首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Iron toxicity is an important growth‐limiting factor for flooded rice production in various parts of the world, including Brazil. Data related to the reaction of rice cultivars to iron concentrations are limited, especially for large numbers of cultivars. Forty rice cultivars were grown in a greenhouse in nutrient solutions containing 0.09, 0.89, and 1.78 mM Fe (5, 50 and 100 ppm Fe). The effects of excess iron were measured on plant height, root length, and root and shoot dry weight. Root and shoot dry weight were found to be more sensitive to excess iron concentration. Based on dry matter yield, reduction of shoots at higher Fe concentrations compared to the optimum or control treatment, rice cultivars were classified as tolerant, moderately tolerant, moderately susceptible or susceptible.

The effect of Fe concentrations on concentrations and contents of other nutrient was also investigated. Higher concentration of Fe in the nutrient solution exerted an inhibiting effect on the concentrations and contents of almost all macro and micronutrients.  相似文献   

2.
This study evaluated the effects of the spores and their heat-treated residues from different strains of Bacillus species (B. pumilus, B. altitudinis, and B. megaterium) on the early growth of paddy rice cultivars, including Hitomebore (short-grain japonica rice), Takanari (high-yielding indica rice), and two new lines, TULK-143-6 and LTAT-29. The spores of seven Bacillus strains positively affected Hitomebore root growth, while, the root volume of TULK-143-6 with inoculation of B. pumilus TUAT1 and JM52, and root length and root surface area of LTAT-29 with inoculation of B. megaterium MAFF301694 were increased significantly. In contrast with Hitomebore, Takanari root growth was significantly inhibited by the spores of six Bacillus strains. Surprisingly, inoculations with the spore residues from all tested Bacillus strains increased the root dry weight of Hitomebore, with the effects of four bacterial strains being significant. Furthermore, there were more Bacillus spores than vegetative cells at different time points during the initial rice growth stage, and most plant samples mainly consisted of Bacillus spores. Thus, the spores of Bacillus species likely promote rice root development.  相似文献   

3.
A greenhouse pot experiment was conducted to investigate heavy metal [copper (Cu), zinc (Zn), lead (Pb), and cadmium (Cd)] uptake by two upland rice cultivars, ‘91B3’ and ‘277’, grown in a sterilized field soil contaminated by a mixture of Cu, Zn, Pb, and Cd. Rice plants were inoculated with each of three arbuscular mycorrhizal fungi (AMF), Glomus versiforme (GV), Glomus mosseae (GM), and Glomus diaphanum (GD), or remained noninoculated (NM). Both rice cultivars could be colonized by the three AMF used in this experiment. The percentage of mycorrhizal colonization by the three AMFs on the two rice cultivars ranged from 30% to 70%. Mycorrhizal colonization of both upland rice cultivars had a large influence on plant growth by increasing the shoot and root biomass compared with non-inoculated (NM) plants. The results indicate that mycorrhiza exert some protective effects against the combined toxicity of Cu, Zn, Pb, and Cd in the contaminated soil. This conclusion is supported by the partitioning of heavy metals (HMs) in the two cultivars. In the two cultivars, colonization by AMF reduced the translocation of HMs from root to shoot (except that the colonization of AMF increased the Cu translocation of HMs in cultivar ‘277’). Immobilization of the HMs in roots can alleviate the potential toxicity to shoots induced by the mixture of Cu, Zn, Pb, and Cd. The two rice cultivars showed significant differences in uptake of Cu, Zn, Pb, and Cd when uninoculated. GM inoculation gave the most protective effects on the two cultivars under the combined soil contamination.  相似文献   

4.
In iron toxic wetlands, ferric hydroxide is commonly deposited on rice roots. This study aims to to evaluate the differences in iron plaque formation in rice cultivars from different cropping systems. Thirty days old seedlings of Brazilian rice cultivars from the lowland cropping system (‘BRS Atalanta’ and ‘Epagri 107’) and upland cropping system (‘Canastra’) or both systems (‘BRSMG Curinga’) and the cultivar ‘Nipponbare’ were exposed to iron excess [4 mM iron sulfate heptahydrate (FeSO4.7H2O)] for seven days in nutrient solution. It was observed iron plaque formation and ruptures of the root epidermal cells. The lowland cultivars showed higher Fe content in iron plaque. Iron stain was detected in the root hairs, epidermis, hypodermis, and exodermis. The root exodermis may be contributed to prevent the deposit of iron in the cortex of the lowland cultivars and in the cultivar ‘BRSMG Curinga’. It was observed in plants with iron plaque formation significant reductions in the shoot content of phosphorous, manganese and magnesium due to different causes. The differences in iron plaque formation among the cultivars might be an indicative of variations in exodermis selectivity, root oxidative capacity, and iron nutrition mechanisms.  相似文献   

5.
Abstract

Iron (Fe) toxicity is a major nutrient disorder affecting the production of wetland rice in the humid zone of West Africa. Little attention has been given to determining the macro‐ and micronutrient composition of rice plants grown on wetland soils where Fe toxicity is present although results from such study could provide useful information about the involvement of other nutrients in the occurrence of Fe toxicity. A field experiment was conducted in the 1997 dry season (January‐May) at an Fe toxic site in Korhogo, Ivory Coast, to determine the elemental composition of Fe tolerant (CK 4) and susceptible (Bouake 189) lowland rice varieties without and with application of nitrogen (N), phosphorus (P), potassium (K), and zinc (Zn). For both Fe‐tolerant and susceptible varieties, there were no differences in elemental composition of the whole plant rice tops, sampled at 30 and 60 days after transplanting rice seedlings, except for Fe. All the other nutrient element concentrations were adequate. Both Fe‐tolerant and susceptible cultivars had a high Fe content, well above the critical limit (300 mg Fe kg‐1 plant dry wt). These results along with our observations on the elemental composition of rice plant samples collected from several wetland swamp soils with Fe toxicity in West Africa suggest that “real”; iron toxicity is a single nutrient (Fe) toxicity and not a multiple nutrient deficiency stress.  相似文献   

6.
Toxicity of Fe2+ is one of the major constraints for lowland rice production in tropical and subtropical areas. The root tip is a primary site of iron (Fe2+) toxicity in rice. To explore the effects of iron toxicity on the morphological and biological characteristics on the border cells in rice (Oryza sativa L.), experiments were carried out using the border cells in two cultivars. The experimental results revealed the following properties of border cells shared by both rice cultivars: the first border cells appeared almost synchronously with the emergence of the primary root tip; the number of border cells reached maximum when the root was 25 mm long; the border cells were most viable when the root length was 20 mm; and the relative activity of pectin methylesterase (PME) was the highest when the root length was 2 mm. The two rice cultivars exhibited different trends in their response to Fe2+ toxicity: the number of root border cells in Fe2+-resistant Zhongyou 9288 increased when experiencing low levels of Fe2+ treatment, but then declined at higher Fe2+ levels. The number of root border cells in Fe2+-sensitive Shanyou No. 10, however, declined rapidly when the concentration of Fe2+ increased. The results also showed that Fe2+ toxicity hindered the development of root border cells of both rice cultivars, but the Fe2+ sensitive variety experienced thickened the root cap cell walls that led to programmed cell death.  相似文献   

7.
Iron (Fe) toxicity is a major stress to rice in many lowland environments worldwide. Due to excessive uptake of Fe2+ by the roots and its acropetal translocation into the leaves, toxic oxygen radicals may form and damage cell structural components, thus impairing physiological processes. The typical visual symptom is the “bronzing” of the rice leaves, leading to substantial yield losses, particularly when toxicity occurs during early vegetative growth stages. The problem is best addressed through genotype improvement, i.e., tolerant cultivars. However, the time of occurrence and the severity of symptoms and yield responses vary widely among soil types, years, seasons, and genotypes. Cultivars resistant in one system may fail when transferred to another. Better targeting of varietal improvement requires selection tools improving our understanding of the resistance mechanisms and strategies of rice in the presence of excess iron. A phytotron study was conducted to develop a screen for seedling resistance to Fe toxicity based on individual plants subjected to varying levels of Fe (0–3000 mg L–1 Fe supplied as Fe(II)SO4), stress duration (1–5 d of exposure), vapor‐pressure deficit (VPD; 1.1 and 1.8 kPa), and seedling age (14 and 28 d). Genotypes were evaluated based on leaf‐bronzing score and tissue Fe concentrations. A clear segregation of the genotypic tolerance spectrum was obtained when scoring 28 d old seedlings after 3 d of exposure to 2000 mg L–1 Fe in a high‐VPD environment. In most cases, leaf‐bronzing scores were highly correlated with tissue Fe concentration (visual differentiation in includer and excluder types). The combination of these two parameters also identified genotypes tolerating high levels of Fe in the tissue while showing only few leaf symptoms (tolerant includers). The screen allows selecting genotypes with low leaf‐bronzing score as resistant to Fe toxicity, and additional analyses of the tissue Fe concentration of those can identify the general adaptation strategy to be utilized in breeding programs.  相似文献   

8.

Treatment of seeds of two rice (Oryza sativa L.) cultivars (Ratna and IR36) separately with 10-5and 10-4M PbCl2and HgCl2decreased germination percentage, germination index (GI), shoot and root length, tolerance index (TI), vigour index (VI) and dry mass of shoot and root but increased percentage difference from control (% DFC) of germination and percentage phytotoxicity in both the cultivars. It was observed from these indices that the phytotoxic effect of mercury was greater than lead at identical concentrations and that IR36 appeared more tolerant than Ratna to these metals. Among the monitoring indices examined, TI, VI, and % phytotoxicity seemed to serve as good biological monitoring methods for evaluating the relative toxicity of lead and mercury to rice cultivars.

  相似文献   

9.
Breeding for tolerance to iron (Fe) toxicity in rice (Oryza sativa L.) is hindered by lack of a suitable screening technique. In the culture solution methods used to date, a major difficulty has been maintaining an excess level of iron concentration in order to reveal toxicity symptoms. Experimental results showed that this problem was solved by lowering the solution temperature to around 20°C, at which leaf discoloration in susceptible cultivars became more pronounced. At 20°C Fe uptake was increased from a threshhold content of 300 mg/kg of dry weight of shoot for toxic symptom to more than 1000mg/kg in susceptible and in tolerant cultivars. Concentrations of other related minerals in the plant tissue, i.e., potassium (K) and phosphorus (P), were not affected by the low solution temperature itself but by Fe content, which can be inferred on the basis of their response curves to the excess Fe treatment. Using the proposed screening method makes it possible to obtain reproducible results in screening a large number of plants or breeding lines.  相似文献   

10.
ABSTRACT

Phosphorus (P) is a major nutrient supporting rice productivity. Improving low-P tolerance of rice is expected to reduce dependence on P fertilizer, thereby reducing rice production costs and environmental impacts. This report describes the mapping of quantitative trait loci (QTL) associated with P deficiency tolerance in japonica rice. An F5 population derived from a cross of the low-P tolerant cultivar Akamai (Yamagata) and the sensitive cultivar Koshihikari was evaluated for shoot growth under low-P conditions. Then single nucleotide polymorphism (SNP) profiles of the low-P tolerant and sensitive bulks were compared on a genome-wide scale by QTL-Seq, a rapid QTL mapping method using next-generation sequencing technology. Results show a major QTL associated with low-P tolerance located on the long arm of chromosome 12. It has been named QTL for low-P tolerance 1 or qLPT1. SNPs were detected in 45 genes of qLPT1 region and the 5 genes were harboring synonymous SNPs, although none of them had been reported as involved in low-P tolerance. This result implies that the novel gene responsible for low-P tolerance exists in qLPT1. This study will contribute to the elucidation of mechanisms underlying low-P tolerance of Akamai and will facilitate the breeding of rice with low-P tolerance.  相似文献   

11.
To assess the genetic variability of peanut (Arachis hypogaea L.) in tolerance to iron (Fe) deficiency, spectral and photosynthetic parameters of 12 peanut cultivars were determined. The results showed that peanut exhibit significant variations in spectral and photosynthetic parameters within cultivars in response to Fe deficiency. The 12 peanut cultivars were separated into three groups, which include (i) a Fe-deficient tolerant cultivar (‘Zhenghong 3’), (ii) a Fe-deficient sensitive cultivar (‘Huayu 22’), and (iii) ten intermediate cultivars. Iron deficiency caused an increase in root biomass, root/shoot ratio, structure independent pigment index and intercellular carbon dioxide (CO2) concentration, but resulted in a decrease in net photosynthetic rate (Pn), quantum yield of PS II photochemistry (Fv/Fm), effective quantum yield of PS II (ΦPS II), photochemical reflectance index, red edge point, and chlorophyll normalized difference index. Iron deficiency-induced decline in net photosynthetic rate may be resulted from the reduction of photosynthetic pigment contents and inhibition of PSII photochemistry.  相似文献   

12.
Ozone (O3) toxicity is a potential yield‐limiting factor for soybean (Glycine max L. Merr.) in the United States and worldwide. The most economical solution to the problem is to use O3‐tolerant cultivars. Thirty‐four cultivars and 87 near‐isogenic lines (NILS) of soybean were screened for O3 tolerance in a fumigation chamber (250 ppb for three hrs). Most tolerant cultivars tested were ‘Cloud’, ‘T‐276’, ‘T263’, and ‘Kindu’. Moderately tolerant cultivars included ‘Davis’, ‘T‐210’, and ‘Elton’. Most sensitive cultivars were ‘Corsoy 79’, ‘Noir’, and ‘Midwest’. The original ‘Clark’ cultivar was not tested, but ‘Clark 63’ tended to be more tolerant than ‘Harosoy’. The aluminum (Al)‐tolerant ‘Perry’ cultivar also tended toward greater O3 tolerance than the Al‐sensitive ‘Chief’, as observed earlier. Our rankings of ‘Hark’ as moderately sensitive and ‘Davis’ as moderately tolerant are also in agreement with earlier reports. Among NILS, the order of O3 tolerance was generally Williams>Clark>Harosoy, but differences were also observed within these parental groups. For example, L68–560 was more tolerant than some other NILS of ‘Harosoy’. ‘L76–1988’ appeared more tolerant to O3 than other NILS of ‘Williams’, but all ‘Williams’ NILS were more tolerant than most NILS of ‘Harosoy’ and ‘Clark’. Ozone‐tolerant and ‐sensitive soybean cultivars or NILS identified in our study may be useful tools in studies on mechanisms of 03 tolerance and differential 03 tolerances in plants and in the development of ameliorative measures.  相似文献   

13.
Ten‐day‐old seedlings of 22 rice (Oryza sativa.L) cultivars originated from various tropical countries were subjected to six levels of aluminum (Al) [0, 74, 148, 222, 296, and 370 μM] to test their tolerance to Al toxicity in nutrient solutions at pH 4.0±0.l. Seedlings were grown in the presence of Al under controlled environmental conditions in growth chambers. The nutrient solutions were replenished once a week. After 30 days, treatments were terminated and the differences in their growth patterns were compared. Standard growth parameters such as plant growth, dry matter production, relative growth reduction in roots (RGRS) and shoots (RGRS), root tolerance index (RTI) and shoot tolerance index (STI) have been used as markers of Al toxicity.

Rice cultivars studied exhibited wide range of responses in their tolerance to Al. Though, the rice cultivars were subjected to six levels of Al, a good degree of separation in their responses was observed only at 222 μM Al. Therefore, this concentration was chosen to analyze and compare the performances of the cultivars. Further, only six cultivars showed significant changes in their expression in the presence of Al compared to control, and so data have been presented only for those cultivars for clarity. The cultivars BW 196, Bhura Rata, Basmati 370 and Co 37 recorded increases in growth, while Damodar and ADT 36 showed severe inhibitions in the presence of Al. Furthermore, in RTI and STI also Co 37 and Basmati 370 registered their tolerance to Al by showing increased growth in the presence of Al. Whereas, Damodar and ADT 36 recorded severe reductions. The RGRR and RGRS data also substantiates this finding. Based on the growth parameters, the six rice cultivars were ranked based on their tolerance to Al: Co 37 > Basmati 370 > BW 196 > Bhura Rata > Damodar > ADT 36. Co 37 and Basmati 370 are the two most tolerant cultivars which performed extremely well in the presence of Al, and Damodar and ADT 36 are the most susceptible cultivars. Therefore, the Al‐tolerant cultivars can be used for future breeding programes to develop Al‐tolerant, cultivars that subsequendy can be recommended for planting in acidic, infertile soils of the tropics.  相似文献   

14.
In this study, ten‐day‐old seedlings of barley {Hordeum vulgare L. cultivar Anadolu [boron (B)‐tolerant] and Hamidiye (B‐sensitive)} were used. Boron‐treated plants were grown on H3BO3 solution (final concentration of 10 mM) for five days. Control plants received no B treatment during this period. Total protein patterns were obtained by analysis of total protein extract from root and leaf tissues of control and B‐treated plants using two‐dimensional gel electrophoresis followed by silver staining. The protein profile of B‐treated seedlings of each cultivar was compared to the profile of control (no stress treatment) plants of the same cultivar. Silver‐stained gels showed that B stress caused increases or decreases in a number of proteins in root and leaf tissues. Moreover, as a result of B treatment, one newly synthesized protein with relative molecular weight (Mr) of 35.0 kDa was detected in root profile of the tolerant cultivar. This protein failed to show up in root profile of the B‐treated sensitive cultivar. Three proteins were quantitatively increased in B‐treated root profile of both cultivars. Following B treatment, three proteins were increased in root profile of the tolerant cultivar, but were not changed in the sensitive one. In leaf tissues, however, there were remarkable changes in total protein profiles after B treatment, relative to the control. Following B treatment, in leaf tissues, at least seven proteins were increased in amount in tolerant cultivar but were unchanged in the susceptible one. In tolerant and sensitive cultivars, amounts of two proteins were increased in B‐treated plants, relative to control seedlings. In addition, four proteins (Mr:29, 58, 58, and 22 kDa) were unchanged in control and B‐treated seedlings of the tolerant cultivar. In the susceptible cultivar however, among these four proteins, the first one (Mr:29) was very much reduced and the others (Mr: 58, 58, and 22 kDa) were completely lost in B‐treated seedlings. Moreover, following B treatment, a set of high‐molecular‐weight proteins was quantitatively decreased in the susceptible cultivar but was unchanged in the tolerant cultivar. These results indicate that in barley, certain proteins may be involved in tolerance to B toxicity. In this study, changes in polypeptide composition as a result of B toxic concentration in leaf tissues were more abundant than in roots. Therefore, it is suggested that these changes, especially at shoot level may form the basis of the tolerance mechanism to B toxicity.  相似文献   

15.
An investigation was conducted on two contrasting inland valley soils (Fluvauents and Tropaquents) over two cropping seasons (1993, 1994, and 1995) in two benchmark wetlands in Nigeria, and the contents and dynamics of iron (Fe) forms (active and organic) were examined when two different rice (Oryza sativa L) cultivars (‘ITA 212’ and ‘Suakoko 8’) were planted. Results showed that active Fe ranged between 0.96 and 3.16% on Fluvaquents and between 1.57 and 4.73% on Tropaquents; organic Fe, on the other hand, ranged between 0.05 and 2.84% (Fluvaquent) and between 0.60 and 2.38% (Tropaquents). Dynamics of the two Fe forms did not follow any clear pattern in the two cropping seasons on both soil types. On Fluvaquents, grain yields (GY) ranged between 2.40 and 3.46 t/ha (‘ITA 212’) and between 2.35 and 3.15t/ha (‘Suakoko 8’). Similarly, on Tropaquents, the GY ranged between 0.68 and 2.13 t/ha (‘ITA 212’) and between 0.61 and 2.11 t/ha (‘Suakoko 8’). Generally, the GY on Fluvaquents was higher than on Tropaquents and declined in the second cropping seasons. Results further showed that active Fe is significantly negatively correlated with GYs of rice. Critical active Fe and organic Fe contents for lowland rice on these soils were 2.90 and 1.80%, respectively.  相似文献   

16.
Abstract

Barley, Hordeum vulgare L., is extremely sensitive to excess soluble or exchangeable aluminum (Al) in acid soils having pH values below about 5.5. Aluminum tolerant cultivars are needed for use in rotations with potatoes which require a soil pH below 5.5 for control of scab disease. They are also potentially useful in the currently popular “low input, sustainable agriculture (LISA)”; in which liming even the plow layer of soil is not always possible or cost effective, or in situations where surface soils are limed but subsoils are acidic and Al toxic to roots. Ten barley cultivars were screened for Al tolerance by growing them for 25 days in greenhouse pots of acid, Al‐toxic Tatum subsoil (clayey, mixed, thermic, typic Hapludult) treated with either 750 or 4000 μg?g‐1 CaCO3 to produce final soil pH values of 4.4 and 5.7, respectively. Based on relative shoot dry weight (weight at pH 4.4/weight at pH 5.7 X 100), Tennessee Winter 52, Volla (England), Dayton and Herta (Denmark) were significantly more tolerant to the acid soil than Herta (Hungary), Kearney, Nebar, Dicktoo, Kenbar and Dundy cultivars. Relative shoot dry weights averaged 28.6% for tolerant and 14.1% for sensitive cultivar groups. Comparable relative root dry weights were 41.7% and 13.7% for tolerant and sensitive cultivars, respectively. At pH 4.4, Al concentrations were nearly three times as high in shoots of sensitive cultivars as in those of the tolerant group (646 vs. 175 μg?g‐1), but these differences were reduced or absent at pH 5.7. At pH 4.4, acid soil sensitive cultivars also accumulated phosphorus concentrations that were twice as high as those in tolerant cultivars (1.2% vs. 0.64%). At pH 5.7, these P differences were equalized at about 0.7% for both tolerant and sensitive groups. At pH 4.4, shoots of the Al‐sensitive cultivar Nebar contained 1067 μg?g‐1 Al and 1.5% P. Concentrations of Al and P in the shoots of acid soil sensitive cultivars grown at pH 4.4 exceeded levels reported to produce toxicity in barley. The observed accumulation of such concentrations of Al and P in the shoots of plants grown under Al stress is unusual and deserves further study.  相似文献   

17.
Abstract

Greenhouse and laboratory research studied K and CI nutrition of four soybean [Glycine max (L) Merril] cultivars with differential resistance to Soybean Cyst Nematode (SCN, Heterodora glycines Ichinohe). The cultivars: Forrest (Group V, resistant to races 1 and 3), Bradley (Group VI, resistant to races 1, 3 and 4), Essex (Group V, susceptible), and Davis (Group VI, susceptible*) were used. Potassium treatments were zero K, K2SO4 and KCI, and SCN treatment was zero and 500 eggs/100 g of previously sterilized soil. Single plants were grown for 30‐days in 400 g of soil in 3.5 cm pots maintained at 23°C. Plants were separated into roots and shoots for analysis. Post harvest SCN cyst counts were completed to evaluate cultivar‐K treatment effect on SCN population dynamics and treatment effects on root and shoot K, Ca, Mg and CI.

Cyst counts were a function of cultivar resistance and inoculation, and were not affected by K treatment. Root and shoot weights of all cultivars were lower In the SCN inoculated pots. Potassium treatments did not alter the SCN negative effect on root weight, but KCI appeared to reverse the negative effect that SCN inoculation had on shoot weight of Bradley. SCN Inoculation appeared to reduce CI concentration in the roots of all cultivars, increase root K of Bradley and no effect on root K of Davis, Essex and Forrest. Transiocation of K from roots to shoots was not adversely affected by SCN inoculation. The KCI treatment increased shoot CI concentration of cultivars in order Essex > Davis > Forrest > Bradley. The order of correlation of root CI concentration with shoot CI concentration was: Essex (r = 0.80**) > Bradley (r = 0.70**) > Davis (r = 0.54**) > Forrest (r = 0.40**) suggesting difference in root CI adsorption characteristcs and CI translocation characteristis to the shoots. Additional research is needed to determine to what extent root and shoot CI accumulation characteristics are related to SCN resistance and if the shoot CI accumulation characteristics is independent of root CI adsorption characteristics.  相似文献   

18.
ABSTRACT

Iron (Fe) toxicity is a widespread nutritional soil constraint affecting rice production in the wetland soils of West Africa. Critical levels of total iron in plant causing toxicity is difficult to determine as different rice cultivars respond to excessive Fe2 + in various ways in what is called “bronzing” or “yellowing” symptoms (VBS). An investigation was conducted to evaluate the relationship between plant growth and nutrient ratios at four iron levels (1000, 3000, 4000 μ g L?1) and control. This involved two rice cultivars (‘ITA 212’ and ‘Suakoko 8’), and two soil types (Aeric Fluvaquent and Aeric Tropaquept). The experimental design was a 2 × 2 × 4 factorial in a completely randomized fashion with four replications. The results showed that nutrient ratios [phosphorus (P)/Fe, potassium (K)/Fe, calcium (Ca)/Fe, magnesium (Mg)/Fe, and manganese (Mn)/Fe), Fe content, and Fe uptake vary widely with the iron levels as well as with the age of the cultivars. The iron toxicity scores expressed as VBS increased with increasing Fe2 + in the soils, resulting in simultaneous reduction of the following variables: plant height, tiller numbers/pot, relationships grain yield (GY) and dry matter yield (DMY). There were no significant difference between nutrient ratios, Fe contents, Fe uptake, the GY and DMY of both rice cultivars on both soil types. Multiple stepwise regression analysis showed that Fe uptake and Fe contents contributed 42% and 17% respectively to the variation in the grain yield of ‘ITA 212’ on Aeric Tropaquept. On both soil types and cultivars, Fe uptake and Fe content contributed between 26 and 68% to the variation in the DMY, while the nutrient ratios (P/Fe, K/Fe, Ca/Fe, and Mn/Fe) contributed between 3% and 13% DMY. Thus, it could be concluded that iron toxicity in rice is more a function of a single nutrient (Fe) rather than nutrient ratios.  相似文献   

19.
【目的】新疆生产建设兵团采用膜下滴灌技术后,水稻缺铁黄化现象较为严重,研究该条件下水稻对缺铁反应的基因型差异,可为耐缺铁性水稻基因型的筛选和分类提供可靠的理论依据。 【方法】以六个水稻基因型为研究材料,采用膜下滴灌技术管理。在水稻幼苗期、分蘖期和成熟期随机采样,测定不同基因型水稻的分蘖数、生物量、产量以及铁含量,利用隶属函数分析和聚类分析研究了水稻在全生育期对缺铁胁迫反应的基因型差异。 【结果】水稻在幼苗期、分蘖期和成熟期对缺铁的反应存在基因型差异。在幼苗期水稻基因型 T-04 和 T-05 的叶片活性铁含量显著低于其他基因型;T-201 在幼苗期叶片活性铁、地上部铁的分配,分蘖期叶片铁含量和地上部干物质均较高;在分蘖期 T-04 铁的转移能力最小,但是 T-04 的分蘖数较高;在成熟期 T-04 的有效分蘖与其他基因型差异不显著,T-04 的产量处于中等水平,但是其籽粒铁的收获指数低于其他基因型水稻。聚类分析显示耐缺铁水稻基因型 T-43 的各指标高于其他基因型。 【结论】在水稻的幼苗期和分蘖期叶片铁的有效利用和自身铁的转移保证了水稻的生长和较高有效穗数,根据全生育期水稻铁营养效率和产量的基因型差异初步确定 T-43 耐缺铁能力较强,T-04 为对缺铁敏感的水稻基因型。  相似文献   

20.
High concentrations of manganese (Mn), iron (Fe), and aluminium (Al) induced in waterlogged acid soils are a potential constraint for growing sensitive wheat cultivars in waterlogged‐prone areas of Western Australian wheat‐belt. Tackling induced ion toxicities by a genetic approach requires a good understanding of the existing variability in ion toxicity tolerance of the current wheat germplasm. A bioassay for tolerance to high concentration of Mn in wheat was developed using Norquay (Mn‐tolerant), Columbus (Mn‐intolerant), and Cascades (moderately tolerant) as control genotypes and a range of MnCl2 concentrations (2, 250, 500, 750, 1000, 2000, and 3000 μM Mn) at pH 4.8 in a nutrient solution. Increasing solution Mn concentration decreased shoot and root dry weight and intensified the development of toxicity symptoms more in the Mn‐intolerant cv. Columbus than in Norquay and Cascades. The genotypic discrimination based on relative shoot (54% to 79%) and root dry weight (17% to 76%), the development of toxicity symptoms (scores 2 to 4) and the shoot Mn concentration (1428 to 2960 mg kg–1) was most pronounced at 750 μM Mn. Using this concentration to screen 60 Australian and 6 wheat genotypes from other sources, a wide variation in relative root dry weight (11% to 95%), relative shoot dry weight (31% to 91%), toxicity symptoms (1.5 to 4.5), and shoot Mn concentration (901 to 2695 mg kg–1) were observed. Evidence suggests that Mn tolerance has been introduced into Australian wheat through CIMMYT germplasm having “LERMO‐ROJO” within their parentage, preserved either through a co‐tolerance to Mn deficiency or a process of passive selection for Mn tolerance. Cultivars Westonia and Krichauff expressed a high level of tolerance to both Mn toxicity and deficiency, whereas Trident and Janz (reputed to be tolerant to Mn deficiency) were intolerant to Mn toxicity, suggesting that tolerance to excess and shortage of Mn are different, but not mutually exclusive traits. The co‐tolerance for Mn and Al in ET8 (an Al‐tolerant near‐isogenic line) and the absence of Mn tolerance in BH1146 (an Al‐tolerant genotype from Brazil) limits the effectiveness of these indicator genotypes to environments where only one constraint is induced. Wide variation of Mn tolerance in Australian wheat cultivars will enable breeding genotypes for the genetic solution to the Mn toxicity problem.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号