首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The main aim of the study was to decide the effect of specific water consumption (L/kg/min) and feed load per water flow (g/m3) on the water quality parameters pH, CO2, total ammonia nitrogen (TAN) and suspended solids (SS) in two large semi-closed containment systems (S-CCS). The reported production parameters (range) in the two S-CCS were specific water consumption (q): 0.04–0.47 L/kg/min and feed load per water flow: 9.0–64 g/m3. The study period was split in two sub-periods; January–May (4.4–7.5 °C), and June–September (7.5–13.2 °C) before a regression model was used to determine the relationship between production intensity (q, feed load) and water quality (pH, CO2). With the acceptable level of CO2 defined as ≤10 mg/L, the model predicted a minimum specific water consumption (L/kg/min) between 0.07 (winter) and 0.2 (summer). The predicted maximum feed load per water flow (g/m3) was between 35 (summer) and 45 g/m3 (winter). These calculated limits for production intensity were close to the values earlier reported for smolt or post-smolt production in large, onshore tanks.  相似文献   

2.
Commercial production of Atlantic salmon smolts, post-smolts, and market-size fish using land-based recirculation aquaculture systems (RAS) is expanding. RAS generally provide a nutrient-rich environment in which nitrate accumulates as an end-product of nitrification. An 8-month study was conducted to compare the long-term effects of “high” (99 ± 1 mg/L NO3-N) versus “low” nitrate-nitrogen (10.0 ± 0.3 mg/L NO3-N) on the health and performance of post-smolt Atlantic salmon cultured in replicate freshwater RAS. Equal numbers of salmon with an initial mean weight of 102 ± 1 g were stocked into six 9.5 m3 RAS. Three RAS were maintained with high NO3-N via continuous dosing of sodium nitrate and three RAS were maintained with low NO3-N resulting solely from nitrification. An average daily water exchange rate equivalent to 60% of the system volume limited the accumulation of water quality parameters other than nitrate. Atlantic salmon performance metrics (e.g. weight, length, condition factor, thermal growth coefficient, and feed conversion ratio) were not affected by 100 mg/L NO3-N and cumulative survival was >99% for both treatments. No important differences were noted between treatments for whole blood gas, plasma chemistry, tissue histopathology, or fin quality parameters suggesting that fish health was unaffected by nitrate concentration. Abnormal swimming behaviors indicative of stress or reduced welfare were not observed. This research suggests that nitrate-nitrogen concentrations  100 mg/L do not affect post-smolt Atlantic salmon health or performance under the described conditions.  相似文献   

3.
A new physico-chemical process for ammonia removal from fresh-water recirculated aquaculture systems (RASs) is introduced. The method is based on separating NH4+ from RAS water through an ion-exchange resin, which is subsequently regenerated by simultaneous chemical desorption and indirect electrochemical ammonia oxidation. Approach advantages include (1) only slight temperature dependence and no dependence on bacterial predators and chemical toxins; (2) no startup period is required and the system can be switched on and off at will; and (3) the fish are grown in much lower bacterial concentration, making the potential for both disease and off-flavor, lower. A small pilot scale RAS was operated for 51 d for proving the concept. The system was stocked by 105 tilapia fish (initial weight 35.8 g). The fish, which were maintained at high TAN (total ammonia nitrogen) concentrations (10–23 mgN L−1) and fish density of up to 20 kg m−3, grew at a rate identical to their established growth potential. NH3(aq) concentrations in the fish tank were maintained lower than the assumed toxicity threshold (0.1 mgN L−1) by operating the pond water at low pH (6.5–6.7). The low pH resulted in efficient CO2 air stripping, and low resultant CO2(aq) concentrations (<7 mg L−1). Due to efficient solids removal, no nitrification was observed in the fish tank and measured nitrite and nitrate concentrations were very low. The system was operated successfully, first at 10% and then at 5% daily makeup water exchange rate. The normalized operational costs, calculated based on data derived from the pilot operation, amounted to 28.7 $ cent per kg fish feed. The volume of the proposed process was calculated to be ∼13 times smaller than that of a typical RAS biofilter. The results show the process to be highly feasible from both the operational and economical standpoints.  相似文献   

4.
The effects of sub-lethal CO2(aq) concentrations were tested for the first time on gilthead seabream (Sparus aurata) juveniles (4–25 g; 64 growth days) and adult (∼300–400 g; 71 d) fish, both in fully controlled pilot tests and the latter also as part of full-scale RAS (recirculating aquaculture system) operation. In the pilot experiments (concentration range 5.2–56.3 mg CO2/L) the specific growth rate, mortality rate, and physical fish disorders were monitored. In the full scale experiment, two groups of fish, originally from the same batch, were exposed for 197 d to controlled (by NaOH dosage) and uncontrolled pH conditions, resulting in exposure of the fish to significantly different CO2(aq) concentrations. The pilot results showed, as expected, that the seabream fish grew faster at the lower CO2 concentrations and that the growth rate of both juveniles and adult fish was only minimally inhibited up to roughly 20 mg CO2/L (compared to a previously published curve). Mortality rate was considerable only at the highest CO2 concentration (∼56 mg CO2/L). Physical irregularities were not observed, apart from abnormally high absence of swim bladder at the highest CO2(aq) treatment. The (statistically significant) results from the full-scale RAS operation showed that growing gilthead seabream for 197 d at roughly constant and relatively low (∼16 mg/L) CO2(aq) concentration resulted in fish with ∼10% larger mean weight relative to the fish grown in ponds in which CO2(aq) was not controlled and its concentration fluctuated daily between 19 and 37 mg/L.  相似文献   

5.
The removal of phytoplankton cells from aquaculture systems generally results in the reduction of nitrogenous waste and improves water quality. With this study, the effects of chitosan concentration, environmental condition and pH adjustment on flocculation of phytoplankton in marine shrimp (Litopenaeus vannamei) culture tanks were investigated. The remaining phytoplankton and suspended solids in the system were indicators for evaluating the efficiency of chitosan on flocculation. The results indicate that the flocculation efficiency of chitosan was highest (>85%) and remained fairly constant at a chitosan concentration of 40–80 mg L?1 and a pH range of 7–9 after chitosan addition. With this novel technique including 40 mg L?1 chitosan addition, pH adjustment to 6.5 and then to 8.5, high efficiency and consistency of flocculation were achieved. This technique could also be applied with various water alkalinity up to 400 mg CaCO3 L?1. The experiment for phytoplankton removal by chitosan flocculation in the recirculating aquaculture system showed that flocculation efficiency remained constant even though flocculation was repeated several times.  相似文献   

6.
《Aquacultural Engineering》2010,42(3):188-193
The removal of phytoplankton cells from aquaculture systems generally results in the reduction of nitrogenous waste and improves water quality. With this study, the effects of chitosan concentration, environmental condition and pH adjustment on flocculation of phytoplankton in marine shrimp (Litopenaeus vannamei) culture tanks were investigated. The remaining phytoplankton and suspended solids in the system were indicators for evaluating the efficiency of chitosan on flocculation. The results indicate that the flocculation efficiency of chitosan was highest (>85%) and remained fairly constant at a chitosan concentration of 40–80 mg L−1 and a pH range of 7–9 after chitosan addition. With this novel technique including 40 mg L−1 chitosan addition, pH adjustment to 6.5 and then to 8.5, high efficiency and consistency of flocculation were achieved. This technique could also be applied with various water alkalinity up to 400 mg CaCO3 L−1. The experiment for phytoplankton removal by chitosan flocculation in the recirculating aquaculture system showed that flocculation efficiency remained constant even though flocculation was repeated several times.  相似文献   

7.
Scallop larval production systems in Norway have changed from the use of batch to continuous flow through systems (FTS) during the last decade. Energy use to heat water in both larval and spat nurseries is considerable. Two experiments (June 2010 and February 2011) using water recirculation technology (RAS) were performed in large scale systems (3500 L larval tanks) supplied with continuous addition of algal feed, and 20% renewal of seawater.In the RAS a gradual increase in CO2, decrease in pH and dissolved oxygen was observed over time. This was most obvious during experiment two, when the total organic carbon content increased in both FTS and RAS. The total bacterial number was lower and more stable in FTS than in the RAS. The variations in seawater quality parameters were smaller during the first experiment compared to the second, when values of oxygen saturation were reduced to <70%, pH was 7.8 and NO3 reached 5 mg L−1. Even though these changes would seem less beneficial for survival and growth of scallop larvae, results showed that the survival at the end of the larval stage was higher in the FTS, but the yield of competent larvae ready for settlement was not significant different (p > 0.05) due to large variations between tanks. The CV% was 28.9% in FTS, while it was 49.9% in RAS. In FTS the mean yield was 40.2%, while it was 26.5% of initial number of larvae in RAS. Large variations in survival and yield were found between the larval tanks as well as gradual reduction in pH and oxygen in RAS tanks. The results indicate that there is a large potential for 80% reduction in water use by utilizing recirculation technology.  相似文献   

8.
A step toward environmental sustainability of recirculat aquaculture systems (RAS) is implementation of single-sludge denitrification, a process eliminating nitrate from the aqueous environment while reducing the organic matter discharge simultaneously. Two 1700 L pilot-scale RAS systems each with a 85 L denitrification (DN) reactor treating discharged water and hydrolyzed solid waste were setup to test the kinetics of nitrate and COD removal. Nitrate removal and COD reduction efficiency was measured at two different DN-reactor sludge ages (high θX: 33–42 days and low θX: 17–23 days). Nitrate and total N (NO3 + NO2 + NH4+) removal of the treated effluent water ranged from 73–99% and 60–95% during the periods, respectively, corresponding to an overall maximum RAS nitrate removal of approximately 75%. The specific nitrate removal rate increased from 17 to 23 mg NO3-N (g TVS d)−1 and the maximal potential DN rate (measured at laboratory ideal conditions) increased correspondingly from 64–68 mg NO3-N (g TVS d)−1 to 247–294 mg NO3-N (g TVS d)−1 at high and low θX, respectively. Quantification of denitrifiers in the DN-reactors by qPCR showed only minor differences upon the altered sludge removal practice. The hydrolysis unit improved the biodegradability of the solid waste by increasing volatile fatty acid COD content 74–76%. COD reductions in the DN-reactors were 64–70%. In conclusion, this study showed that single-sludge denitrification was a feasible way to reduce nitrate discharge from RAS, and higher DN rates were induced at lower sludge age/increased sludge removal regime. Improved control and optimization of reactor DN-activity may be achieved by further modifying reactor design and management scheme as indicated by the variation in and between the two DN-reactors.  相似文献   

9.
A continuous water disinfection process can be used to prevent the introduction and accumulation of obligate and opportunistic fish pathogens in recirculating aquaculture systems (RAS), especially during a disease outbreak when the causative agent would otherwise proliferate within the system. To proactively prevent the accumulation of fish pathogens, ozonation and ultraviolet (UV) irradiation processes have been used separately or in combination to treat water in RAS before it returns to the fish culture tanks. The objective of the present study was to determine the process requirements necessary to disinfect the full RAS flow, using ozonation followed by UV irradiation, just before the flow was returned to the fish culture tank(s). We found that a proportional-integral (PI) feed-back control loop was able to automatically adjust the concentration of ozone (O3) generated in the oxygen feed gas (and thus added in the low head oxygenator) in order to maintain the dissolved O3 residual or ORP at a pre-selected set-point. We determined that it was easier and effective to continuously monitor and automatically control O3 dose using an oxidative reduction potential (ORP) probe (in comparison to a dissolved ozone probe) that was located at the outlet of the O3 contact chamber and immediately before water entered the UV irradiation unit. PI control at an ORP set-point of 450 and 525 mv and a dissolved O3 set-point of 20 ppb provided almost complete full-flow inactivation of heterotrophic bacteria plate counts (i.e., producing <1 cfu/mL) and improved water quality (especially color and %UVT) in a full-scale recirculating system. Achieving this level of treatment required adding a mean dose of approximately 29 ± 3 g O3 per kg feed. However, because water is treated and reused repeatedly in a water reuse system, the mean daily O3 demand required to maintain an ORP of 375–525 mV (or at 20 ppb dissolved O3) was 0.34–0.39 mg/L, which is nearly 10 times lower than what is typically required to disinfect surface water in a single pass treatment. These findings can be used to improve biosecurity and product quality planning by providing a means for continuous water disinfection in controlled intensive RAS.  相似文献   

10.
In intensive recirculating aquaculture systems (RAS) ortho-phosphate (ortho-P) is one of the main accumulating substances, but effects of chronically elevated concentrations on fish health and production performance are still unknown. Therefore 120 juvenile turbot (Psetta maxima) were exposed to ortho-P concentrations of 3 mg/L (control – C), 26 mg/L (low – LP), 52 mg/L (medium – MP) and 82 mg/L (high – HP) for 56 days and fed until satiation with a commercial diet. Health status and feed conversion ratio (FCR) were not significantly affected by treatment (p > 0.05). Specific growth rates (SGR) and daily feed intake (DFI) of C were not considered significantly different from LP, MP and HP treatments, however LP showed significant higher DFI and SGR than HP (p < 0.05). Using non-linear regression between SGR and ortho-P concentrations, 27 mg/L ortho-P was found as the optimum for turbot growth. Although not reflected in blood plasma P levels (p > 0.05) a potential aqueous P uptake might result in metabolic benefits leading to the observed growth enhancement in the LP treatment.In a second experiment 114 juvenile turbot were exposed to ortho-P concentrations of 2 mg/L (C2) and 25 mg/L (LP2) for 63 days and fed until satiation with a low P diet (4.6 g digestible-P/kg diet). Overall production performance was low due to low voluntary feed intake. Whereas the FCR was unaffected by treatment (p > 0.05), significantly higher feed intake and biomass gain were observed for LP2 compared to C2 (p < 0.05). LP2 treatment showed a trend for higher protein retention efficiency and lower whole body lipid content (p < 0.1). The dry matter, ash, Phosphorus, Calcium and protein content in whole body did not significantly vary between treatments (p > 0.05).In conclusion the accumulation of ortho-P in RAS does not negatively affect health of turbot. Elevated ortho-P seems to have slight positive effects on production performance of juvenile turbot. Further research to quantify dietary P requirements for turbot in general, as well as for turbot raised under elevated ortho-P conditions in RAS is strongly required.  相似文献   

11.
Particulate and dissolved nitrogen (N) waste components are removed in recirculating aquaculture systems (RAS) using different cleaning technologies, and to dimension and optimize their removal efficiency requires that the expected daily load of the different waste forms can be estimated. Using a laboratory, mass-balance approach, the current study examined the effects of commercially applied feeding levels on the loading of different N waste forms, including daily fluctuations in dissolved total nitrogen (TN), total ammonia nitrogen (TAN), urea-N, and non-characterized, dissolved N deriving from juvenile rainbow trout (Oncorhynchus mykiss). In addition, the study examined whether there was a removal of urea-N across a moving bed biofilter operated as end-of-pipe under commercial conditions. The laboratory, mass-balance study showed that there were no effects of feeding levels (1.3, 1.5 or 1.7% of the biomass per day ) on the excretion of dissolved N components, which constituted the majority of total N waste (>81.6% on average). The excretion of urea-N and non-characterized, dissolved N components constituted 12–13% and 9–11%, respectively of dissolved TN. The excretion of urea-N was largely constant and independent of the daily feeding practice, whereas that of non-characterized N appeared to reflect the daily feeding activity, following the trends in TN and TAN. The time limited feeding regime applied in the laboratory study resulted in a pulse in the excretion of TAN that a biofilter may be unable to fully level out, potentially resulting in unnoticed, critical water quality conditions in intensive RAS during certain times of the day. Particulate N waste constituted a minor fraction of total N waste (<18.4% on average), and the actual loading depended on the digestibility of dietary protein/nitrogen. Results from the commercially operated, nitrifying biofilter showed that urea-N was removed at a rate of 0.014 g N m2 day−1. Compared to the removal of TAN (0.208 g N m2 day−1), the moving bed biofilter was 1.07 times more active in removing dissolved N than immediately expected when only considering TAN.  相似文献   

12.
One of the challenges that Recirculating Aquaculture Systems (RAS) are still facing is the risk that in RAS fish grow less than in flow-through systems due to the accumulation of substances originating from feed, fish or bacteria associated with the water re-use. The present study investigated whether RAS with high and low accumulation levels of these substances affect feed intake and growth of Nile tilapia Oreochromis niloticus, African catfish Clarias gariepinus, and European eel Anguilla Anguilla. One-hundred and twenty individuals of each species were used (start body weights: Nile tilapia 264.8 ± 8.3 g; African catfish 253.2 ± 2.1 g and European eel 66.6 ± 1.3 g). For a period of 39 days, growth and feed intake were compared between high and low accumulation RAS. HIGH accumulation RAS was designed for maximal accumulation of substances in the water by operating the system at nearly-closed conditions (30 L/kg feed/d), using mature biofilters and high feed loads; and (2) LOW accumulation RAS was designed to be a proxy for flow-through systems by operating at high water exchange rates (1500 L/kg feed/d), new biofilters and low feed load. HIGH accumulation RAS induced a reduction in feed intake (42%) and growth (83%) of Nile tilapia, as compared to systems that are a proxy for flow-through conditions. This effect was not observed in European eel and African catfish. The cause of this reduced feed intake and growth rate of Nile tilapia is still unclear and should be addressed in further studies.  相似文献   

13.
The paper addresses two potential applications for electrochemical ammonia oxidation within the operation of recirculating aquaculture systems, in which nearly complete removal of N species is required. In one described application, a physical–chemical ammonia oxidation method is suggested to entirely replace conventional biological treatment methods (i.e. nitrification/denitrification). The second described method is suggested as a final polishing step for removing ammonia from effluents of denitrification reactors supplied with intrinsic organic matter, prior to the discharge of the water. Empirical results and cost assessment are reported for the second alternative, while the first, which was recently published, is discussed with respect to improvements, operational conditions and field tests required to induce its commercial application. The polishing alternative was shown capable of efficiently removing TAN in the effluents of RAS denitrification reactors fed with intrinsic organic solids. The cost for treating denitrification reactor effluents with TAN concentration of 10 mgN/L was estimated at 6.67 cent/m3 of discharged water. Since the chloride ion concentration in seawater and in most brackish waters is high, combining the intrinsic organic carbon denitrification process with subsequent ammonia polishing by electrochemically produced active chlorine may be a competitive approach for the removal of nitrogen species from seawater and brackish water RAS.  相似文献   

14.
Further growth in Atlantic salmon (Salmo salar) aquaculture production is expected, and as a response to limited freshwater resources, recirculating aquaculture systems (RAS) are increasingly applied in smolt production. Knowledge of the general composition and quality of inlet-water is important for designing water-treatment to obtain optimal water quality in both flow-through and RAS systems. Based on water quality surveys in Norway (96 water sources, 1999–2006) and Chile (120 water sources, 2006–2008) inlet-water quality was evaluated. Norwegian smolt production is characterized by almost exclusively utilizing surface waters as inlet-water sources, with lake inlets constituting 88% and river inlets 12%. This results in large seasonal variations in both temperature, and inlet-water quality. In Chile, production is based on inlet-water from groundwater wells (32%), natural springs (40%) and rivers (28%). Norwegian inlet-water quality shows significantly lower pH and buffering capacity. The content of total organic carbon and total nitrogen is generally higher in Norway, while the levels the main metals of concern, aluminium (Al) and iron (Fe), show large between-site variability in both countries. In low pH waters in Norway, the concentration of inorganic (labile) aluminium exceeds recommended level (10 μg/L) in 15% of the samples. The Norwegian database documents highly variable production intensity in smolt production. The measured levels of carbon dioxide (CO2, 11.6 ± 6.2 mg/L) and total ammonia nitrogen (TAN, 499 ± 485 μg N/L) (mean ± SD), exceed current legislative recommendations in 30% and 10.5% of the cases, respectively. RAS technology has the potential to improve a variable water quality if it proves reliable for the time intervals and production volumes needed. Thus, if necessary adjustments in water treatment to the local water quality are implemented, RAS production may well constitute a substantial part of smolt production in the future.  相似文献   

15.
Northern scallop Argopecten purpuratus aquaculture relies on an efficient all year-round larval supply. Larvae are generally produced in closed aquaculture systems (CAS) using the batch techniques with periodical water changes. For instance, survival rates are greatly variable and can range from 0 to 80% making production of scallop larvae uncertain. The main goal of this study was to determine the feasibility of rearing scallop larvae in a recirculating aquacultural system (RAS), and secondarily to compare scallop larval growth rate and time length to reach the settling stage when reared with a traditional Chilean CAS technique and in a novel RAS technique in an industrial-like approach.Several batches of larvae were cultured in CAS and RAS. Larvae were fed on Isochrysis galbana cultured in 35-L tubular photobioreactors. Growth rates were significantly different (F11,2840 = 274.66; p < 0.001). All scallop larvae cultured in CAS showed lower growth rates ranging within 4.49 and 7.30 μm day?1 and protracted period of culture until settlement (at least 10 more culture days) than those reared in RAS (growth rates between 9.56 and 13.15 μm day?1). However, final survival (from D-larvae until settlement) of larvae reared in CAS showed higher values than those values recorded for larvae cultured on RAS. Higher growth rates observed in RAS could be attributed to a reduction in daily manipulation of the animals and/or more feed availability as well as higher temperatures and a steady state conditions in water quality. Even though, the reduction in time for rearing larvae until settlement in RAS was high, the comparison between systems is more significant in view of the reduction in make up seawater from 100% of system volume (CAS) to less than 10% of system volume (RAS). Therefore, RAS was independent from daily water quality variation from natural seawater by increasing water retention time, and with that improve water quality steady state conditions. Results of this research show that a more efficient use of water and heating systems than generally used in the Chilean hatchery industry is achievable. This is an important result since it could lead to significant reductions in the cost of operating a scallop hatchery, however further work is required to accurately compare the two systems (CAS and RAS). The main result from this research is that scallop larvae can be cultivated using recirculating aquaculture systems (RAS) as a method to increase production. The information reported in this paper will be useful for the improvement of scallop larvae culture techniques under controlled conditions.  相似文献   

16.
Aquatic animals raised in recirculating aquaculture systems (RAS) can develop preharvest “off-flavors” such as “earthy” or “musty” which are caused by the bioaccumulation of the odorous compounds geosmin or 2-methylisoborneol (MIB), respectively, in their flesh. Tainted aquatic products cause large economic losses to producers due to the inability to market them. Certain species of actinomycetes, a group of filamentous bacteria, have been attributed as the main sources of geosmin and MIB in RAS. Previous studies have demonstrated that certain nutritional factors can stimulate or inhibit bacterial biomass and geosmin production by certain actinomycetes. In the current study, the effects of two nitrate-nitrogen (NO3--N) levels (20–40 mg/L and 80–100 mg/L) on geosmin and MIB levels in culture water and the flesh of rainbow trout (Oncorhynchus mykiss) raised in RAS were monitored. Water and fish tissue samples were collected over an approximately nine-week period from six RAS, three replicates each of low and high NO3--N, and analyzed for geosmin concentrations using solid phase microextraction–gas chromatography–mass spectrometry. Results indicated no significant difference in geosmin concentrations in water or fish flesh between the low and high NO3--N RAS. Therefore, higher NO3--N levels that may occur in RAS will not adversely or beneficially impact geosmin-related off-flavor problems.  相似文献   

17.
The effects of aeration and alkalinity on water quality and product quality of Nile tilapia (Oreochrmis niloticus) were determined for simulated commercial hauling conditions. Three types of aeration were tested: pure oxygen aeration with a fine bubble diffuser (Oxygen), air aeration with medium bubble diffusers (Air), and a combination of both pure oxygen aeration with a fine bubble diffuser and air aeration with a medium bubble diffuser (Mixed). Simulated transport hauls were conducted at two initial alkalinities: 1.74 ± 0.11 meq/L (Low) and 8.84 ± 0.55 meq/L (High).The Air treatments resulted in the lowest carbon dioxide concentration, and the highest pH and un-ionized ammonia concentrations. At high alkalinities, the Air treatments were unable to maintain adequate dissolved oxygen levels. The Mixed treatment resulted in reduced carbon dioxide and dissolved oxygen concentrations. The Oxygen treatment resulted the highest dissolved oxygen, highest carbon dioxide, and lowest pH and un-ionized ammonia. Un-ionized ammonia concentrations were higher with the High Alkalinity treatments because of higher pH. Significant mortality was observed in the Air treatments in both the Low- and High-Alkalinity treatments. Mortality in the Oxygen and Mixed treatments for both low and high alkalinities were comparable to that observed in commercial tilapia transport using fine bubble diffusers and pure oxygen.These results indicate that mortality due directly to hauling water quality will not be increased at high alkalinity, if pure oxygen aeration is used. The potential effects of water quality during hauling on survival and product quality may be less than the impact from (a) physical damage from loading and un-loading and (b) physiological problems resulting from pH and temperature shock during the transfer from the hauling tanks to retail holding systems, especially for fish of reduced fitness.  相似文献   

18.
《Aquacultural Engineering》2008,38(3):234-251
Convenient, economical, and reduced labor fish harvest and transfer systems are required to realize operating cost savings that can be achieved with the use of much larger and deeper circular culture tanks. To achieve these goals, we developed a new technology for transferring fish based on their avoidance behavior to elevated concentrations of dissolved carbon dioxide (CO2). We observed this behavioral response during controlled, replicated experiments that showed dissolved CO2 concentrations of 60–120 mg/L induced rainbow trout (Oncorhynchus mykiss) to swim out of their 11 m3 “growout” tank, through a transfer pipe carrying a flow with ≤23 mg/L dissolved CO2, into a second 11 m3 “harvest” tank. The research was conducted using separate groups of rainbow trout held at commercially relevant densities (40–60 kg/m3). The average weight of fish ranged from 0.15 to 1.3 kg during the various trials. In all trials that used a constant flow of low CO2 water (≤23 mg/L) entering the growout tank from the harvest tank, approximately 80–90% of the fish swam from the growout tank, through the transfer pipe, and into the harvest tank after the CO2 concentration in the growout tank had exceeded 60 mg/L. The fish that remained in the growout tank stayed within the area of relatively low CO2 water at the entrance of the transfer pipe. However, the rate of fish transfer from the growout tank to the harvest tank was more than doubled when the diameter of the transfer pipe was increased from 203 to 406 mm. To consistently achieve fish transfer efficiencies of 99%, water flow rate through the fish transfer pipe had to be reduced to 10–20% of the original flow just before the conclusion of each trial. Reducing the flow of relatively low CO2 water near the end of each fish transfer event, restricted the zone of relatively low CO2 water about the entrance of the fish transfer pipe, and provided the stimulus for all but a few remaining fish to swim out of the growout tank. Results indicate that the CO2 avoidance technique can provide a convenient, efficient, more economical, and reduced labor approach for fish transfer, especially in applications using large and well mixed circular culture tanks.  相似文献   

19.
We evaluated the effect of low pH and low and high total ammonia nitrogen (TAN) concentrations on the physiology, stress status and the growth performance of turbot in RAS. Two experiments were conducted. In Experiment 1, turbot (466 g) were grown at control (pH 7.5; TAN ~0.5 mg/L) or low pH and high TAN (pH 5.7; TAN ~50 mg/L) for 55 days. In Experiment 2, turbot (376 g) were grown at control (pH 7.5; TAN ~0.5 mg/L), low pH and low TAN (pH 5.7; TAN ~5 mg/L) or low pH and high TAN (pH 5.7; TAN ~50 mg/L) for 59 days. In Experiment 1, final body weight, feed intake and growth were significantly lower and FCR significantly higher in turbot exposed to low pH and high TAN. In Experiment 2, only growth was significantly lower in turbot exposed to treatment low pH and high TAN as compared to fish in the control treatment and low pH and low TAN. Osmoregulation and stress indicators measured were within normal levels. In conclusion, turbot grew equally well in a water pH of 7.5 or 5.7 provided a low TAN. In contrast, low pH combined with a high TAN impaired turbot performance.  相似文献   

20.
Two 3-month experiments were conducted to investigate the effects of temperature and water calcium concentrations on growth, survival and moulting of freshwater crayfish (Paranephrops zealandicus). Both experiments were conducted using three replicates of five treatments (water temperatures of 14, 16, 18, 20 and 22 °C for Experiment 1 and water calcium concentrations of 0, 5, 10, 30 and 80 mg/L for Experiment 2). Growth rates increased with water temperature (maximum specific growth rate = 0.57) but were unchanged with increased water calcium concentration. Variability in growth rates decreased with increased water calcium concentrations. Survival decreased as water temperatures exceeded 16 °C and increased with water calcium concentrations above 10 mg/L. Inter-moult period decreased from > 90 ± 20 days at water temperatures of 14 °C to ∼ 40 ± 10 days at water temperatures > 20 °C. Moult increment of the crayfish was unaltered by either water temperature or water calcium concentrations. The optimum water temperature for productivity under conditions employed was 16 °C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号