首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Neuraminidase is a rational target for influenza inhibition, and the search for neuraminidase inhibitors has been intensified. Mimosine, a nonprotein amino acid, was for the first time identified as a neuraminidase inhibitor with an IC(50) of 9.8 ± 0.2 μM. It was found that mimosine had slow, time-dependent competitive inhibition against the neuraminidase. Furthermore, a small library of mimosine tetrapeptides (M-A(1)-A(2)-A(3)) was synthesized by solid-phase synthesis and was assayed to evaluate their neuraminidase and tyrosinase inhibitory properties. Most of the tetrapeptides showed better activities than mimosine. Mimosine-FFY was the best compound, and it exhibited 50% neuraminidase inhibition at a low micromolar range of 1.8 ± 0.2 μM, whereas for tyrosinase inhibition, it had an IC(50) of 18.3 ± 0.5 μM. The kinetic studies showed that all of the synthesized peptides inhibited neuraminidase noncompetitively with K(i) values ranging from 1.9 -to 7.2 μM. These results suggest that mimosine could be used as a source of bioactive compounds and may have possibilities in the design of drugs as neuraminidase and tyrosinase inhibitors.  相似文献   

2.
The inhibitory activity from the isolated component of the fruiting body Phellinus merrillii (PM) was evaluated against α-glucosidase and lens aldose reductase from Sprague-Dawley male rats and compared to the quercetin as an aldose reductase inhibitor and acarbose as an α-glucosidase inhibitor. The ethanol extracts of PM (EPM) showed the strong α-glucosidase and aldose reductase activities. α-Glucosidase and aldose reductase inhibitors were identified as hispidin (A), hispolon (B), and inotilone (C), which were isolated from EtOAc-soluble fractions of EPM. The above structures were elucidated by their spectra and comparison with the literatures. Among them, hispidin, hispolon, and inotilone exhibited potent against α-glucosidase inhibitor activity with IC(50) values of 297.06 ± 2.06, 12.38 ± 0.13, and 18.62 ± 0.23 μg/mL, respectively, and aldose reductase inhibitor activity with IC(50) values of 48.26 ± 2.48, 9.47 ± 0.52, and 15.37 ± 0.32 μg/mL, respectively. These findings demonstrated that PM may be a good source for lead compounds as alternatives for antidiabetic agents currently used. The importance of finding effective antidiabetic therapeutics led us to further investigate natural compounds.  相似文献   

3.
Ethanol extracts from 15 kinds of marine algae collected from the coast of the Noto Peninsula in Japan were examined for their inhibitory effects on human salivary α-amylase. Four extracts significantly suppressed the enzyme activity. An inhibitor was purified from the extract of Sargassum patens . The compound was a new phloroglucinol derivative, 2-(4-(3,5-dihydroxyphenoxy)-3,5-dihydroxyphenoxy) benzene-1,3,5-triol (DDBT), which strongly suppressed the hydrolysis of amylopectin by human salivary and pancreatic α-amylases. The 50% inhibitory activity (IC(50)) for α-amylase inhibition of DDBT (3.2 μg/mL) was much lower than that of commercially available α-amylase inhibitors, acarbose (26.3 μg/mL), quercetagetin (764 μg/mL), and α-amylase inhibitor from Triticum aestivum (88.3 μg/mL). A kinetic study indicated that DDBT was a competitive α-amylase inhibitor with a K(i) of 1.8 μg/mL. DDBT also inhibited rat intestinal α-glucosidase with an IC(50) value of 25.4 μg/mL for sucrase activity and 114 μg/mL for maltase activity. These results suggest that DDBT, a potent inhibitor of carbohydrate-hydrolyzing enzymes, may be useful as a natural nutraceutical to prevent diabetes.  相似文献   

4.
Rhodiola crenulata L. is an important species in genus Rhodiola widely used as a health food to reinforce immunity, improve memory and learning, scavenge active-oxygen species, and relieve altitude sickness. Eleven new lignans and a new benzonitrile compound, crenulatanoside A, were isolated from the roots of R. crenulata L. along with 25 known compounds, including 12 lignans. The structures of these compounds were elucidated by spectroscopic data and chemical evidence. Among them, compounds 1-4 and 5-7 were determined to be optical isomers of two 8-O-4' neolignan glycosides. Compounds 8-11 were aryl tetralin type lignans, and compounds 12 and 13 were dihydrobenzofuran neolignans. All of the isolated compounds were evaluated for their inhibitory activity against α-glucosidase. From the data obtained, compound 37 showed strong inhibitory activity against α-glucosidase with an IC(50) value of 96.8 μM.  相似文献   

5.
AIDS and influenza are viral pandemics and remain one of the leading causes of human deaths worldwide. The increasing resistance of these diseases to synthetic drugs demands the search for novel compounds from plant-based sources. In this regard, the leaves and rhizomes of Alpinia zerumbet, a traditionally important economic plant in Okinawa, were investigated for activity against HIV-1 integrase (IN) and neuraminidase (NA). The aqueous extracts of leaves and rhizomes had IN inhibitory activity with IC(50) values of 30 and 188 μg/mL, whereas against NA they showed 50% inhibition at concentrations of 43 and 57 μg/mL, respectively. 5,6-Dehydrokawain (DK), dihydro-5,6-dehydrokawain (DDK), and 8(17),12-labdadiene-15,16-dial (labdadiene) were isolated from the rhizomes and were tested for enzyme inhibitions. DK and DDK strongly inhibited IN with IC(50) of 4.4 and 3.6 μg/mL, respectively. Against NA, DK, DDK, and labdadiene exhibited mixed type of inhibition with respective IC(50) values of 25.5, 24.6, and 36.6 μM and K(i) values ranging from 0.3 to 2.8 μM. It was found that DDK is a slow and time-dependent reversible inhibitor of NA, probably with a methoxy group as its functionally active site. These results suggest that alpinia could be used as a source of bioactive compounds against IN and NA and that DK and DDK may have possibilities in the design of drugs against these viral diseases.  相似文献   

6.
为高效利用羊栖菜组分多糖(SFPSⅠ),以SFPSⅠ为原料,α-葡萄糖苷酶作为靶标,研究SFPSⅠ对α-葡萄糖苷酶的抑制作用及其结构的影响,建立具有α-葡萄糖苷酶活性的Caco-2细胞模型,并对Caco-2细胞模型上α-葡萄糖苷酶活性的抑制效果进行研究。结果表明,SFPSⅠ对α-葡萄糖苷酶有明显的抑制作用,使得α-葡萄糖苷酶活力下降一半时的抑制剂浓度,即半抑制(IC50)为0.31 mg·mL-1。SFPSⅠ对α-葡萄糖苷酶的抑制作用是一个可逆过程,抑制类型为混合型抑制。动力学分析结果表明,SFPSⅠ对α-葡萄糖苷酶的抑制常数(K_i)为0.143μmol·L-1。荧光测定结果表明,SFPSⅠ结合会引起α-葡萄糖苷酶三级结构的明显变化。随着SFPSⅠ浓度的升高,其对Caco-2细胞模型上α-葡萄糖苷酶抑制效果越好。本研究结果为进一步探讨和设计新型α-葡萄糖苷酶抑制剂奠定了科学基础,同时也为开发具有降血糖功能的功能性药品与保健品提供了新资源。  相似文献   

7.
A high-throughput method for rapid determination of starch hydrolase inhibition was developed using a 96-well microplate UV-vis reader to monitor the turbidity decrease over time. The area under the curve of turbidity measured over time was used to quantify the inhibitory effect of polyphenolic compounds on porcine pancreatic amylase, rat intestine α-glucosidase, and fungal amyloglucosidase. Acarbose equivalence (AE) was introduced for the first time and defined as IC50 of acarbose divided by the IC50 of the sample measured under the same 96-well plate. This way, the run-to-run variations are canceled out. Among the plant extracts tested, grape seed extracts (1,440 μmolAE/g) and cinnamon bark extracts (1600 μmolAE/g) are the most active in inhibiting rat intestine α-glucosidase. For porcine α-amylase inhibition, grape seed extracts (5710 μmol AE/g) are close to four times more active (equal weight basis) than acarbose (1550 μmolAE/g).  相似文献   

8.
This study evaluated the inhibitory effects of plant-based extracts (grape seed, green tea, and white tea) and their constituent flavan-3-ol monomers (catechins) on α-amylase and α-glucosidase activity, two key glucosidases required for starch digestion in humans. To evaluate the relative potency of extracts and catechins, their concentrations required for 50 and 90% inhibition of enzyme activity were determined and compared to the widely used pharmacological glucosidase inhibitor, acarbose. Maximum enzyme inhibition was used to assess relative inhibitory efficacy. Results showed that grape seed extract strongly inhibited both α-amylase and α-glucosidase activity, with equal and much higher potency, respectively, than acarbose. Whereas tea extracts and catechin 3-gallates were less effective inhibitors of α-amylase, they were potent inhibitors of α-glucosidase. Nongallated catechins were ineffective. The data show that plant extracts containing catechin 3-gallates, in particular epigallocatechin gallate, are potent inhibitors of α-glucosidase activity and suggest that procyanidins in grape seed extract strongly inhibit α-amylase activity.  相似文献   

9.
This study determined the in vitro inhibitory effects of cocoa extracts and procyanidins against pancreatic α-amylase (PA), pancreatic lipase (PL), and secreted phospholipase A(2) (PLA(2)) and characterized the kinetics of such inhibition. Lavado, regular, and Dutch-processed cocoa extracts as well as cocoa procyanidins (degree of polymerization (DP) = 2-10) were examined. Cocoa extracts and procyanidins dose-dependently inhibited PA, PL, and PLA(2). Lavado cocoa extract was the most potent inhibitor (IC(50) = 8.5-47 μg/mL). An inverse correlation between log IC(50) and DP (R(2) > 0.93) was observed. Kinetic analysis suggested that regular cocoa extract, the pentamer, and decamer inhibited PL activity in a mixed mode. The pentamer and decamer noncompetitively inhibited PLA(2) activity, whereas regular cocoa extract inhibited PLA(2) competitively. This study demonstrates that cocoa polyphenols can inhibit digestive enzymes in vitro and may, in conjunction with a low-calorie diet, play a role in body weight management.  相似文献   

10.
This study was performed to evaluate the antioxidant and α-glucosidase inhibitory effects from the extract, fractions, and isolated compounds of sea buckthorn leaves. Six compounds, kaempferol-3-O-β-D-(6'-O-coumaryl) glycoside, 1-feruloyl-β-D-glucopyranoside, isorhamnetin-3-O-glucoside, quercetin 3-O-β-D-glucopyranoside, quercetin 3-O-β-D-glucopyranosyl-7-O-α-L-rhamnopyranoside, and isorhamnetin-3-O-rutinoside, were isolated from sea buckthorn leaf extracts. The butanol fraction (EC(50) = 1.81 μg/mL) along with quercetin 3-O-β-D-glucopyranoside (EC(50) = 1.86 μg/mL) had a higher DPPH radical-scavenging activity and showed stronger reducing power (OD(700) = 1.83 and 1.78, respectively). The butanol fraction (477 mg GAE/g) contained the highest amount of phenolic compounds and also the most powerful α-glucosidase inhibitory effect (86%) at 5 μg/mL. The results indicate that sea buckthorn leaf extracts could potentially be used for food additives and the development of useful natural compounds.  相似文献   

11.
Isolation and identification of the inhibitors of butyrylcholinesterase (BChE), obtained from the extracts of roots and fruits of Angelica archangelica L., are reported. Our results confirmed the weak inhibitory effect of Angelica roots on acetylcholinesterase activity. BChE inhibition was much more pronounced at a concentration of 100 μg/mL for hexane extracts and attained a higher rate than 50%. The TLC bioautography guided fractionation and spectroscopic analysis led to the isolation and identification of imperatorin from the fruit's hexane extract and of heraclenol-2'-O-angelate from the root's hexane extract. Both compounds showed significant BChE inhibition activity with IC(50) = 14.4 ± 3.2 μM and IC(50) = 7.5 ± 1.8 μM, respectively. Only C8-substituted and C5-unsubstituted furanocoumarins were active, which could supply information about the initial structures of specific BChE inhibitors.  相似文献   

12.
Influenza A virus infections continue to pose a major threat to humans and several animal species. Neuraminidase (NA) is one of the most promising targets for the development of drugs against influenza viruses because of its critical role in the viral life cycle. During the course of a search for NA inhibitors from edible natural sources, we found that the ethyl acetate layer of ethanol extracts of Ecklonia cava showed extremely high NA-inhibitory activity (72.1% inhibition at 30 μg/mL). Bioactivity-guided fractionation of the ethyl acetate layer yielded five phlorotannins, identified as phloroglucinol (1), eckol (2), 7-phloroeckol (3), phlorofucofuroeckol (4), and dieckol (5). The inhibitory activities of these compounds (1-5) against NAs from group-1 (A/Bervig_Mission/1/18 [H1N1], A/PR/8/34 [H1N1]) and group-2 (A/Hong Kong/8/68 [H3N2], A/Chicken/Korea/MS96/96 [H9N2]) influenza A were evaluated to determine potencies and kinetic behavior. Analyses using various in vitro influenza A virus NA assays showed that all five phlorotannin derivatives were selective NA inhibitors. Of the phlorotannins, phlorofucofuroeckol (4) exhibited the most potent inhibitory activities toward group-1 NAs (IC?? values, 4.5 and 14.7 μM), whereas dieckol (5) potently inhibited group-2 NAs. Kinetic analyses indicated that compounds 1-5 were all noncompetitive. Notably, these noncompetitive inhibitors synergized with oseltamivir to enhance the NA-inhibitory effects of oseltamivir.  相似文献   

13.
The inhibitory effect of alpha-glucosidase (AGH) inhibitors against its origins (baker's yeast and rat, rabbit, and pig small intestines) was investigated. All inhibitors used in this study showed quite different inhibitory activities according to AGH origins. Voglibose, acarbose and glucono-1,5-lactone strongly inhibited mammalian AGHs, whereas no or less inhibition was observed in yeast AGH. On the contrary, (+)-catechin, a good inhibitor against yeast AGH (IC(50) = 1.3 x 10(-)(1) mM) as well as voglibose (IC(50) = 2.6 x 10(-)(2) mM), did not retard the mammalian AGH activity. Subsequent inhibition study with various food components revealed that all of foods except for green (IC(50) = 0.735 mg/mL) and oolong teas (IC(50) = 1.34 mg/mL) showed no inhibitory activity against rat AGH, whereas they inhibited yeast AGH. Consequently, the magnitude of AGH inhibition was greatly affected by its origin, and more attention relating to AGH origin would be needed to evaluate in vitro AGH inhibitory effect.  相似文献   

14.
This study investigated the underlying mechanisms of action for blood lipid lowering effects of citrus flavonoids and their methoxylated analogues (n = 19; dose range: 0-100 μM) in HepG2 cells. Cholesterol (CH) and triglyceride (TG) syntheses were assessed by measuring the incorporation of (14)C-acetate and (14)C-glycerol, respectively, whereas apoB secretion was determined by ELISA. Results show that two polymethoxylated citrus flavonoids (PMFs), tangeretin and nobiletin, potently inhibited apoB secretion (IC(50) = 13 and 29 μM, respectively) and modestly inhibited CH synthesis (IC(50) = 49 and 68 μM) and TG synthesis (IC(50) = 14 and 73 μM), without effecting LDL-receptor activity. Other PMFs (e.g., sinensetin) and non-PMFs (e.g., hesperetin and naringenin) had only weak effects on CH and TG syntheses and apoB secretion (IC(50) > 100 μM). The structure-activity analysis indicated that a fully methoxylated A-ring of the flavonoid structure was associated with a potent inhibitory activity on hepatic apoB secretion. In conclusion, this study using HepG2 cells indicates that citrus flavonoids with a fully methoxylated A-ring may lower blood CH and TG concentrations primarily by suppressing hepatic apoB secretion as a main underlying mode of action.  相似文献   

15.
Gastric ulcer is the most prevalent gastrointestinal disorder, resulting from oxidative stress, Helicobacter pylori infection, up-regulation of proton potassium ATPase (PPA) activity, down-regulation of gastric mucosal defense, etc. In this paper it is reported that phenolic fractions of Curcuma amada, commonly known as mango ginger, acted as potent inhibitors of PPA and H. pylori growth. Mango ginger free phenolics (MGFP) and mango ginger bound phenolics (MGBP) inhibited PPA at IC50 values of 2.2 +/- 0.21 and 0.7 +/- 0.08 microg/mL, respectively, exhibiting 9-27-fold better potency over lansoprazole (IC(50) of 19.3 +/- 2.2 microg/mL). MGFP is constituted by caffeic (26%), gentisic (24%), ferulic (20%), gallic (10%), cinnamic (7%), and protocatechuic acids (7%) and MGBP by ferulic (47%), cinnamic (29%), p-coumaric acid (11%), and syringic (5%) acids as major phenolic acids. MGFP and MGBP further exhibited free radical scavenging (IC(50) of 2.2 +/- 0.17 and 4.2 +/- 0.36 microg/mL), reducing power abilities (193-104 units/g), inhibition of lipid peroxidation (IC(50) of 10.3 +/- 0.91 and 15.6 +/- 1.6 microg/mL), and DNA protection (80% at 4 microg), indicating strong antioxidative properties. MGFP and MGBP thus may be potential and inexpensive multistep blockers against ulcers.  相似文献   

16.
Active compounds with antidiabetic potential were isolated from silk peptide E5K6 by consecutive ultrafiltration and gel filtration using Biogel P-2 and RS-HPLC using a YMC-Pack Pro C18 column. The highest α-glucosidase inhibitory activity of silk peptide E5K6 resulted from fractions with MW <1 kDa. The activities of gel-filtered fractions from silk peptide E5K6 of <1 kDa were assayed in vitro, demonstrating that the fourth peak (F4) had the highest α-glucosidase inhibitory activity (IC(50) = 37.1 mg/mL). F4 of silk peptide E5K6 was separated by HPLC into two peaks. Moreover, the purified compounds were identified as Gly-Glu-Tyr (GEY, MW = 367 Da) and Gly-Tyr-Gly (GYG, MW = 295 Da) according to amino acid sequences, and their α-glucosidase inhibitory activities (IC(50)) were 2.7 and 1.5 mg/mL, respectively.  相似文献   

17.
Cholinesterases are key enzymes that play important roles in cholinergic transmission. Nine flavonoids displaying cholinesterase inhibitory activity were isolated from the root bark of Morus lhou L., a cultivated edible plant. The isolated compounds were identified as a new flavone (1), 5'-geranyl-5,7,2',4'-tetrahydroxyflavone (2), kuwanon U (3), kuwanon E (4), morusin (5), morusinol (6), cyclomorusin (7), neocyclomorusin (8), and kuwanon C (9). All compounds apart from compound 6 inhibited cholinesterase enzyme in a dose-dependent manner with K(i) values ranging between 3.1 and 37.5 μM and between 1.7 and 19.1 μM against acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) enzymes, respectively. The new compound was charactierized as 5'-geranyl-4'-methoxy-5,7,2'-trihydroxyflavone (1). It showed the most potent inhibitory activity (K(i) = 3.1 μM for AChE, K(i) = 1.74 μM for BChE). Lineweaver-Burk and Dixon plots and their secondary replots indicated that flavones (5-9) with prenyl substitution on C-3 were noncompetitive inhibitors, whereas those unsubstituted (1-4) at C-3 were mixed inhibitors of both AChE and BChE. In conclusion, this is the first study to demonstrate that alkylated flavonoids of M. lhou have potent inhibitory activities against AChE and BChE.  相似文献   

18.
19.
为高效利用美国豆芋花皂苷类化合物,以皂苷得率和纯度为指标,研究美国豆芋花总皂苷的提取工艺及大孔树脂纯化工艺,并对制备的美国豆芋花总皂苷的抗氧化及α-葡萄糖苷酶活性抑制能力进行研究。结果表明,美国豆芋花总皂苷的提取工艺为提取溶剂90%乙醇,料液比1∶20,温度70℃,提取时间2 h。得到的提取物石油醚脱脂后用水饱和正丁醇萃取,D-101大孔树脂吸附柱纯化的工艺为上样皂苷质量浓度1 mg·m L~(-1),上样量40 m L·g~(-1)树脂,洗脱剂为80%乙醇(pH值6),洗脱剂用量4 BV(树脂柱体积)。制备的美国豆芋花总皂苷样得率4.24%,纯度达65.35%,比粗提物(纯度15.27%)提高了约3倍;抗氧化性能(清除DPPH和ABTS自由基IC50值分别为51.08、29.24μg·m L~(-1))和α-葡萄糖苷酶活性抑制能力(IC50值为83.62μg·m L~(-1))也均优于粗提物(清除DPPH、ABTS自由基IC50值分别为286.51、69.92μg·m L~(-1),α-葡萄糖苷酶的抑制浓度(IC50)值为1 043.57μg·m L~(-1)),表明该工艺可用于高活性美国豆芋花总皂苷的富集和纯化。此外,美国豆芋花总皂苷抑制α-葡萄糖苷酶活性的抑制类型为竞争型抑制,抑制常数为49.68μg·m L~(-1)。本研究结果为开发具有降血糖功能的医药中间体或功能性食品提供了新资源和实践基础。  相似文献   

20.
A 30 kDa antifungal protein was purified from red cabbage ( Brassica oleracea ) seeds. It exhibited a molecular mass and N-terminal amino acid sequence disinct from those of previously isolated Brassica antifungal proteins. The protocol used entailed ion exchange chromatography on Q-Sepharose and SP-Sepharose followed by fast protein liquid chromatography on Mono S. The protein hindered mycelial growth in Mycosphaerella arachidicola (with an IC50=5 μM), Setospaeria turcica, and Bipolaris maydis. It also inhibited the yeast Candida albicans with an IC50=96 μM. It exerted its antifungal action by permeabilizing the fungal membrane as evidenced by staining with Sytox green. The antifungal activity was stable from pH 3 to 11 and from 0 to 65 °C. It manifested antibacterial activity against Pseudomonas aeruginosa (IC50=53 μM). Furthermore, after 48 h of culture, it suppressed proliferation of nasopharyngeal cancer and hepatoma cells with IC50=50 and 90 μM, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号