首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
设施蔬菜栽培对土壤阳离子交换性能的影响   总被引:10,自引:0,他引:10  
以辽宁省沈阳市于洪地区设施菜地及其相邻旱田土壤为研究对象,测定土壤的有机质、阳离子交换量、交换性盐基离子组成和土壤盐基离子饱和度,分析设施蔬菜栽培对土壤阳离子交换量及交换性盐基离子组成的影响。结果表明:(1)与旱田土壤相比,设施土壤有机质含量明显增加,上下层土壤有机质平均含量分别为35.6 g kg-1和18.0 g kg-1,分别是旱田上下层土壤有机质含量的2.1倍和1.8倍;设施土壤阳离子交换量呈上升的趋势,土壤阳离子交换量与有机质含量呈极显著正相关关系(r=0.603**,n=50,r0.01=0.361)。(2)与旱田土壤相比,不同层次设施土壤交换性盐基总量均有所增加,交换性盐基离子中除交换性Ca2+含量变化不大之外,交换性K+、Mg2+、Na+含量均显著增加;不同层次设施土壤交换性K+、Mg2+、Na+饱和度显著高于旱田土壤,但交换性Ca2+饱和度和盐基饱和度呈下降趋势。  相似文献   

2.
快速检测土壤阳离子交换量的研究   总被引:2,自引:0,他引:2       下载免费PDF全文
针对土壤阳离子交换量检测行业标准推荐方法耗时长、操作繁琐,介绍了一种定氮仪配合漩涡振荡仪测定土壤阳离子交换量的快速蒸馏法,改进了离心处理环节和蒸馏步骤,讨论了关键流程和注意事项。该方法与行业标准乙酸铵法相比,试剂消耗明显减少,检测效率提高45%,检测精度和准确度符合标准要求,特别适于大批量及快速检出的土壤样品分析。  相似文献   

3.
石灰性土壤供氮能力几种化学测定方法的评价研究   总被引:2,自引:0,他引:2  
以采自于黄土高原差异较大的25个农田耕层石灰性土壤为供试土样,以淋洗和未淋洗土壤起始NO3--N小麦和玉米两季盆栽试验作物累积吸氮量为参比,对8种反映旱地土壤供氮能力的化学方法进行比较研究。结果表明,在一定程度上,可用有密切关系的土壤全氮或有机质,反映有机氮或全氮存在较大差异的土壤供氮能力,但其灵敏性较差。石灰性土壤矿质氮,特别是NO3--N与未淋洗土壤起始NO3--N作物吸氮量之间有较高相关性(r=0.884,P0.01),而与淋洗土壤起始NO3--N作物吸氮量间相关系数仅为0.472(P0.05),说明矿质氮可反映土壤当前供氮水平,而不能反映土壤潜在供氮能力;石灰性土壤起始NO3--N对各化学方法与作物吸氮量之间相关性影响较大。酸性高锰酸钾法既可反映土壤潜在供氮能力,也可反映土壤总供氮能力;酸性高锰酸钾法的修订方法,即硫酸高锰酸钾法提取出的NH4+-N值接近于KCl水浴法提取出的NH4+-N值,该方法在反映土壤总供氮能力方面与酸性高锰酸钾法相当,但在反映土壤潜在供氮能力方面不及酸性高锰酸钾法优越。KCl水浴法在评价石灰性土壤供氮能力方面,与酸性高锰酸钾法的效果基本相同;沸水浸取法和NaHCO3-UV法在评价石灰性土壤供氮能力方面效果较差。总结以上发现,在以盐类溶液提取法中,酸性高锰酸钾法、硫酸高锰酸钾法和KCl水浴法可作为反映石灰性土壤供氮能力的化学方法,其中以酸性高锰酸钾法最优,其次为KCl水浴法和硫酸高锰酸钾法。这3种方法在不包括起始NO3--N时,可反映石灰性土壤潜在供氮能力;包括起始NO3--N后,可反映土壤总供氮能力(当前供氮能力+潜在供氮能力)。  相似文献   

4.
5.
The cation exchange capacity (CEC) of three benchmark soils in the rain forest region of Southwestern Nigeria, were measured by three standard CEC methods. Results obtained were compared with a view to selecting the best suited CEC method for the soils. The study sites were the Teaching and Research Farm of Obafemi Awolowo University, Ile-Ife, and Itagunmodi settlement. Two representative soil profile pits each were established in soils developed in coarse-grained granite and gneiss, fine-grained biotite gneiss and schist, and the amphibolite. The three methods gave different CEC values in the order of CEC-pH 8.2 > CEC-pH 7 > ECEC. There was a significant correlation between soil organic matter (SOM) and the CEC obtained by each of the three methods (P ≤ 0.05), meanwhile, total clay showed no significant correlation. ECEC provided the best estimate of the CEC for the soils and adequate SOM management is crucial to enhance sustainable productivity of the soils.  相似文献   

6.
Modern intensive agricultural practices, particularly the use of nitrogen fertilizers, have accelerated soil acidification on a global scale. The soil pH buffering capacity (pHBC) is often used to quantify the soil acidification rate. Calcareous soils have relatively higher pH and pHBC, reflecting the presence of carbonate minerals; however, the impact of long-term fertilization treatment on pH and pHBC is poorly understood for calcareous soils. Here, calcareous soil samples (0–20 cm) were collected from fields receiving six different fertilization treatments for 22 years: control (CK, unfertilized but planted); nitrogen (N); nitrogen and phosphorus (NP); nitrogen, phosphorus and potassium (NPK); combined manure and NPK (NPKM); and combined corn-stover and NPK (NPKS). Both pH and pHBC significantly decreased for all treatments relative to CK. NPKS treatment had the lowest soil pH. Compared with CK, the soil pHBC decreased 5.7 to 17.3% under different treatments. The calcium carbonate (CaCO3) content was significantly reduced by fertilization treatments, with a maximum decrease under the NPKS treatment. Structural equation model (SEM) analysis revealed that calcium carbonate and soil organic matter (SOM) made important contributions to effective cation exchangeable capacity (ECEC). Soil pHBC was directly controlled by ECEC, while CaCO3 and SOM indirectly contributed to the pHBC through ECEC. These results indicated that NPKS treatment induces more severe soil acidification, reflecting the higher H+ input and lower pHBC under this treatment.  相似文献   

7.
用阳离子交换树脂膜法和传统化学提取法评估土壤有效钾   总被引:3,自引:0,他引:3  
Four testing methods using cation exchange membrane (CEM),ammonium acetate,ASI(0.25mol L^-1 NaHCO3 0.01mol L^-1 EDTA 0.01 molL^-1 NH4F) and 1.0molL^-1 boiling nitric acid,respectively,were used to evaluate soil available K.The soil K tested by CEM was significantly correlated with that by the other (conventional)methods(r^2=0.43^**-0.95^***).The soil K tested by CEM saturated with NH4HCO3(15min extraction)was most closely correlated with that by the other methods(r^2=0.60^**-0.95^***),Potassium availability,as predicted by soil test,was comparable to actual K uptake by canola and wheat grown on the soils in growth chamber.Regression analyses showed that plant K uptake was more closely correlated wiht K extracted by CEM(r^2=0.56^**-0.81^***)than that by the conventional methods(r^2=0.46^***-0.81^***),most colsely correlated with that by NH4HCO3-saturated CEM for 15 min (r^2=0.81^***).and worst correlated with that by HNO3(r^2=0.45^**-0.72^***)  相似文献   

8.
镧的累积对红壤阳离子交换量及土壤溶液组成的影响   总被引:4,自引:0,他引:4  
Pot and adsorption-exchange experiments were carried out by collecting the soil samples from the surface layer(0-15cm) of red soil at the Ecological Experiment Station of Red Soil,the Chinese Academy of Sciences,in Jiangxi Province of CHina.When concentration of the exogenous La^3 exceeded 400mg kg^-1,there was less non-exchangeable La^3 than exchangeable La^3 in the soil.Cation exchagne capacity of the soil changed slightly with increasing concentration of the exogenous La^3 in both experiments.However,in the adsorption-exchange experiment,when concentration of the exogenous La^3 was higher than 300mg kg^-1,exchangeable basic cations decreased significantly,while exchangeable hydrogen and exchangeable aluminum increased significantly compared with the control treatments.The amounts of base cations(Ca^2 ,Mg^2 ,k^ and Na^ )exchanged by La^3 in the supernatant solution increased with the concentration of the exogenous La^3 ,especially when concentration of the exogenous La^3 was higher than 50mg kg^-1.  相似文献   

9.
10.
11.
Summary

A simple, single‐step extraction with LiEDTA for the estimation of CEC and exchangeable bases in soils has been developed. Multivalent cations are stripped from the soil adsorption sites by the strongly chelating agent EDTA, and are replaced by Li. In soils without CaCO3 or water soluble salts, exchangeable divalent cations (Ca, Mg) are chelated by EDTA and exchangeable monovalent cations (Na, K) are replaced in a single extraction step using 0.25–2.5 g of soil and 10.0 ml of extractant.

In calcareous soils the CEC can be determined in the same way, but for the extraction of exchangeable Ca and Mg, another separate extraction is needed because dissolution of calcite by EDTA is unavoidable. This extraction is done with as much NaEDTA as needed to extract only exchangeable Ca and Mg in a 1:2 (m/V) soil/alkaline‐50% (V/V) aethanolic solution to minimize dissolution of calcite.

In gypsiferous soils gypsum is transformed into insoluble BaSO4 and soluble CaEDTA by LiBaEDTA thus avoiding interference of Ca from dissolution of gypsum, which renders the traditional methods for determining CEC unsuitable for such soils. To determine exchangeable Ca and Mg, Na4EDTA is used as for calcareous soils.

In saline/sodic soils replacement of Na by Li is incomplete but the Na/Li‐ratio at the complex after extraction is proportional to the molar Na/Li‐ratio in the extracts, so that the CEC and original exchangeable sodium (ESP) content can be calculated. Additional analysis of Cl and, if necessary, SO4 in the extracts of saline soils can be used to correct for the effect of dissolution of the salts on the sum of exchangeable cations.

This new method is as convenient as the recently developed AgTU (silverthiourea), but is better suitable for calcareous and gypsiferous soils.  相似文献   

12.
Abstract

A simple single‐extraction procedure for measuring exchangeable cations and effective CEC (ECEC, the CEC at natural pH and ionic strength) has been developed for routine advisory soil analysis. The method is based on the use of Sr (1.26M SrCl2) to displace exchangeable cations and effective CEC is taken as the sum of the exchangeable cations. A ten minute shaking time at 5 g:80 ml, soil solution ratio, was found to be optimum. Good agreement was found between the proposed method and the standard neutral IN ammonium acetate leaching procedure with correlation coefficients (r) for the individual cations Mg, Ca, Na and K of 0.99***, 0.99***, 0.83*** and 0.96*** respectively. Strontium chloride extracted more Al but less Mn (P<0.01) than IN KC1, but because of the low levels of these cations in relation to the total cations present, there was still a good relationship (r= 0.99) between ECEC determined by 1.26M SrCl2 and that determined as the sum of ammonium acetate extractable Mg, Ca, Na and K plus IN KCl‐extracted Al and Mn.  相似文献   

13.
In the recent past, biochar and crop residues have attracted lots of attention as a viable strategy for maintaining soil health. This paper evaluates the comparative effect of two different doses (equivalent to 2 and 5 t C ha?1) of each of pine needle and Lantana biochar (PBC and LBC), wheat residue and lentil residue (WR and LR) on soil biological properties, nutrient availability and yield of rice and wheat in pot culture. Energy-dispersive X-ray spectroscopy (EDS) revealed higher C content of biochar than crop residues. Evaluation of biochemical quality reflected high recalcitrance indices of C and N for both PBC and LBC. Application of LBC and PBC increased the wheat grain yield significantly by 6.2%–24.2% over control. Both PBC and LBC significantly increased N and P uptakes in grain over the control and crop residues. Both biochars recorded a significant decrease of 33.9 and 71,7% in β-glucosidase activity in comparison to control at termination of study. PBC and LBC also resulted in more soil available N, P and K in soil at different intervals. The geometric mean of enzyme activities (GMea) reflected improved soil quality by PBC and LR and reduction by LBC application.  相似文献   

14.
Rock fragments (particles > 2 mm) are usually considered chemically inert for plant growth. In this paper, the potential fertility in terms of exchangeable Ca, Mg, and K of rock fragments from sandstone and siltstone derived soils from northern Apennines (Italy) is reported and contrasted with that of the fine earth (particles < 2 mm). The results show that rock fragments are a source of Ca, Mg, and K. When expressed on a volume basis, the abundance of these exchangeable nutrients sometimes may equal or surpass that of the fine earth. The plant uptake of Mg and K has been demonstrated in growth experiments with Agrostis under controlled conditions.  相似文献   

15.
Abstract

Cation exchange capacity of ten non‐calcareous and non‐saline soils from Queensland, Australia, has been determined by the ammonium acetate method using different procedures, by an ammonium chloride method at pH8.5, and by three methods which attempt to approximate field conditions. Procedural differences in the ammonium acetate method produced variation in results, and methods using approximate field conditions gave much lower values for those soils considered to have variable charge properties.  相似文献   

16.
长期施肥对华北平原土壤生产力的影响   总被引:3,自引:0,他引:3  
Soil productivity is the ability of a soil, in its normal environment, to support plant growth and can be evaluated with respect to crop production in unfertilized soil within the agricultural ecosystem. Both soil productivity and fertilizer applications affect crop yields. A long-term experiment with a winter wheat-summer maize rotation was established in 1989 in a field of the Fengqiu State Key Agro-Ecological Experimental Station, a region typical of the North China Plain, including seven treatments: 1) a balanced application of NPK chemical fertilizers(NPK); 2) application of organic fertilizer(OM); 3) application of 50% organic fertilizer and50% NPK chemical fertilizers(1/2OMN); 4) application of NP chemical fertilizers(NP); 5) application of PK chemical fertilizer(PK);6) application of NK chemical fertilizers(NK); and 7) unfertilized control(CK). To investigate the effects of fertilization practices on soil productivity, further pot tests were conducted in 2007–2008 using soil samples from the different fertilization treatments of the long-term field experiment. The soil sample of each treatment of the long-term experiment was divided into three pots to grow wheat: with no fertilization(Potunf), with balanced NPK fertilization(PotNPK), and with the same fertilizer(s) of the long-term field experiment(Potori). The fertilized soils of the field experiment used in all the pot tests showed a higher wheat grain yield and higher nutrient uptake levels than the unfertilized soil. Soil productivity of the treatments of the field experiment after 18 years of continuous fertilizer applications were ranked in the order of OM 1/2OMN NPK NP PK NK CK. The contribution of soil productivity of the different treatments of the field experiment to the wheat grain yield of Potoriwas 36.0%–76.7%, with the PK and NK treatments being higher than the OM, 1/2OMN, NPK, and NP treatments since the soil in this area was deficient in N and P and rich in K. Wheat grain yields of PotNPKwere higher than those of Potoriand Potunf. The N, P, and K use efficiencies were higher in PotNPKthan Potoriand significantly positively correlated with wheat grain yield. Soil organic matter could be a better predictor of soil productivity because it correlated more strongly than other nutrients with the wheat grain yield of Potunf. Wheat yields of PotNPKshowed a similar trend to those of Potunf, indicating that soil productivity improvement was essential for a further increase in crop yield. The long-term applications of both organic and chemical fertilizers were capable of increasing soil productivity on the North China Plain, but the former was more effective than the latter. The balanced application of NPK chemical fertilizers not only increased soil productivity, but also largely increased crop yields, especially in soils with lower productivity. Thus, such an approach should be a feasible practice for the sustainable use of agricultural soils on the North China Plain, particularly when taking into account crop yields, labor costs, and the limited availability of organic fertilizers.  相似文献   

17.
Agricultural, environmental and ecological modeling requires soil cation exchange capacity (CEC) that is difficult to measure. Pedotransfer functions (PTFs) are thus routinely applied to predict CEC from easily measured physicochemical properties (e.g., texture, soil organic matter, pH). This study developed the support vector machines (SVM)‐based PTFs to predict soil CEC based on 208 soil samples collected from A and B horizons in Qingdao City, Shandong Province, China. The database was randomly split into calibration and validation datasets in proportions of 3:1 using the bootstrap method. The optimal SVM parameters were searched by applying the genetic algorithm (GA). The performance of SVM models was compared to those of multiple stepwise regression (MSR) and artificial neural network (ANN) models. Results show that the accuracy of CEC predicted by SVM improves considerably over those predicted by MSR and ANN. The performance of SVM for B horizon (R2 = 0.85) is slightly better than that for A horizon (R2 = 0.81). The SVM is a powerful approach in the simulation of nonlinear relationship between CEC and physicochemical properties of widely distributed samples from different soil horizons. Sensitivity analysis was also conducted to explore the influence of each input parameter on the CEC predictions by SVM. The clay content is the most sensitive parameter, followed by soil organic matter and pH, while sand content has the weakest influence. This suggests that clay is the most important predictor for predicting CEC of both soil horizons.  相似文献   

18.
猪粪施于土壤可能会对土壤微生物多样性造成影响,为选用同一种DNA提取方法用于土壤和猪粪微生物DNA的提取,该文采用了化学裂解法和试剂盒法同时从土壤和猪粪样品中提取微生物DNA,并对这两种方法的提取DNA的效果进行了比较。结果表明,试剂盒法不能用于提取土壤中的微生物DNA;可以从猪粪中提取到DNA,PCR扩增能得到目的产物,但重复性不高。化学裂解法提取的土壤微生物DNA浓度高但纯度低,纯化后纯度增加,但DNA有所损失,用于PCR扩增时结果不理想;处理猪粪样品,提取的DNA浓度较低但纯度较高,PCR扩增结果比较理想。由此可见,化学裂解法用来提取猪粪样品中的微生物DNA是可行的,但需寻求更好的土壤样品微生物DNA的提取方法。  相似文献   

19.
This study evaluates the performances of a combination of genetic programming and soil depth functions to map the three-dimensional distribution of cation exchange capacity (CEC) in a semiarid region located in Baneh region, Iran. Using the conditioned Latin hypercube sampling method, the locations of 188 soil profiles were selected, which were then sampled and analyzed. In general, results showed that equal-area quadratic splines had the highest R2, 89%, in fitting the vertical CEC distribution compared to power and logarithmic functions with R2 of 81% and 84%, respectively. Our findings indicated some auxiliary variables had more influence on the prediction of CEC. Normalized difference vegetation index (NDVI) had the highest correlation with CEC in the upper two layers. However, the most important auxiliary data for prediction of CEC in 30–60 cm and 60–100 cm were topographic wetness index and profile curvature, respectively. Validation of the predictive models at each depth interval resulted in R2 values ranging from 66% (0–15 cm) to 19% (60–100 cm). Overall, results indicated the topsoil can be reasonably well predicted; however, the subsoil prediction needs to be improved. We can recommend the use of the developed methodology in mapping CEC in other parts in Iran.  相似文献   

20.
Cation exchange capacity (CEC) is an important soil property that is used as an input data in soil and environmental models. Although CEC can be measured directly, its measurement is expensive and time-consuming, therefore pedotransfer functions can be used for estimating it from more readily available soil data. As CEC is highly dependent on soil texture, it may be successfully estimated from the soil textural data. In this study, 20 soils were selected from Fars province, in the south of Iran, and the values of CEC, soil organic matter content, and soil particle size distribution curve of each soil were measured and the geometric mean particle-size diameter (d g ), and the summation of the number of spherical particles for whole parts of the soil particle-size distribution (N) were determined for each soil. Then, five multiple linear regressions were derived between CEC and mentioned soil properties. The results showed that more applicable equation for the study area was based on the percentages of clay, sand and soil organic matter content.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号