋白的结构与功能,以草莓FaGAST1 基因序列为探针,通过基于NCBI数据库中表达序列标签的电子克隆技术对甜樱桃PaGAST 基 因进行克隆。利用生物信息学方法对其编码蛋白的理化性质、疏水性和亲水性、信号肽序列、跨膜结构域、亚细胞定位及功能等方面进行分析。结果表明:甜樱桃PaGAST 基因长度为750 bp,开放阅读框长度为324 bp,编码107 个氨基酸,N末端存在信号肽序列,C末端含有保守的GASA结构域。由于PaGAST蛋白中含有的疏水性氨基酸残基较多,该蛋白具有跨膜螺旋区,是一种跨膜蛋白,且有10 个预测的蛋白激酶磷酸化位点。亚细胞定位分析表明,PaGAST蛋白分布在细胞膜外的可能性很大。功能预测显示,PaGAST 基因可能具有响应胁迫应答、信号转导和免疫应答方面的功能。进化分析显示甜樱桃PaGAST蛋白与桃的亲缘关系最近。在一定程度上为甜樱桃PaGAST 基因的克隆及功能鉴定奠定理论基础。  相似文献   

14.
C. Channuntapipat    M. Wirthensohn    S.A. Ramesh    I. Batlle    P. Arús    M. Sedgley  G. Collins 《Plant Breeding》2003,122(2):164-168
Identification of the incompatibility genotypes of almond cultivars is important in breeding programmes for designing crosses and for selecting progeny. This paper describes a novel molecular technique for the identification of S‐alleles in almond based on the use of PCR primers designed from the sequences of the introns without the need for restriction enzyme digestion. Nine specific pairs of primers have been designed for the S1, S2, S5, S7, S8, S9, S10 (putative), S23 and Sf alleles, and these confirmed the S‐allele specificities for 22 of the 23 accessions for which published information is available. This technique provides a precise method for identifying S‐alleles from the genomic DNAs of almond cultivars, and will be useful for confirming the segregation of alleles in breeding progeny.  相似文献   

15.
T. Sonneveld    T. P. Robbins    K. R. Tobutt 《Plant Breeding》2006,125(3):305-307
A novel polymerase chain reaction (PCR) approach to determine and confirm the self‐incompatibility (S) genotype of cherries is reported. The method involves PCR amplification with a new pair of consensus primers that immediately flank the first intron of cherry S‐RNases, one of which is fluorescently labelled. Fluorescent amplification products range from 234 to c. 460 bp and can be sized accurately on an automated sequencer. Thirteen S alleles reported in sweet cherry can be distinguished, except for S2 and S7, which have an amplification product of exactly the same size. S13, which is also amplified, gives a microsatellite‐like trace which shows minor intra‐allelic length variation. This method gives fast and accurate results and should be especially useful for medium/high‐throughput genotyping of wild and cultivated cherries.  相似文献   

16.
An increasing demand for cherry production (Prunus avium L.) in Greece led to the development of new high quality sweet cherry cultivars. Self-incompatibility in cherry is one of the most challenging issues for the species’ cultivation and top breeding priority. Τhe present study focuses on the development of new hybrids with improved traits such as productivity, fruit size, organoleptic characteristics and self-compatibility. For this purpose, thirty different cultivars were crossed and produced hybrids that were evaluated according to 34 morpho-physiological characteristics. The results were analyzed using the XLSTAT (version 2014.1) software and a dendrogram was constructed using the agglomerative hierarchical clustering method. Optimal hybrid clustering was achieved when characteristics of great economic importance such as fruit shape and size, growth habit and days to blooming were included in the analysis. Based on the results, new sweet cherry hybrids with the special character of self-compatibility were developed. Our findings provide crucial new information for sweet cherry future breeding programs and cultivation.  相似文献   

17.
Primers amplifying a range of Prunus S-alleles   总被引:2,自引:1,他引:2  
Although various consensus polymerase chain reaction (PCR) primers have been reported for identifying Prunus S‐alleles, they have been developed from and optimized on a limited set of alleles, which may limit their applicability to a broader allele range. To develop a primer set for use across the genus, degenerate consensus primers were designed from conserved regions of 27 S‐RNase sequences available from five Prunus species. The primers were tested in 15 previously genotyped cultivars of cherry, almond and apricot, representing alleles S1 to S6 in each crop and also Sc in apricot. Comparisons were made with previously published primers tested in the same 15 cultivars under reported reaction conditions. The new primers generated an amplification product for each of the 19 S‐alleles whereas those previously available amplified no more than 14. The primers will be useful for genotyping and genetic studies in cultivars and wild populations.  相似文献   

18.
Sharka, a disease caused by Plum pox virus (PPV), mainly affects some Prunus species, including apricot, peach and plum, and to a lesser degree, sweet cherry and sour cherry. In almond, different PPV isolates have been transmitted experimentally to the ‘Aï’ cultivar. In this study, the resistance of 10 almond cultivars to a Dideron PPV isolate was evaluated in controlled conditions by grafting the cultivars on to inoculated GF305 peach rootstocks. The results demonstrated a high level of resistance to PPV in all the almond cultivars assayed. They did not show any symptoms and were ELISA and RT‐PCR negative, despite the strong symptoms observed in their GF305 rootstocks. The implications of these results for the dispersion of PPV, and the potential role of almond as a source of resistance to PPV in other Prunus species such as peach, are also discussed.  相似文献   

19.
Integration of alleles for bacterial canker resistance into new sweet cherry cultivars requires information on the sources of resistance in the germplasm. Five market-leading sweet cherry cultivars, ‘Rainier’, ‘Sweetheart’, ‘Bing’, ‘Regina’ and ‘Chelan’, advanced selections ‘AA’, ‘BB’, ‘CC’, ‘DD’, ‘EE’, ‘GG’, and ‘PMR-1’ used as breeding parents in the Washington State University’s Sweet Cherry Breeding Program were evaluated. Comparative genotypic disease severity was obtained with three methods of inoculation (leaf wounding with carborundum, cut wounds in leaf mid-rib and shoot tip) on whole plants. Additionally, genotypic data on susceptibility of detached leaves versus fruit and an assessment of the movement of Pseudomonas syringae pv. syringae (Pss) population in inoculated shoots were obtained. Genotype susceptibility was significantly (P ≤ 0.05) influenced by inoculation method, with shoot inoculation providing the best separation of resistance levels among genotypes. A low correlation (r = 0.26, P = 0.21) was observed between disease responses measured on detached leaf versus fruit, while a moderately high correlation (r = 0.50, P = 0.10) was found among bacterial populations in the tissues and in the degree of symptoms expressed. By all comparative methods, the advanced selections, as well as, ‘PMR-1’, were less susceptible than the market-leading cultivars. Also, movement of Pss from shoot tip inoculation points to the shoot base was not detected for advanced selections ‘AA’, ‘BB’, ‘DD’, and ‘EE’. This study reveals that the advanced selections could be potential sources of resistance alleles to bacterial canker. This is the first evaluation of the advanced selections for bacterial canker disease.  相似文献   

20.
Most Japanese plum-type cultivars are self-incompatible and cross pollination is necessary to ensure fruit set. In this study, the S -RNase genotype and the incompatibility group of 68 Japanese plum-type cultivars were determined by PCR amplification of the S-RNase gene. The S -RNase genotype of 50 cultivars is first reported here and five new Japanese plum S -RNase alleles ( So , Sp , Sq , Sr , Ss ) were identified. The results obtained, together with information compiled from previous studies, allowed describing 12 new incompatibility groups (VIII–XIX). The self-incompatibility of several cultivars and the cross-compatibility among different incompatibility groups were verified by self- and cross-pollination experiments followed by observation of pollen tube growth. Five cultivars behaved as self-compatible, but two of them do not have the Se allele, which has been correlated with self-compatibility. Thus, additional sources of self-compatibility different from Se appear to be involved in Japanese plum self-compatibility.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号