首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Objective – To investigate a technique of central venous pressure (CVP) measurement using a newly developed catheter in healthy adult horses. Design – Prospective experimental study. Setting – University research facility. Animals – Twenty healthy adult horses. Interventions – An equine central venous catheter was inserted into the jugular vein to a length of approximately 80 cm from the mid‐cervical region in an attempt to catheterize the pulmonary artery. Pulmonary arterial catheterization was confirmed by echocardiography. Insertion distance and pressure were measured at this location with a disposable manometer. The catheter was then withdrawn until presence in the right atrium was confirmed by echocardiography. Insertion distance and pressure were also measured at this location. The catheter was then withdrawn in 5 cm increments until exiting the jugular insertion site with pressure measured at each location. All pressure measurements were taken with the manometer zero position at the point of the shoulder. Measurements and Main Results – Pulmonary artery catheterization was successful in 16 of 20 horses. Mean pulmonary arterial pressure was 23.8 cm H2O (17.5 mm Hg) (95% confidence interval [CI] 20.9–26.7 cm H2O [15.4–19.6 mm Hg]). Mean right atrial pressure was 8.3 cm H2O (6.1 mm Hg) (95% CI 7.1–9.4 cm H2O [5.2–6.9 mm Hg]). Right atrial pressure was compared with pressures recorded at sequential insertion distances and resulted in a recommendation for catheter insertion of at least 40 cm for CVP measurement in adult horses. Jugular venous pressure measurement was statistically different from CVP measurement. Conclusions – This catheter measurement technique is well tolerated in normal horses. Routine clinical use of this equine central venous catheter may improve our ability to monitor patients and improve patient care and outcomes of ill horses in hospital.  相似文献   

2.
Background: Central venous pressure (CVP) customarily has been measured in veterinary patients with water manometry. However, many institutions are now using stallside electronic monitors in both anesthesia and intensive care units for many aspects of patient monitoring. Hypothesis: Electronic stall side monitoring devices will agree with water manometry for measurement of CVP in horses. Animals: Ten healthy adult horses from the university research herd. Methods: Central venous catheters were placed routinely, and measurements were obtained in triplicate with each of the 3 methods every 12 hours for 3 days. Data were analyzed by a Lin concordance correlation coefficient and modified Bland‐Altman limits of agreement, with all devices compared pairwise. Results: Compared with water manometry, agreement (bias) of the Passport was ?1.94 cmH2O (95% limits of agreement, ?8.54 to 4.66 cmH2O) and of the Medtronic was ?1.83 cmH2O (95% limits of agreement, ?8.60 to 4.94 cmH2O). When compared with the Passport, agreement of the data obtained with the Medtronic was 0.27 cmH2O (95% limits of agreement, ?4.39 to 4.93 cmH2O). Conclusions and Clinical Importance: These data show that both electronic monitors systematically provide measurements that are approximately 2 cmH2O lower than water manometry, but differences between the 2 electronic devices are small enough (< 0.5 cmH2O) to be considered clinically unimportant. This discrepancy should be taken into account when interpreting data obtained with these monitoring devices.  相似文献   

3.
Background: Central venous pressure (CVP) is a used as an estimation of intravascular volume status in various species. Techniques for measuring CVP in horses have been described, but the repeatability of these readings at a single time point or over time has not been established. Hypothesis: That CVP measurements in healthy adult horses would be repeatable at each time point, that these readings would be reproducible over time, and that alteration in head position relative to the heart would alter CVP. Animals: Ten healthy adult research horses. Methods: In an experimental study, horses were instrumented with a central venous catheter. Readings were taken in triplicate q6h for 2 days by water manometry, and twice daily with the head in neutral, elevated, and lowered positions by electronic manometry. Results: Variation in the “neutral” measurements obtained at each time point was <0.1 ± 1.0 cmH2O (P= .718). There was a significant decrease in CVP over time (P= .015), which was eliminated when results were controlled for acute decrease in body weight of ?1.35% (presumed hypohydration because of lack of acclimatization and decreased water intake). Head height had a significant and directional effect on CVP in that the elevated head position decreased CVP ?2.0 ± 6.5 cmH2O (P < .001) while the lowered head position increased CVP by 3.7 ± 5.5 cmH2O (P < .001). Conclusions and Clinical Importance: CVP values obtained by water manometry were repeatable in adult horses, but were reproducible only when controlled for changes in hydration. Care should be taken to maintain consistency in head position to prevent erroneous readings.  相似文献   

4.
Background: Central venous pressure (CVP) is used in many species to monitor right‐sided intravascular volume status, especially in critical care medicine. Hypothesis: That hypohydration in adult horses is associated with a proportional reduction in CVP. Animals: Ten healthy adult horses from the university teaching herd. Methods: In this experimental study, horses underwent central venous catheter placement and CVP readings were obtained by water manometry. The horses were then deprived of water and administered furosemide (1 mg/kg IV q6h) for up to 36 hours. Weight, CVP, vital signs, PCV, total protein (TP), and serum lactate were monitored at baseline and every 6 hours until a target of 5% decrease in body weight loss was achieved. The spleen volume was estimated sonographically at baseline and peak volume depletion. Linear regression analysis was used to assess the association of CVP and other clinical parameters with degree of body weight loss over time. Results: There was a significant association between CVP and decline in body weight (P < .001), with a decrease in CVP of 2.2 cmH2O for every percentage point decrease in body weight. Other significant associations between volume depletion and parameters measured included increased TP (P= .007), increased serum lactate concentration (P= .048), and decreased splenic volume (P= .046). There was no significant association between CVP and vital signs or PCV. Conclusions and Clinical Importance: These findings suggest that CVP monitoring might be a useful addition to the clinical evaluation of hydration status in adult horses.  相似文献   

5.
Objective – To develop an indirect method for measurement of intraabdominal pressures in the standing horse using measurement of gastric pressures as a less invasive technique, and to compare this method with direct intraabdominal pressures obtained from the peritoneal cavity. Design – Prospective, experimental study. Setting – University‐based equine research facility. Animals – Ten healthy adult horses, 7 geldings and 3 mares. Interventions – Gastric pressures were measured using a nasogastric tube with a U‐tube manometry technique, while intraperitoneal pressures were measured with a peritoneal cannula. Measurements of intraabdominal pressure were obtained by both methods, simultaneously, and were evaluated using 5 increasing volumes of fluid infused into the stomach (0, 400, 1,000, 2,000, and 3,000 mL). Bias and agreement between the 2 methods were determined using Bland‐Altman analysis and Lin's concordance correlation coefficients. Measurements and Main Results – Mean gastric pressure was 14.44±4.69 cm H2O and ranged from 0 to 25.8 cm H2O. Intraperitoneal pressure measurements were generally subatmospheric, and ranged from ?6.6 to 3.1 cm H2O (mean±SD, ?1.59±2.09 cm H2O). Measurements of intraperitoneal pressures were repeatable; however, intra‐ and interindividual variance was significantly larger for measurements of gastric pressures. The mean and relative bias for comparison between the 2 techniques was 15.9±5.3 cm H2O and 244.3±199.2%, respectively. The Lin's concordance correlation coefficient between gastric and intraperitoneal pressures was ?0.003 but this was not statistically significant (P=0.75). Conclusions – There was no statistical concordance between measurements of intraabdominal pressure using gastric and intraperitoneal pressure measurement, indicating that gastric pressures cannot be substituted for intraperitoneal pressure measurement. Direct measurement of intraperitoneal pressures may be a more consistent method for comparison of intraabdominal pressures between horses, due to less variability within and between individuals.  相似文献   

6.
Evaluation of peripheral and central venous pressure in awake dogs and cats   总被引:1,自引:0,他引:1  
OBJECTIVE: To determine whether peripheral venous pressure (PVP) was correlated with central venous pressure (CVP) when measured by use of different catheter sizes, catheterization sites, and body positions in awake dogs and cats. ANIMALS: 36 dogs and 10 cats. PROCEDURES: Dogs and cats with functional jugular and peripheral venous catheters were enrolled in the study. Peripheral venous catheters (18 to 24 gauge) were placed in a cephalic, lateral saphenous, or medial saphenous vein. Central venous catheters (5.5 to 8.5 F) were placed in the jugular vein and advanced into the cranial vena cava. Catheters were connected to pressure transducers and a blood pressure monitor capable of displaying 2 simultaneous pressure tracings. For each animal, the mean of 5 paired measurements of PVP and CVP was calculated. The relationship between PVP and CVP when measured by use of different catheter sizes, catheterization sites, and body positions was determined. RESULTS: Mean +/- SD PVP was 5.7 +/- 5.8 mm Hg higher than CVP in dogs and 6.0 +/- 6.9 mm Hg higher than CVP in cats. However, results of multiple regression analysis did not indicate a significant correlation between PVP and CVP, regardless of catheter size, catheter position, or body position. The relationship was weak in both dogs and cats. CONCLUSIONS AND CLINICAL RELEVANCE: The PVP was poorly correlated with CVP when different catheter sizes, catheterization sites, and patient positions were evaluated. Peripheral venous pressure should not be used to approximate CVP in awake dogs and cats.  相似文献   

7.
Introduction/objectivesIntracardiac echocardiography (ICE) is a method of obtaining echocardiographic images with a steerable ultrasound catheter placed within the heart via a venous or arterial approach. The objectives of this study were to assess the feasibility of a 5–10 MHz, 8 French, 90 cm ICE catheter to evaluate cardiac structures and function in standing, sedated horses, and describe standard views in this species.AnimalsTen apparently healthy horses weighing 458.1–618.2 kg from a university teaching herd.Materials and methodsEach horse had a physical examination, transthoracic echocardiography, and ICE performed through a 10 French introducer percutaneously placed in the right jugular vein in the proximal third of the neck with continuous ECG monitoring using telemetry.ResultsThree intracardiac echocardiography positions (cranial right atrium, mid right atrium, and right ventricle) with seven views were described with the associated 2D, pulse wave Doppler, continuous wave Doppler, color Doppler, and M-mode image acquisition standardized by referencing the intracardiac positions and common landmarks. The positions were confirmed with simultaneous transthoracic echocardiography. The procedure was well tolerated with only mild, occasional ventricular, and supraventricular arrhythmias that resolved with intracardiac echocardiography catheter repositioning.ConclusionsIntracardiac echocardiography is feasible, safe, and allows for the acquisition of diagnostic images in conscious, sedated horses.  相似文献   

8.
Objective To compare, ventilation using intermittent positive pressure ventilation (IPPV) with constant positive end‐expiratory pressure (PEEP) and alveolar recruitment manoeuvres (RM) to classical IPPV without PEEP on gas exchange during anaesthesia and early recovery. Study design Prospective randomized study. Animals Twenty‐four warm‐blood horses, weight mean 548 ± SD 49 kg undergoing surgery for colic. Methods Premedication, induction and maintenance (isoflurane in oxygen) were identical in all horses. Group C (n = 12) was ventilated using conventional IPPV, inspiratory pressure (PIP) 35–45 cmH2O; group RM (n = 12) using similar IPPV with constant PEEP (10 cmH2O) and intermittent RMs (three consecutive breaths PIP 60, 80 then 60 cmH2O, held for 10–12 seconds). RMs were applied as required to maintain arterial oxygen tension (PaO2) at >400 mmHg (53.3 kPa). Physiological parameters were recorded intraoperatively. Arterial blood gases were measured intra‐ and postoperatively. Recovery times and quality of recovery were measured or scored. Results Statistically significant findings were that horses in group RM had an overall higher PaO2 (432 ± 101 mmHg) than those in group C (187 ± 112 mmHg) at all time points including during the early recovery period. Recovery time to standing position was significantly shorter in group RM (49.6 ± 20.7 minutes) than group C (70.7 ± 24.9). Other measured parameters did not differ significantly. The median (range) of number of RMs required to maintain PaO2 above 400 mmHg per anaesthetic was 3 (1–8). Conclusion Ventilation using IPPV with constant PEEP and RM improved arterial oxygenation lasting into the early recovery period in conjunction with faster recovery of similar quality. However this ventilation mode was not able to open up the lung completely and to keep it open without repeated recruitment. Clinical relevance This mode of ventilation may provide a clinically practicable method of improving oxygenation in anaesthetized horses.  相似文献   

9.

Objective

To compare the effects of controlled mechanical ventilation (CMV) and constant positive end-expiratory pressure (PEEP) and interposed recruitment manoeuvres (RMs) with those of CMV without PEEP on gas exchange during general anaesthesia and the early recovery period.

Study design

Prospective, randomized clinical trial.

Animals

A total of 48 Warmblood horses undergoing elective surgery in lateral (Lat) (n = 24) or dorsal (Dors) (n = 24) recumbency.

Methods

Premedication (romifidine), induction (diazepam and ketamine) and maintenance (isoflurane in oxygen) were identical in all horses. Groups Lat- CMV and Dors-CMV (each n = 12) were ventilated using CMV. Groups Lat-RM and Dors-RM (each n = 12) were ventilated using CMV with constant PEEP (10 cmH2O) and intermittent RMs (three consecutive breaths with peak inspiratory pressure of 60 cmH2O, 80 cmH2O and 60 cmH2O, respectively). RMs were applied as required to maintain PaO2 at > 400 mmHg (> 53.3 kPa). Dobutamine was given to maintain mean arterial blood pressure at > 60 mmHg. Physiological parameters were recorded every 10 minutes. Arterial blood gases were measured intra- and postoperatively. Statistical analyses were conducted using analyses of variance (anova), t tests and the Mann–Whitney U-test.

Results

Horses in Dors-RM had higher PaO2 values [478 ± 35 mmHg (63.7 ± 4.6 kPa)] than horses in Dors-CMV [324 ± 45 mmHg (43.2 ± 6 kPa)] during anaesthesia and the early recovery period. There were no differences between horses in groups Lat-CMV and Lat-RM. Other measured parameters did not differ between groups.

Conclusions and clinical relevance

Ventilation with CMV, constant PEEP and interposed RM provided improved arterial oxygenation in horses in dorsal recumbency that lasted into the early recovery period, but had no benefit in horses in lateral recumbency. This mode of ventilation may provide a clinically practicable method of improving oxygenation in anaesthetized horses, especially in dorsal recumbency.  相似文献   

10.

Objectives

To determine the endotracheal tube cuff pressure produced with two inflation techniques, in two brands of endotracheal tube in cats. To determine the inspiratory pressure which produces an audible leak when the intracuff pressure is 30 cmH2O.

Study design

Prospective, clinical, randomized study.

Animals

A total of 40 client-owned healthy adult cats.

Methods

Following induction of anaesthesia, endotracheal intubation was performed with a Parker Flex-Tip PFLP (Parker; n = 20) or Flexicare VentiSeal (Flexicare; n = 20) endotracheal tube. For each cat, the endotracheal tube cuff was inflated using two methods, minimum occlusive volume (MOV) and pilot balloon palpation (PBP). Intracuff pressure was recorded. Cuff pressure was then set at 30 cmH2O and the pressure within the breathing system when a manual breath first caused an audible leak was measured.

Results

PBP pressure was lower for Parker (36 ± 13 cmH2O) compared with Flexicare (45 ± 13 cmH2O, p = 0.048). MOV pressure was not different between tube types (56 ± 28 versus 66 ± 25 cmH2O for Parker and Flexicare, respectively, p = 0.247). MOV produced a higher pressure than PBP for Parker (56 ± 28 versus 36 ± 13 cmH2O, p = 0.001) and Flexicare (66 ± 25 versus 45 ± 13 cmH2O, p = 0.007). When intracuff pressure was set at 30 cmH2O, 95% of cats did not develop an audible leak until the inspiratory pressure was greater than 10 and 12 cmH2O for Parker and Flexicare tubes, respectively.

Conclusions

PBP produced lower cuff pressures than MOV, although both techniques produced a cuff pressure above that at which mucosal blood flow is believed to be restricted. A cuff pressure of 30 cmH2O may be sufficient to prevent audible leak in most cats if respiratory pressures are kept at 10–12 cmH2O or below.

Clinical relevance

To ensure a safe endotracheal tube cuff pressure, use of a specifically designed pressure gauge is recommended.  相似文献   

11.
The relationship between mixed venous O2 tension and cardiac output was studied in six anesthetized horses breathing 100% O2. Cardiac output, O2 consumption, mean arterial pressure, heart rate, and arterial and venous blood gases were measured after administration of xylazine or dobutamine to horses in lateral, sternal, and dorsal recumbencies. After approximately 3 hours, Escherichia coli endotoxin was administered while horses were in dorsal recumbency, and all measurements were repeated. Relationships between cardiac index (CI) and PVO2, heart rate, mean arterial pressure, jugular PVO2, and PVO2 of blood from a superficial limb vein were evaluated by linear regression analysis. Mean arterial pressure was significantly (P less than 0.05) correlated with CI in horses in all positions and after endotoxin administration. However, data points were poorly grouped. Heart rate and CI were significantly correlated in horses in all positions, but not after endotoxin administration. Correlations between jugular PVO2 and PVO2 of blood from a superficial limb vein were not significant in horses in sternal recumbency, and PVO2 of blood from a superficial limb vein was not significantly correlated with CI in horses in lateral recumbency. There was a significant and tight correlation between PVO2 and CI in horses in all positions and after endotoxin administration.  相似文献   

12.
Objectives – To develop a direct method for measuring intra‐abdominal pressures in the standing horse, identify a reference interval for direct intra‐abdominal pressures, compare these pressures to indirect intra‐abdominal pressures measured from the bladder, and determine the optimal bladder infusion volume for indirect pressure measurement. Design – Prospective, experimental study. Setting – A university‐based equine research facility. Animals – Ten healthy adult horses, 5 males and 5 females. Interventions – Direct intra‐abdominal pressures were measured through an intraperitoneal cannula and zeroed at the height midway between the height of the tuber ishii and point of the shoulder. Indirect measurements of intra‐abdominal pressure were performed by measuring intravesicular pressures through a transurethral catheter zeroed at the tuber ishii. Measurements and Main Results – Direct pressure measurements obtained in the standing horse were subatmospheric (mean, ?1.80 cm H2O; SD, 1.61 cm H2O; 95% CI, ?2.80 to ?0.80) and were shown to decrease as the horse's weight increased (Pearson's r=?0.67, P=0.04), with no effect of head position (P=0.15). Mean baseline indirect pressure measurements (mean, ?8.63 cm H2O; SD, 4.37 cm H2O; 95% CI, ?13.05 to ?4.21) were significantly different from the pressures measured directly from the abdomen (P<0.001). Indirect pressure measurements were noted to increase with increasing volumes infused into the bladder, and were statistically different at a volume of 100 mL (P=0.004). There was low to moderate correlation between direct and indirect pressure measurements of intra‐abdominal pressure over a range of fluid volumes infused into the bladder (Pearson's correlation range ?0.38 to 0.58). Conclusion – Pressures measured directly in the standing horse were subatmospheric, and increased as the horse's weight increased. Indirect pressures measured were altered by increasing volumes infused in the bladder. There was no significant correlation between the 2 methods of intra‐abdominal pressure measurement.  相似文献   

13.
ObjectiveTo characterize the cardiorespiratory and electrocardiographic effects of the combined administration of phenylbutazone and romifidine.Study designProspective four-period, four-treatment, blinded, randomized, crossover trial.AnimalsFive, healthy, mixed breed horses.MethodsPrior to treatment administration, a catheter was introduced into the intra-thoracic cranial vena cava via the jugular vein and a subcutaneously located carotid artery was catheterised. All treatments were administered intravenously (IV) and consisted of saline placebo (PLC), phenylbutazone (PBZ, 4.4 mg kg?1) romifidine (ROM, 80 μg kg?1) and a combination of phenylbutazone (4.4 mg kg?1) and romifidine (80 μg kg?1). There was at least a 1 week washout period between treatments. Heart rate (HR), respiratory rate (fR), systolic (SAP), diastolic (DAP) and mean (MAP) arterial pressures and central venous pressure (CVP) were recorded for baseline (prior to drug administration) and at 5 minute intervals thereafter for 30 minutes. Electrocardiographic abnormalities were recorded. Data were analyzed by anova.ResultsFor the cardiovascular variables there were no statistically significant (p > 0.05) differences between horses treated with ROM and PBZ_ROM. Statistically significant (p < 0.05) differences only occurred between treatments with romifidine (ROM and PBZ_ROM) and without romifidine (PLC and PBZ). Within treatments, for ROM, changes over time were statistically significant (p < 0.05) for HR, SAP, DAP, MAP and CVP. For PBZ_ROM, changes over time were statistically significant (p < 0.05) for CVP. Sino-atrial and atrio-ventricular blocks occurred in horses treated with ROM and PBZ_ROM.Conclusions and clinical relevanceThe combined IV administration of phenylbutazone and romifidine had no statistically significant effect on cardiorespiratory variables. These limited data suggest no evidence why both agents should not be included in a preoperative medication protocol for healthy horses but do not exclude the possibility of interactions occurring in a larger population.  相似文献   

14.

Objective

The aim of this study was to evaluate the effect of continuous positive airway pressure (CPAP) on regional distribution of ventilation and dead space in anaesthetized horses.

Study design

Randomized, experimental, crossover study.

Animals

A total of eight healthy adult horses.

Methods

Horses were anaesthetized twice with isoflurane in 50% oxygen and medetomidine as continuous infusion in dorsal recumbency, and administered in random order either CPAP (8 cmH2O) or NO CPAP for 3 hours. Electrical impedance tomography (and volumetric capnography (VCap) measurements were performed every 30 minutes. Lung regions with little ventilation [dependent silent spaces (DSSs) and nondependent silent spaces (NSSs)], centre of ventilation (CoV) and dead space variables, as well as venous admixture were calculated. Statistical analysis was performed using multivariate analysis of variance and Pearson correlation.

Results

Data from six horses were statistically analysed. In CPAP, the CoV shifted to dependent parts of the lungs (p < 0.001) and DSSs were significantly smaller (p < 0.001), while no difference was seen in NSSs. Venous admixture was significantly correlated with DSS with the treatment time taken as covariate (p < 0.0001; r = 0.65). No differences were found for any VCap parameters.

Conclusions and clinical relevance

In dorsally recumbent anaesthetized horses, CPAP of 8 cmH2O results in redistribution of ventilation towards the dependent lung regions, thereby improving ventilation-perfusion matching. This improvement was not associated with an increase in dead space indicative for a lack in distension of the airways or impairment of alveolar perfusion.  相似文献   

15.

Objective

To compare electrical velocimetry (EV) noninvasive measures of cardiac output (CO) and stroke volume variation (SVV) in dogs undergoing cardiovascular surgery with those obtained with the conventional thermodilution technique using a pulmonary artery catheter.

Study design

Prospective experimental trial.

Animals

Seven adult Beagle dogs with a median weight of 13.6 kg.

Methods

Simultaneous, coupled cardiac index (CI; CO indexed to body surface area) measurements by EV (CIEV) and the reference pulmonary artery catheter thermodilution method (CIPAC) were obtained in seven sevoflurane-anaesthetized, mechanically ventilated dogs undergoing experimental open-chest cardiovascular surgery for isolated right ventricular failure. Relationships between SVV or central venous pressure (CVP) and stroke volume (SV) were analysed to estimate fluid responsiveness. Haemodynamic data were recorded intraoperatively and before and after fluid challenge.

Results

Bland–Altman analysis of 332 matched sets of CI data revealed an overall bias and precision of – 0.22 ± 0.52 L minute?1 m?2 for CIEV and CIPAC (percentage error: 30.4%). Trend analysis showed a concordance of 88% for CIEV. SVV showed a significant positive correlation (r2 = 0.442, p < 0.0001) with SV changes to a volume loading of 200 mL, but CVP did not (r2 = 0.0002, p = 0.94). Better prediction of SV responsiveness (rise of SV index of ≥ 10%) was observed for SVV (0.74 ± 0.09; p = 0.014) with a significant area under the receiver operating characteristic curve in comparison with CVP (0.53 ± 0.98; p = 0.78), with a cut-off value of 14.5% (60% specificity and 83% sensitivity).

Conclusions and clinical relevance

In dogs undergoing cardiovascular surgery, EV provided accurate CO measurements compared with CIPAC, although its trending ability was poor. Further, SVV by EV, but not CVP, reliably predicted fluid responsiveness during mechanical ventilation in dogs.  相似文献   

16.
Determination of central venous pressure (CVP) is relevant to patients with right heart disease, hypovolemia, and following intravenous fluid therapy. We hypothesized that changes in CVP in dogs could be predicted by measurements of hepatic vein diameter, caudal vena cava (CVC) diameter, and hepatic venous flow velocities. Nine healthy American Foxhounds were anesthetized. Following baseline recordings, intravenous fluids were administered to increase CVP. Volume administration created treatment periods with CVP ranges of 5, 10, 15, 20, and 25 mm Hg. Flow velocities in the right medial hepatic vein were recorded using pulsed wave Doppler ultrasound. Hepatic vein, CVC, and aorta diameters were determined with B‐mode ultrasound. Variables were compared across the treatment periods by ANOVA for repeated measures. Relationships between CVP, Doppler, and B‐mode variables were evaluated using Spearman's rank correlations, multiple linear regression, and repeated measures linear regression. The a‐, S‐ and v‐wave velocities were augmented significantly with volume loading. The best part (semipartial) correlation coefficients predicting increasing CVP were identified with v‐wave velocity (0.823), S‐wave velocity (?0.800), CVC diameter (0.855), and hepatic vein diameter (0.815). Multiple linear regression indicated that CVP in this study could be predicted best by a combination of CVC and hepatic vein diameter and the v‐wave velocity (r=0.928). Ultrasound imaging identified gallbladder and pancreatic edema consistently, likely related to acute volume loading. These findings may be applicable in the assessment of volume status, dogs with right heart disease, and during serial monitoring of dogs receiving fluid or diuretic therapy.  相似文献   

17.
Anesthesia of equids is associated with pulmonary dysfunction. Cardiovascular and respiratory effects of inhalation anesthetic agents and duration of anesthesia have been studied, using oxygen as the carrier gas. To our knowledge, the effects of inspired oxygen have not been determined. We studied the cardiovascular and respiratory effects of 2 inspired oxygen fractions (0.30 and greater than 0.85) in 5 laterally recumbent, halothane-anesthetized horses. Mean systemic arterial blood pressure, cardiac output, central venous pressure, pulmonary arterial pressure, arterial pH, and arterial base excess were similar in horses of the 2 groups during 4 hours of anesthesia at constant end-tidal halothane concentration. End-tidal partial pressure of CO2, arterial partial pressure of CO2 and O2, and alveolar-to-arterial O2 tension difference were greater in horses exposed to the higher oxygen concentration. On the basis of the data obtained, we suggest that greater hypoventilation and ventilation/perfusion mismatch occur when horses are breathing high-oxygen fraction. Arterial partial pressure of O2 was not different between the 2 groups of horses after they were disconnected from the anesthesia circuit and allowed to breathe room air. Horses recovered from anesthesia without complications.  相似文献   

18.
This study was undertaken to determine if pleural effusion (PEF) increases central venous pressure (CVP) in cats, to define any relationship between volume of PEF and CVP and to ascertain the significance of CVP alterations in cats having PEF and suspected right heart failure (RHF). CVP was measured from a jugular vein before (CVPpre) and after (CVPpost) bilateral thoracentesis in 9 cats with naturally occurring PEF and under experimental conditions in 3 spontaneously breathing anesthetized cats receiving graded intrathoracic infusion of saline. Volumes of introduced and recovered fluid were recorded. A significant decrease occurred in CVP after thoracentesis in cats with naturally occurring PEF (mean difference, 4.5 cm H2O; range, 0-7.0 cm H2O, P < .005). The magnitude of change in CVP was constant (r = 0.36, P > .05) over the range of volumes recovered (range, 95-450 mL or 16.4-90 mL/kg). Five cats had CVPpre suggestive of RHF (range, 8.16-20.4 cm H2O). After thoracentesis, RHF was ruled out in 1 cat (CVPpost, 4.08 cm H2O) and the CVP declined but remained abnormally high (9.52 cm H2O) in 1 cat with a mediastinal mass. In 2 cats with confirmed RHF (CVPpre, 20.4 and 16.3 cm H2O), CVP decreased after thoracentesis but remained abnormally high (CVPpost, 14.96 and 10.88 cm H2O). In 1 cat with noncardiogenic PEF and inadequate removal of fluid, CVPpost (8.16 cm H2O) did not decrease. Experimentally, a positive linear relationship was observed between CVP and volume of PEF. The threshold volume required to increase CVP (17 mL/kg) approximated that suggested by clinical observation (22 mL/kg). PEF increases CVP and can cause abnormally high CVP in the absence of RHF.  相似文献   

19.
ObjectiveTo compare the efficacy of single-breath continuous positive airway pressure manoeuvre (CPAP-M) with inhaled salbutamol, and a combination of both.Study designRandomized, clinical study.AnimalsA total of 62 client-owned horses (American Society of Anesthesiologists status III–V) anaesthetized for laparotomy.MethodsHorses were premedicated with intravenous (IV) xylazine (0.4–0.6 mg kg–1), anaesthesia was induced with midazolam (0.06 mg kg–1 IV) and ketamine (2.2 mg kg–1 IV) and maintained with isoflurane in oxygen using volume-controlled ventilation without positive end-expiratory pressure. If PaO2 was < 100 mmHg (13.3 kPa), either a CPAP-M (50 cmH2O for 45 seconds) or salbutamol (0.002 mg kg–1) was administered. The intervention was considered successful if PaO2 reached 100 mmHg (13.3 kPa). If PaO2 remained < 100 mmHg (13.3 kPa), treatments were switched. PaO2/FiO2 ratio and estimated shunt fraction (F-shunt) were derived from data obtained from arterial blood gas measurements. Dynamic compliance (Cdyn) was calculated from variables recorded at the moment of arterial blood analysis. Fisher’s exact tests compared success rates between treatments, and linear models were performed to test whether the treatment modified the values of the measurements; p < 0.05.ResultsSalbutamol was the first intervention in 28 horses and was effective in 22 horses. CPAP-M was the first intervention in 34 horses and was effective in 26 horses. CPAP-M after salbutamol was performed in six horses, with four responders, and salbutamol after CPAP-M was administered to eight horses, with one responder. Salbutamol, but not CPAP-M, significantly decreased F-shunt. Both salbutamol and CPAP-M significantly increased Cdyn.Conclusions and clinical relevanceSalbutamol and CPAP-M were comparably effective in improving oxygenation and Cdyn in anaesthetized horses with PaO2 < 100 mmHg (13.3 kPa). Whether combining both treatments might be beneficial needs to be confirmed on a larger number of horses.  相似文献   

20.
ObjectiveTo evaluate a veterinary-specific oscillometric noninvasive blood pressure (NIBP) system according to the guidelines of the American College of Veterinary Internal Medicine (ACVIM) Consensus Statement.Study designProspective clinical study.AnimalsA total of 33 client-owned cats (20 females and 13 males).MethodsCats were premedicated with methadone (0.3 mg kg−1) and alfaxalone (2 mg kg−1) intramuscularly. After 15 minutes anesthesia was induced with isoflurane (3%) in 100% oxygen by facemask while breathing spontaneously. A 22 gauge catheter was placed in the median caudal artery and systolic (SAP), diastolic (DAP) and mean (MAP) arterial pressures were measured. NIBP measurements were collected by placing the cuff (40% of limb circumference) on the right or left antebrachium. The agreement between the two methods was evaluated with the Bland–Altman methods, and the oscillometric NIBP device was evaluated using the ACVIM guidelines for validation of devices.ResultsData from 30 of the 33 cats were analyzed. Five paired measurements were taken from each cat, totaling 150 paired measurements. Mean bias (limits of agreements) for SAP, DAP and MAP were 2.7 (−22.7 to 28.1), 0.9 (−22.3 to 24.2) and 1.3 (−20.4 to 23.0). The oscillometric NIBP passed all validation criteria, except correlation which was <0.9 for SAP, DAP and MAP.Conclusions and clinical relevanceThe Vet20 did not meet all validation criteria by the ACVIM. However, all criteria except correlation were met.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号