共查询到5条相似文献,搜索用时 0 毫秒
1.
An integrated recirculating aquaculture system (RAS) for land-based fish farming: The effects on water quality and fish production 总被引:2,自引:0,他引:2
Shi-Yang ZhangGu Li Hui-Bi WuXing-Guo Liu Yan-Hong YaoLing Tao Huang Liu 《Aquacultural Engineering》2011,45(3):93-102
To mitigate the serious water pollution caused by the rapid expansion of the aquaculture industry in recent years, the development of improved aquaculture systems with more efficient water usage and less environmental impact has become essential. In this study, a land-based recirculating aquaculture system (RAS) was established that consisted of purification units (i.e., a primary biological pond, two parallel horizontal subsurface flow constructed wetlands [CWs], and a long ecological ditch) and 4-5 series-connected recirculating ponds. This system was mainly designed to stock channel catfish (Ictalurus punctatus), fifteen spine stickleback (Spinibarbus sinensis) and yellow catfish (Pelteobagrus fulvidraco), and the culture efficacy was evaluated based on a 2-year field experiment covering two growing seasons. According to the results, the primary biological pond played a role in sedimentation or nutrient retention, although this was not as evident when the CWs were functioning. The water flowing through the wetland system at a hydraulic loading rate (HLR) of 600 mm/day displayed lower values for the temperature, pH, dissolved oxygen (DO), suspended solids, organic matter and nutrients, whereas the electrical conductivity (EC) was higher, suggesting the accumulation of dissolved solids in the system. Due to the recirculation treatment, the trophic status of the recirculating ponds increased gradually along the direction of the flow and was notably lower in comparison to the control. As a result, the fish production responded to the variation of the water quality, which was reflected in the measurements of culture efficacy (final weight, survival rate, SGR and yield). The three main rearing species showed a decreasing trend along the direction of the flow, which was higher compared to the control, whereas an opposite trend was observed for filter-feeding fish. A Pearson correlation analysis revealed that the main culture species were inclined to live in meso- or oligotrophic conditions, and the silver carp adapted to more eutrophic conditions. Because RAS can provide better environmental conditions year-round, the present culture method could be more suitable for species that are sensitive to water quality in typical subtropical areas. 相似文献
2.
Alessandro DelDuca Dionia Evangelista Cesar Thiago Archangelo Freato Raíza dos Santos Azevedo Edmo Montes Rodrigues Paulo Csar Abreu 《Aquaculture Research》2019,50(9):2537-2544
The aim of this study was to evaluate variability of nitrifying bacterial community in the biofilm and in the water of a recirculating aquaculture systems (RAS) in a tilapia farming in order to determine if nitrification process is dependent, or not, of nitrifying bacteria abundance. Biofilm and water samples were collected periodically for 30 days and analysed with the fluorescent in situ hybridization (FISH) technique, used to quantify ammonia‐oxidizing bacteria (AOB) and nitrite‐oxidizing bacteria (NOB). Ammonia presented the peak in the first week, while the nitrite's maximum was recorded in the second week. Nitrate increased steadily, indicating nitrification activity. Total bacterial abundance in biofilm increased continuously, while in water, it did not change significantly. In the biofilm, number of AOB was high at beginning, decreased after few days and increased again following augment of ammonia. Number of NOB also showed an increase in abundance in biofilm following the increment of nitrite and nitrate. In water, AOB and NOB did not show major variability. Relative abundance of nitrifying bacteria represented more than 30% of total bacteria in biofilm at beginning of the experiment. Their contribution decreased to >3% in last days. It indicates that nitrifying bacteria are biofilm colonizers, and that their activity seems to be directly related to the concentration of nitrogen compounds. However, contribution of nitrifying bacteria did not vary much along the time. We may conclude that the biofilm‐nitrifying bacteria plays major role in nitrification process in RAS and that the activity of these organisms is dependent of their abundance in response to the concentration of nitrogen compounds. 相似文献
3.
为探索绿色环保的循环水养殖模式,设计循环水鱼菜共生系统(鱼菜组)、紫外灯鱼菜共生系统(鱼菜紫外灯组)及循环水养殖系统(循环水组),比较三种不同处理方式对镜鲤(Cyprinuscarpio var.specularis)、叶用莴苣(Lactuca sativa var.ramosa)生长和养殖水质的影响。结果显示,鱼菜组、鱼菜紫外灯组处理对镜鲤的生长无显著影响,但会显著影响镜鲤形态学指标,鱼菜组镜鲤肠体比显著低于循环水组。体成分方面,鱼菜组全鱼粗蛋白、粗脂肪显著高于循环水组,鱼菜组肝脏粗蛋白显著低于循环水组。鱼菜紫外灯组的细菌总数显著低于鱼菜组。水质方面,鱼菜组、鱼菜紫外灯组可显著降低系统中氨氮、硝酸盐氮及总磷总氮含量,鱼菜紫外灯组硝酸盐氮、总磷及总氮含量显著高于鱼菜组。综上所述,循环水系统耦合水培蔬菜单元可改善系统水质,改善鱼体成分,并且结合紫外灯处理可降低水体细菌总数。 相似文献
4.
Bacteriocins and their applications for the treatment of bacterial diseases in aquaculture: a review 下载免费PDF全文
Tapasa Kumar Sahoo Prasant Kumar Jena Amiya Kumar Patel Sriram Seshadri 《Aquaculture Research》2016,47(4):1013-1027
Aquaculture is one of the fastest growing food producing sectors in the world. The increase in the world population requires faster growth in aquaculture for better food availability and to overcome malnutrition. But this worldwide growth of aquaculture is overwhelmed by catastrophic fish diseases and spoilage during cultivation and preservation problems caused by pathogenic bacteria. Various remedies are available for food preservation and also from the bacterial diseases in the fish production. Due to the emergence of antibiotic resistance and adverse effects, an alternative to antibiotic is the need of the hour. The proteins such as bacteriocins, i.e. ribosomally synthesized antimicrobial peptides (AMPs) and possess antagonistic against closely related and other bacteria. These proteins are produced by most lineages of bacteria which are playing key roles in recognition and possess a cognate immunity system for self‐protection as well as host protection from infections. These proteins are potent immunomodulators with broad spectrum inhibition properties which are further used as novel therapeutic agents. In this review, we have tried to summarize the bacteriocins on the basis of their classifications, structural and functional attributes, mode of actions, bacteriocins isolated from fish and gut microbiota and presence of beneficiary bacteria in the fish gut. Further, this study highlighted where further research is a prerequisite to increase our basic understanding and search for novel bacteriocins to elucidate the proteins/peptides having antimicrobial properties for disease control in aquaculture as an alternative to antibiotics. 相似文献
5.
High concentrations of total suspended solids (TSS) need to be controlled, as they can affect shrimp production due to the excess of particles in the water column. Water renewal and clarification are alternatives used to reduce TSS. In order to determine the better method of TSS control, we carried out a study using water renewals and clarification on a commercial scale with nine ponds (600 m2 each) in an intensive biofloc system. A total of 87 shrimp m−2 were stocked in each unit divided into three treatments: R (water renewal), C1 (one clarifier) and C2 (two clarifiers in series). Each treatment had three replicates, and the experiment lasted 105 days. There were no significant differences (p > 0.05) in the parameters of water quality and zootechnical performance. Significant differences (p < 0.05) were observed in the performance of clarifiers (time of operation, TSS removal rate and total solids removed) and in the efficiency of water use and effluent generation. All treatments maintained controlled TSS levels, although C2 showed a better removal efficiency than C1, with percentages rates of 71.2 and 47.9%, respectively. This difference resulted in a 160-hour reduction in the total operating time in C2. Compared to the R treatment, the percentages of water saved in C1 and C2 were 50.7 and 51.3% higher, respectively, and the percentages of effluent generated in C1 and C2 were 97 and 96% lower, respectively. The use of clarifiers helps to control TSS concentrations in large-scale. In addition, they reduce both the amount of water used for renewals and the effluent discharges into the environment, thereby increasing biosafety in the biofloc system. 相似文献