首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Abstract

Eight methods to determine exchangeable cations and cation exchange capacity (CEC) were compared for some highly weathered benchmark soils of Alabama. The methods were: (1) 1N NH4OAc at pH 7.0 by replacement (for CEC only), (2) 1N NH4OAc at pH 7.0 (summation of basic cations plus 1N KCl extractable Al), (3) 1N NH4OAc at pH 7.0 (summation of basic cations plus exchangeable H+), (4) 0.1M BaCl2 (summation of basic cations plus exchangeable Mn, Fe and Al), (5) Mehlich 1 (summation of basic cations plus 1N KCl extractable Al), (6) Mehlich 1 (summation of basic cations plus exchangeable H+), (7) Mehlich 3 (summation of basic cations plus 1N KCl extractable Al), and (8) Mehlich 3 (summation of basic cations plus exchangeable H+). The 0.1M BaCl2 was chosen as the standard method for the highly weathered soils and the other methods compared to it. The results indicated that the 1N NH4OAc replacement method gave significantly higher CEC values compared to the summation methods. This was probably due to the overestimation of the field CEC caused by measurement of pH dependent cation exchange sites in these soils. There was, however, close agreement between the BaCl2 method and the summation methods that included extractable Al. The generally good agreement between these summation methods suggests that the Mehlich 1 and Mehlich 3 extractants, commonly used to determine available nutrients in the southeastem USA, may also be used to measure effective CEC of some acid‐rich sesquioxide benchmark soils of Alabama. However, 1N KCl extractable Al as opposed to exchangeable H+ should be included in the computation.  相似文献   

2.
Abstract

Soil cation exchange capacity (CEC) measurements are important criteria for soil fertility management, vaste disposal on soils, and soil taxonomy. The objective of this research was to compare CEC values for arable Ultisols from the humid region of the United States as determined by procedures varying widely in their chemical conditions during measurement. Exchangeable cation quantities determined in the course of two of the CEC procedures were also evaluated. The six procedures evaluated were: (1) summation of N NH4OAc (pH 7.0) exchangeable Ca, Mg, K, and Na plus BaCl2 ‐ TEA (pH 8.0) exchangeable acidity; (2) N Ca(OAc)2 (pH 7.0) saturation with Mg(OAc)2 (pH 7.0) displacement of Ca2+; (3) N NH4OAc (pH 7.0) saturation with NaCl displacement of NH4 +; (4) N MgCl2 saturation with N KCl displacement of Mg2+; (5) compulsive exchange of Mg2+ for Ba2+; and (6) summation of N NH4OAc (pH 7.0) exchangeable Ca, Mg, K, and Na plus N KCl exchangeable AJ. The unbuffered procedures reflect the pH dependent CEC component to a greater degree than the buffered methods. The compulsive exchange and the summation of N NH4OAc exchangeable cations plus N KCl exchangeable Al procedures gave CEC estimates of the same magnitude that reflect differences in soil pH and texture. The buffered procedures, particularly the summation of N NH4OAc exchangeable cations plus BaCl2 ‐ TEA (pH 8.0) exchangeable acidity, indicated inflated CEC values for these acid Ultisols that are seldom limed above pH 6.5. Exchangeable soil Ca and Mg levels determined from extraction with 0.1 M BaCl2 were consistently greater than values for the N NH4Oac (pH 7.0) extractions. The Ba2+ ion is apparently a more efficient displacing agent than the NH4 + ion. Also, the potential for dissolving unreacted limestone is greater for the Ba2 + procedures than in the NH4 + extraction.  相似文献   

3.
Summary Methods of determining exchangeable K+ of soil by mixing extracting solutions and analysing the soil suspension with ion‐selective electrodes were developed and evaluated on 30 samples of soils. From preliminary comparisons of the K+ extracted by BaCl2 and NH4OAc solutions and by batch and leaching treatments of soils, we established that suspensions of 5 g soil in 100 ml 0.5 m BaCl2 and single batch treatments of 1 h should be used. The exchangeable K+ was determined with a K‐selective, valinomycin‐based PVC membrane electrode and electrochemical cells that did or did not include a liquid junction (the reference electrode being a double‐junction reference electrode assembly with a 10 m LiOAc salt bridge solution or a Cl‐selective electrode, respectively). The Ba‐exchangeable K+ values were sensibly the same whether a liquid junction was involved or not, a result that can be attributed to the beneficial effects of the salt bridge and the ionic strength of the extractant. Comparisons of these Ba‐exchangeable results with those obtained by various combinations of batch or leaching treatments, BaCl2 or NH4OAc extractants and filtrate analysis by the ion‐selective electrode method or atomic absorption spectrometry showed they were all highly correlated (r≥ 0.996). The selectivity of the K+‐selective electrode (kpotKNH4 = 0.004) significantly reduced the interference from indigenous soil NH4+ in the BaCl2 suspensions. Overall, the results show potentiometric measurements of K+ in soil suspensions can provide a simple, rapid, and reliable means of determining exchangeable K+ in soils.  相似文献   

4.
Abstract

Comparisons of CEC and exchange acidity neasurements were made on a group of selected West African soils using three commonly used analytical procedures, namely, neutral‐acetate displacement, BaCl2‐TEA leaching at pH 8, and unbuffered KCl extraction.

The three methods gave large differences in CEC values which followed the order of BaCl2‐CEC>>NH4OAc‐CEC> KCl‐CEC. Results of exchange acidity also followed the same order. The high exchange acidity values obtained by the BaCl2‐TEA (pH 8) method were mainly due to changes in surface charge characteristics of Fe and Al oxides and hydrous oxides. The effective CEC method is recommended for routine soil analysis for highly weathered soils in the tropics.

Regression analysis of the base saturation values obtained from the three methods indicated the data followed a curvilinear relationship. The acetate method was more highly correlated with the effective CEC method than with the BaCl2 method.  相似文献   

5.
Summary

A simple, single‐step extraction with LiEDTA for the estimation of CEC and exchangeable bases in soils has been developed. Multivalent cations are stripped from the soil adsorption sites by the strongly chelating agent EDTA, and are replaced by Li. In soils without CaCO3 or water soluble salts, exchangeable divalent cations (Ca, Mg) are chelated by EDTA and exchangeable monovalent cations (Na, K) are replaced in a single extraction step using 0.25–2.5 g of soil and 10.0 ml of extractant.

In calcareous soils the CEC can be determined in the same way, but for the extraction of exchangeable Ca and Mg, another separate extraction is needed because dissolution of calcite by EDTA is unavoidable. This extraction is done with as much NaEDTA as needed to extract only exchangeable Ca and Mg in a 1:2 (m/V) soil/alkaline‐50% (V/V) aethanolic solution to minimize dissolution of calcite.

In gypsiferous soils gypsum is transformed into insoluble BaSO4 and soluble CaEDTA by LiBaEDTA thus avoiding interference of Ca from dissolution of gypsum, which renders the traditional methods for determining CEC unsuitable for such soils. To determine exchangeable Ca and Mg, Na4EDTA is used as for calcareous soils.

In saline/sodic soils replacement of Na by Li is incomplete but the Na/Li‐ratio at the complex after extraction is proportional to the molar Na/Li‐ratio in the extracts, so that the CEC and original exchangeable sodium (ESP) content can be calculated. Additional analysis of Cl and, if necessary, SO4 in the extracts of saline soils can be used to correct for the effect of dissolution of the salts on the sum of exchangeable cations.

This new method is as convenient as the recently developed AgTU (silverthiourea), but is better suitable for calcareous and gypsiferous soils.  相似文献   

6.
The fine earth (<2 mm) and rock fragments (>2 mm) fractions of two soils derived from Oligocene sandstone have been examined to assess the origin of the discrepancies between cation exchange capacity (CEC) and effective CEC (ECEC). The soils differ in terms of acidity: soil A is more acid than soil B. When the A samples are treated with BaCl2, the solution became sufficiently acid (pH < 4·5) to dissolve and to maintain Al in solution. From these samples more Al is released than base cations. Aluminium was continuously replenished even after 192 h, so that the ECEC was always larger than the CEC. Samples from soil B contain less H and Al ions, and the BaCl2 solution could not lower the pH below 5·0. In these samples little Al is released, and the base cations dominate the exchangeable pool of ions. This Al can be considered to be exchangeable, and a good agreement exists between the ECEC and the CEC. The source of non-exchangeable Al in the A samples is the OH-Al polymers of the hydroxy-interlayered vermiculite (HIV) and hydroxy-interlayered smectite (HIS) that tend to dissolve during the BaCl2 treatments. In the less acid B samples the Al polymers are not affected by BaCl2 treatment. Different results were obtained when the clays, extracted from an Na-dispersed suspension, were treated with BaCl2 solution. Because the clays are no longer acid, no H+ is released, and the OH-Al polymers are not dissolved. Therefore, the saturating ions play an important role in the dissolution of the OH-Al polymers and cause differences between the CEC and ECEC. We discount organic matter and specifically Al-organo complexes as a source of non-exchangeable Al. Both A and B soils contain very similar pyrophosphate-extractable Al, but show substantial differences in the amount of exchangeable Al.  相似文献   

7.
Abstract

Three methods for soil potassium extraction (M NH4OAc pH 7, 0.01 M AgTU and 30 % hot H2SO4) were compared for a variety of kaolinitic soils of the tropics. The AgTU‐extractable K was much higher than the M NH4OAc‐extractable K when vermiculite clay was present in the soil. The correlation between both was given by an R value of 0.937. The amounts of K extracted by 0.01 M AgTU and by hot H2SO4 were approximately the same. The R value for these two methods was 0.843.

It is suggested that the AgTU extractant could be used for determination of plant‐available K in soil and for testing for the presence or absence of vermiculite clay in soils.  相似文献   

8.
Abstract

An experiment was designed to evaluate several of the commonly used extractants and methods for determining “available”; elements in soils. The purpose of the study was to evaluate the suitability of these extraction procedures for use on forest soils typical for New England commercial forests. The extraction procedures selected included NH4OAc pH 4.8, NH4OAc pH 7.0, NH4Cl, Double Acid, Bray, and Mehlich methods. The elements measured varied somewhat by procedure but included the base cations, Al, Fe, Mn, and P. As a bioassay of element availability, a greenhouse study was conducted using six forest soil materials from different horizon types (i.e. O, Ap, B) and three conifer seedling species (red spruce, balsam fir, and white pine). Relatively small differences among extraction procedures were found among the methods used for exchangeable Ca, Mg, K, and Na. Large differences, however, were found among the different horizon types in the amount of exchangeable base cations present. In contrast, significant differences were found among extraction procedures for Al, Fe, Mn, and P depending on the degree of buffering and acidity of the extracting solution. Of the elements measured in this study, only P appeared to be growth limiting with the NH4OAc pH 4.8 being best correlated with P uptake by seedlings. Further work under field conditions over longer time periods is required to evaluate these methods for measuring P availability in forest soils  相似文献   

9.
Using chloride solutions as extractants, 6.4–18.4% of Ag were extracted from polluted Annaka and Fuchu soils, whereas only 0.06–0.08% Ag were extractable using NH4OAc, NH4NO3 or (NH4)2SO4 solution. In the case of unpolluted Konosu and Nagano soils, 28.3–47.0% of Ag were extracted by KCl and 0.7–1.0% of Ag were by NH4OAc. The silver extracted with chloride solution was assumed to be derived from residual fractions.  相似文献   

10.
Abstract

A study was conducted with the purpose of comparing the efficiency of Mehlich 1, Mehlich 3, and calcium acetate lactate (CAL) extractants for the deter‐ mination of available phosphorus (P) and exchangeable cations [potassium (K), calcium (Ca), magnesium (Mg), and sodium (Na)] on 22 Ethiopian and 10 German agricultural soils. The Olsen and NH4OAc extractants were used as standards against which P and exchangeable cations values were compared. Results showed that, in general, highly significant correlations were found between all of the methods for available P and exchangeable cations determination on the Ethiopian soils. The highest correlation was, however, found with the Mehlich 3 extractant. On the ten soils from Germany, the Olsen method did not give significant cor‐ relation with the CAL method for P determination. The CAL and Mehlich 3 extrac‐ tants were also not good indicators of Na availability when compared with the NH4OAc method. It can be generalized that the Mehlich 3 is a suitable extractant for P, K, Ca, Mg, and Na in Ethiopian soils, but further study is recommended to confirm these findings under field conditions.  相似文献   

11.
Abstract

In soil samples from two study sites in southern Norway, exchangeable cations were determined using two different ammonium (NH4)‐salts as extractant. As expected, the cation exchange capacity (CEC) determined in 1M ammonium acetate (NH4OAc), buffered at pH 7.0 was higher than the CEC measured in ammonium nitrate (NH4NO3). By contrast, the amount of exchangeable calcium (Ca), magnesium (Mg), and barium (Ba) was lowest in the NH4OAc extract, in particular in the upper soil horizons high in organic matter (O‐ and E‐horizon). This suggests that NH4 in 1M NH4OAc does not compete effectively with multivalent base cations. The relatively high levels of exchangeable base cations in NH4NO3 could not be explained by increased weathering. An increase in selectivity of especially divalent cations may explain the relatively low amount of exchangeable base cations extracted by NH4OAc, as this involves increased deprotonation and thus a higher negative charge.  相似文献   

12.
Human exposure to toxic heavy metals via dietary intake is of increasing concern. Heavy-metal pollution of a rice production system can pose a threat to human health. Thus, it was necessary to develop a suitable extraction procedure that would represent the content of metal available to rice plants (Oryza sativa L.). The aim of this study was to predict, on the basis of single extraction procedures of soil heavy metals, the accumulation of heavy metals (cadium, lead, copper, and zinc) in rice plants. Six extracting agents [Mehlich 1, Mehlich 3, EDTA (ethylenediaminetetraacetic acid), DTPA–TEA (diethylenetriaminepentaacetic acid–triethanolamine), ammonium acetate (NH4OAc), and calcium chloride (CaCl2)] were tested to evaluate the bioavailability of heavy metals from paddy soils contaminated with lead–zinc mine tailings to rice. The extraction capacity of the metals was found to be of the order EDTA > Mehlich 3 > Mehlich 1 > DTPA–TEA > NH4OAc > CaCl2. The correlation analysis between metals extracted with different extractants and concentrations of the metals in the grain and stalk of the plant showed positive correlations with all metals. The greatest values of correlation coefficients were determined between the NH4OAc- and CaCl2-soluble fractions of soil and contents in plants in all four metals studied. Therefore, NH4OAc and CaCl2 were the most suitable extractants for predicting bioavailability of heavy metals in the polluted soils to rice. The results suggested that uptake of heavy metals by rice was mostly from exchangeable and water-soluble fractions of the metals in the soils. Soil-extractable metals were more significantly correlated with metal accumulation in the stalk than in the grain. The pH had more significant influence on availability of heavy metals in the soils than total content of metals and other soil properties. The bioavailability of metals for rice plants would be high in acidic soils.  相似文献   

13.
Cation‐exchange–capacity (CEC) results of calcareous soils and clays can be erroneous if the ammonium acetate method is used. In this study, a model is proposed to explain the process for systematic underestimation of the CEC. Seven clayey sediments from Germany with varying calcite and low organic‐C content were studied. After several exchange treatments with concentrated ammonium acetate (NH4Ac) solutions, the exchange population is assumed to be in homoionic ammonium form. Throughout the cation‐exchange experiment, calcite reacts with the NH4Ac exchange solution generating Ca2+ cations. During the necessary washing steps to remove excess salt, calcite dissolution is lower but still occurs. The permanently added Ca2+ ions compete successfully with NH , especially during the washing steps. This leads to a more or less partial biionic exchange population resulting in an underestimation of the CEC which is calculated based on NH concentration of the clay by Kjeldahl analysis. The biionic exchange population was proven using the new silver thiourea technique with presaturation of calcite, AgTU calcite . The clay with 148 g kg–1 calcite had a fraction of 16.4 cmol+ kg–1 exchangeable Ca2+. This is ca. 50% of the CEC of this clay being 31.8 cmol+ kg–1. For clays with similar mineralogical composition, this trend is proportional to the calcite content.  相似文献   

14.
Abstract

Eighteen soils from northwestern Switzerland were used to study the value of seven universal extractants (CaCl2; DB‐DTPA; Mehlich 1, 2, and 3; Morgan‐Wolf; and NH4OAc‐EDTA) for predicting plant available potassium (K) as compared to a bioassay (a modified Neubauer test with winter rye). These extractants were evaluated on the basis of K uptake by the bioassay test and the soil K status. In order to create the sufficiency level of exchangeable K for plant growth, soils were treated with 0, 20, 40, 80, and 160 mg K/kg of soil. The range of K uptake by the bioassay tests was between 89.2 and 403.0 mg/kg of soil for the control pots, and 136.6 to 495.8 for the K treatments with optimal conditions for plant growth. The average amounts of K extracted by the seven universal extractants, in ascending order, were: CaCl2 < Morgan‐Wolf < Mehlich 1 < Mehlich 2 < NH4OAc‐EDTA < Mehlich 3 < DB‐DTPA. The highest simple correlation with K uptake versus the bioassay test was obtained with the DB‐DTPA (r = 0.89) extractant and the lowest with the Mehlich 1 (r = 0.53) extractant. The DP‐DTPA, NH4OAc‐EDTA and Mehlich 3‐K procedures showed an advantage over K procedures based on water soluble and exchangeable K pools in the investigated soils in order to predict the amount of plant‐available K. A simple regression and the Cate‐Nelson graphic method offer the possibility of assessing the soil‐K status using K values obtained by these universal extractants and to calibrate them against K forms as follows: exchangeable, water soluble, and non‐exchangeable.  相似文献   

15.
Abstract

Interpretation guidelines for the availability of calcium (Ca), magnesium (Mg), and potassium (K) in soilless media have been developed through plant growth studies and comparisons amongst extractants. The extractants used were 70% ethanol (EtOH), water, DTPA, ammonium acetate (NH4OAc) and silver thiourea (AgTu). Ethanol, which removes ions in pore water, extracted only 4.5, 13, and 26% of the Ca, Mg, and K, respectively, that could be extracted by AgTu from Pinus radiata bark of pH 5.66 and CEC of 11.2 cmol+/L. Acidification to pH 4.62 increased these proportions to 22, 40, and 38%. Correlations between water and DTPA for 39 media were excellent for both individual elements and the ratios Ca/Mg, K/Mg, and Ca, Mg, and K/(the sums of their concentrations in the extractants) (r2 = 0.88–0.98). Correlations between these extractants and AgTu and NH4OAc were poor for individual elements (r2 = 0.37–0.75) but high for ratios (r2 = 0.71–0.96). For Petunia ’Celebrity Salmon’ growing in peat media of similar pH but widely different Ca, Mg, and K proportions, the ratios of these elements in the shoots were highly correlated with their ratios in 2 mM DTPA extracts of the media. Similarly high correlations were obtained between the Ca/Mg ratios of the shoots of three Asplenium species growing in pinebark media and this ratio for DTPA, NH4OAc, and AgTu extracts of the media. The results indicate that the ratios of Ca, Mg, and K to one another in water and DTPA extracts of soilless media are good indicators of the availability of these elements to plants. Healthy specimens of the test plants grew in media whose DTPA extracts had a minimum Ca/Mg mole ratio of 1 or 2, depending on the Ca requirements of the species. The upper limit for good growth was deduced to be about 6. Limits for NH4OAc and AgTu extracts were similar to those found for crop plants in soils, at 1.6 or 3 to about 9. Minimum amounts of Ca, Mg, and K extracted by water and DTPA that were adequate for short‐term growth in the absence of further inputs were about 9,2.5, and 5 cmol+/L medium, respectively, at pH 6.0. The effect of pH on cations removed by water and DTPA raises the minima to about 19, 5, and 7.5 cmol+/L at pH 5.0.  相似文献   

16.
Cation exchange is often studied with disturbed and dried soils, but the applicability of the results to undisturbed soils is not straightforward. We investigated the value of exchange coefficients obtained from standard procedures for predicting cation exchange in soil. Columns of undisturbed and disturbed subsoil of a Luvisol (SBt horizon) were leached under saturated conditions with 0.4, 4, 20, 41, 102 and 205 mm BaCl2 at a Darcy velocity of 1400 mm day?1. The model PHREEQC was used to calculate one‐dimensional transport, inorganic complexation and multiple cation exchange. Two model variants were tested: m1 (exchangeable cations obtained by percolation with NH4Cl) and m2 (exchangeable cations obtained by shaking the soil with BaCl2). The exchange coefficients (Gaines–Thomas formalism) were calculated from the ion activities in solution and exchangeable cations obtained by NH4Cl percolation (m1) or shaking with BaCl2 (m2). Variant m1 predicted cation exchange of the disturbed (homogenized) soil for the entire BaCl2 concentration range, whereas variant m2 resulted in a two‐fold overestimation of desorbed K for all experiments, which was related to large amounts of K released from the soil by shaking with BaCl2. In experiments with undisturbed soil, variant m1 predicted the concentrations of Mg, Ca, K, and Na in the solution phase and the sum of cations released from exchange sites. However, variant m2 predicted changes in ion concentrations and exchangeable cations somewhat less well. This study suggests that the amounts of exchangeable cations and exchange coefficients obtained from experiments with homogenized soil by percolation are useful to predict cation concentrations in column experiments with undisturbed soils.  相似文献   

17.
Most Brazilian soil-testing laboratories use Mehlich 1 and 1.0 M potassium chloride (KCl) solutions as extractants for the determination of phosphorus (P), potassium (K), and sodium (Na) and for exchangeable calcium (Ca), magnesium (Mg), manganese (Mn), and aluminum (Al) in agricultural soil samples. Other laboratories use a combination of exchangeable ionic resin and KCl procedures. With recent adoption of the inductively coupled plasma (ICP-OES) in routine soil-testing laboratories, soil extraction with 1.0 M ammonium chloride (NH4Cl) became an alternative due to the possibility of determining all exchangeable elements in one run (Ca, Mg, K, Mn, Na, and Al), leaving determination of phosphorus (P) with Mehlich 1 or exchangeable ionic resin. To evaluate the performance of the NH4Cl solution, an experiment was carried out with thirty-seven samples of soils representative of the southernmost state of Brazil, Rio Grande do Sul. Four extraction solutions [Mehlich 1 at soil/solution ratio of 1:10 and 1.0 M ammonium acetate (NH4OAc), 1.0 M KCl, and 1.0 M NH4Cl at soil/solution ratio 1:20] were used with three different shaking times (5, 30, and 60 min). Correlation coefficients among all methods were high. Mehlich 1 did not perform well against NH4OAc and NH4Cl, despite the high correlation coefficients, with values consistently lower for K, even when the time of extraction was increased from 5 to 30 or 60 min. However, for concentrations less than 0.30 cmol kg?1 (i.e., in the range of K deficiency), both solutions performed similarly. Calcium and Mg increased with time of shaking. Comparable values of exchangeable Ca, Mg, and K, as well as of Al and Mn, were obtained with 1.0 M NH4Cl with 60 min shaking and the standard procedures of 1.0 M NH4OAc and 1.0 M KCl. The determination of Al by traditional titration/back-titration of the 1.0 M KCl solution gave slightly greater results compared to ICP-OES obtained using extraction with 1.0 M NH4Cl. The results indicate that for Ca, Mg, Mn, and Al, it is possible to replace the traditional 1.0 M KCl extraction with 1.0 M NH4Cl solution, with 60 min shaking time and a soil/solution ratio of 1:20.  相似文献   

18.
Accurate estimation of the available potassium (K+) supplied by calcareous soils in arid and semi‐arid regions is becoming more important. Exchangeable K+, determined by ammonium acetate (NH4OAc), might not be the best predictor of the soil K+ available to crops in soils containing micaceous minerals. The effectiveness of different extraction methods for the prediction of K‐supplying capacities and quantity–intensity relationships was studied in 10 calcareous soils in western Iran. Total K+ uptake by wheat grown in the greenhouse was used to measure plant‐available soil K+. The following methods extracted increasingly higher average amounts of soil K+: 0.025 M H2SO4 (45 mg K+ kg?1), 1 M NaCl (92 mg K+ kg?1), 0.01 M CaCl2 (104 mg K+ kg?1), 0.1 M BaCl2 (126 mg K+ kg?1), and 1 M NH4OAc (312 mg K+ kg?1). Potassium extracted by 0.01 M CaCl2, 1 M NaCl, 0.1 M BaCl2, and 0.025 M H2SO4 showed higher correlation with K+ uptake by the crop (P < 0.01) than did NH4OAc (P < 0.05), which is used to extract K+ in the soils of the studied area. There were significant correlations among exchangeable K+ adsorbed on the planar surfaces of soils (labile K+) and K+ plant uptake and K+ extracted by all extractants. It would appear that both 0.01 M CaCl2 and 1 M NaCl extractants and labile K+ may provide the most useful prediction of K+ uptake by plants in these calcareous soils containing micaceous minerals.  相似文献   

19.
Samples of the surface layer (Ap) and of grass, collected from: (1) grass ley fertilized in the normal way; (2) permanent pasture fertilized in the normal way; and (3) permanent pasture treated with large amounts of sewage sludge five years earlier, were analysed for Mn, Zn, Cu, Cr, Co, Ni, Pb, and Cd.The soil samples were extracted with: (1) distilled water saturated with CO2; (2) 1 M neutral ammonium acetate; (3) ammonium acetate + acetic acid, pH 4.75; and (4) 2 M nitric acid on a waterbath. The efficiency of these extractants differed greatly and, in relative values, was: 1 for H2O + CO2, 3.4 for NH4OAc, 20.7 for NH4OAc + HOAc, and 343 for 2 M HNO3- The dissolving effects of the extractants differed markedly with the kind of element.Grass from the field treated with sewage sludge showed much higher contents of Mn and Zn and somewhat higher contents of Cu and Pb than grass from the untreated field. The levels of Cr, Co, Ni, and Cd were practically uninfluenced by the treatment. Grass from a field close to a highway accumulated large amounts of air-borne Pb and Cd during the summer.It is concluded that the total contents of heavy metals in soils have only limited importance for the uptake by plants. Weak extractants therefore give better information about the plant-available amounts in soils.  相似文献   

20.

Purpose

Biochar is increasingly being used as a soil amendment to both increase soil carbon storage and improve soil chemical and biological properties. To better understand the shorter-term (10 months) impacts of biochar on selected soil parameters and biological process in three different textured soils, a wide range of loading rates was applied.

Materials and methods

Biochar derived from eucalypt green waste was mixed at 0, 2.5, 5, 10 % (wt/wt) with a reactive black clay loam (BCL), a non-reactive red loam (RL) and a brown sandy loam (BSL) and placed in pots exposed to the natural elements. After 10 months of incubation, analysis was performed to determine the impacts of the biochar rates on the different soil types. Also, microbial biomass was estimated by the total viable counts (TVC) and DNA extraction. Moreover, potential nitrification rate and community metabolic profiles were assayed to evaluate microbial function and biological process in biochar-amended soils.

Results and discussion

The results showed that biochar additions had a significant impact on NH4 and NO3, total C and N, pH, EC, and soil moisture content in both a soil type and loading-dependent manner. In the heavier and reactive BCL, no significant impact was observed on the available P and K levels, or the total exchangeable base cations (TEB) and CEC. However, in the other lighter soils, biochar addition had a significant effect on the exchangeable Al, Ca, Mg, and Na levels and CEC. There was a relatively limited effect on microbial biomass in amended soils; however, biochar additions and its interactions with different soils reduced the potential nitrification at the higher biochar rate in the two lighter soils. Community metabolic profile results showed that the effect of biochar on carbon substrate utilization was both soil type and loading dependent. The BCL and BSL showed reduced rates of substrate utilization as biochar loading levels increased while the opposite occurred for the RL.

Conclusions

This research shows that biochar can improve soil carbon levels and raise pH but varies with soil type. High biochar loading rates may also influence nitrification and the function and activity of microbial community in lighter soils.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号