首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Arbuscular mycorrhizal fungi (AMF) differ in their rate and extent of colonization of both plant roots and soil but the mechanism responsible for these differences is unclear. We compared the external mycelium of three AMF isolates (Glomus intraradices, Glomus etunicatum and Gigaspora gigantea) during early colonization of plant roots. We investigated whether an AMF with the most rapid colonization would have higher numbers of infective structures (i.e., infection hyphae and contact points), an AMF with extensive root colonization would have more infection units, and (3) AMF with extensive soil colonization would have large numbers of all external features (including absorptive hyphae, runner hyphae and hyphal bridges). Using specially designed soil and root observation chambers, we followed the development of the external mycelium for 7 weeks. We found that rapid colonization rate was due, in part, to the presence of more infective structures, in particular more infection hyphae and root contact points. Second, the extensive root colonizer had more, larger infection units. Third, data did not support the hypothesis that the extensive soil colonizer had more external structures. These results show that differences in the architecture of the external mycelium are responsible, in part, for variation in the colonization strategy of AMF.  相似文献   

2.
The responsiveness of the external mycelium of Glomus intraradices and Scutellospora calospora was tested in a multiple-choice experimental system in which mycelium encountered patches amended with nitrogen (N) or phosphorus (P), either alone or in combination with a host plant. We hypothesised that only AMF mycelium with sufficient supply of photosynthate from an actively growing host would respond to the amendments provided. Mycelium was allowed to grow either 11 or 21 weeks before we analysed hyphal proliferation in amended patches introduced in mesh bags that were not reached by roots but by foraging mycelium only. Hyphal length, the AMF signature fatty acid 16:1w5, and root colonisation in new host plant seedlings were used to measure AMF growth and resource allocation in the patches. Mycelium from both fungal strains was able to colonise new host roots and sand in all patches but S. calospora was overall more responsive to the amendments than G. intraradices. G. intraradices grew equally into all patches, including the unamended control, whereas S. calospora produced significantly more hyphal length in the patch containing a host plant than in the rest of the patches. Both strains showed lower hyphal growth at the second harvest and mycelium of G. intraradices lost almost entirely its capacity to develop new mycelium in all choices presented. Lipid measurements showed this fungus did not use storage lipids to exploit the patches. S. calospora mycelium had reduced growth and colonisation ability but still showed some growth in the patches at the second harvest. A reduction in the content of NLFA 16:1w5 from the first to the second harvest suggested that S. calospora mycelium likely used storage lipids to sustain proliferation in the patches. The results indicated that S. calospora was more active and used more resources for foraging than G. intraradices and that external mycelium foraging was maintained mainly with recently acquired plant carbon (C). This supported in general our hypothesis but showed as well that the two AMF strains had different strategies and resource allocation to forage. The overall low response of both AMF to the choices presented suggested that the responsiveness of mycelium searching freely in the substrate is lower than that observed in experimental systems in which the amendments have been placed in close contact with actively growing mycelium fronts in close vicinity with host roots.  相似文献   

3.
Arbuscular mycorrhizal fungi (AMF) are key components of ecosystems through their influence on plant communities and ecosystem processes. A major source of information regarding the importance of AMF species richness on process rates are mesocosm experiments using different levels of diversity of AMF as provided by single-species cultures of AMF. Since AMF inocula are generally made available in the form of non-sterile pot culture material, it is possible that AMF symbiosis-associated microbiota are at least partially responsible for some effects hitherto directly attributed to the AMF mycelium. Here, we provide evidence that microbiota associated with single-species cultures of AMF (after long-term pot culture enrichment of 7–8 years) can strongly affect the ecosystem process of soil aggregation. This effect occurred in an AMF isolate specific manner, but in the absence of live and active AMF mycelium. We additionally documented large differences in microbiota communities associated with the different AMF inocula (using PLFA analyses), suggesting that these differences were at least partly responsible for the observed changes in soil aggregation. This result points to AMF–microbiota interactions as a largely unexplored mechanism underlying soil aggregation (and potentially other ecosystem processes). We suggest that a reinterpretation of previous experiments using greenhouse-derived AMF cultures may be necessary, and the need to consider AMF symbiosis-associated microbiota in mechanistic studies of AMF and mycorrhizae in general is emphasized.  相似文献   

4.
本研究以绒毛栓孔菌为材料,采用液体培养的方法分析其在发酵过程中胞外酶的活性变化,并对其菌丝体生物量和发酵液pH值进行了测定。结果表明:胞外酶活性与菌丝体生长状况密切相关。菌丝体生物量增长呈"S"型,6~8d增长最快,第12天达到最大值,在此过程中漆酶、锰过氧化物酶、淀粉酶、羧甲基纤维素酶、果胶酶和蛋白酶活性均出现高峰。酶活性的变化表明,在液体培养过程中绒毛栓孔菌首先分解木质素,其次利用淀粉和纤维素作为碳源,蛋白质作为氮源。若要获得最大菌丝体生物量,缩短培养时间,就必须在培养过程中保证碳氮源的均衡供给。本试验说明不同的酶其分泌高峰期可以作为判断菌丝体营养利用情况和培养周期的依据,以此获取最大菌丝体生物量,为工业生产利用奠定基础。  相似文献   

5.
Pre-inoculation of seedlings with commercial, typically non-indigenous, AMF inoculants is common practice in horticultural and land reclamation industries. How these practices influence AMF community composition in pre-inoculated seedlings after they are planted in soil containing a resident AMF community is almost completely unknown. However, there may be important implications regarding success of horticultural practices, as well as unexpected ecological consequences. In this study we exposed Leucanthemum vulgare seedlings to five different AMF treatments (pre-inoculation with a representative of Glomus group A and Glomus group B, one of two Gigaspora spp., or no AMF) prior to exposure to a whole-soil, mixed-AMF community inoculum. After a growth period of 75 additional for 28 days, AMF community composition within the roots was analyzed using an approach combining LSU rDNA sequencing and T-RFLP analysis. Our results indicate that the AMF communities that assemble within roots were strongly influenced by AMF pre-inoculant identity. Pre-inoculation with either Glomus spp., unlike what was found for Gigaspora, greatly restricted numbers of other AMF ribotypes able to subsequently colonize roots after exposure to our Glomeraceae-dominated field soil; this suggested that phylogenetic relatedness and life history strategies may play a role in AMF community assembly. Our results further revealed concurrent changes in AMF community functions, as indicated by differences in plant biomass and foliar nutrients. These results serve to highlight the importance of considering life history differences when designing AMF inoculants and may have important implications regarding the introduction of non-indigenous AMF.  相似文献   

6.
To capitalize on the benefits offered by arbuscular mycorrhizal fungi (AMF) in agricultural systems, the effect of low soil temperature has to be taken into consideration over large areas of the planet. However, the effect of suboptimal root‐zone temperatures on AMF colonization is poorly understood. It has been suggested that it depends on the host plant species. We hypothesized that this interdependence is a function of the parameter used to assess the presence of AMF in the roots. In a pot experiment with non‐sterilized soil, we investigated the influence of three soil temperatures (10, 15, and 20°C) on the progress of root colonization of four host plant species (Ornithopus compressus, Lolium rigidum, Triticum aestivum, and Zea mays) by indigenous AMF. Plant root density, arbuscular colonization rate (AC) and colonized root density (CRD) were assessed 14, 28, and 42 d after sowing. Based on CRD, the effect of temperature on the progress of root colonization by AMF was independent of the host plant species. The apparent influence of the host plant species was only due to the species‐specific effect of soil temperature on root growth and therefore on AC. The host plant species only determined the minimum temperature for the AM colonization initiation, possibly due to species‐specific response of root growth and exudation to cool temperatures.  相似文献   

7.
Earthworms (Annelida: Oligochaeta) deposit several tons per hectare of casts enriched in nutrients and/or arbuscular mycorrhizal fungi (AMF) and create a spatial and temporal soil heterogeneity that can play a role in structuring plant communities. However, while we begin to understand the role of surface casts, it is still unclear to what extent plants utilize subsurface casts. We conducted a greenhouse experiment using large mesocosms (volume 45 l) to test whether (1) soil microsites consisting of earthworm casts with or without AMF (four Glomus taxa) affect the biomass production of 11 grassland plant species comprising the three functional groups grasses, forbs, and legumes, (2) different ecological groups of earthworms (soil dwellers—Aporrectodea caliginosa vs. vertical burrowers—Lumbricus terrestris) alter potential influences of soil microsites (i.e., four earthworms × two subsurface microsites × two AMF treatments). Soil microsites were artificially inserted in a 25-cm depth, and afterwards, plant species were sown in a regular pattern; the experiment ran for 6 months. Our results show that minute amounts of subsurface casts (0.89 g kg?1 soil) decreased the shoot and root production of forbs and legumes, but not that of grasses. The presence of earthworms reduced root biomass of grasses only. Our data also suggest that subsurface casts provide microsites from which root AMF colonization can start. Ecological groups of earthworms did not differ in their effects on plant production or AMF distribution. Taken together, these findings suggest that subsurface earthworm casts might play a role in structuring plant communities by specifically affecting the growth of certain functional groups of plants.  相似文献   

8.
The productivity and diversity of plant communities are affected by soil organisms such as arbuscular mycorrhizal fungi (AMF), root herbivores and decomposers. However, it is unknown how interactions between such functionally dissimilar soil organisms affect plant communities and whether the combined effects are additive or interactive. In a greenhouse experiment we investigated the individual and combined effects of AMF (five Glomus species), root herbivores (wireworms and nematodes) and decomposers (collembolans and enchytraeids) on the productivity and nutrient content of a model grassland plant community as well as on soil microbial biomass and community structure. The effects of the soil organisms on productivity (total plant biomass), total root biomass, grass and forb biomass, and nutrient uptake of the plant community were additive. AMF decreased, decomposers increased and root herbivores had no effect on productivity, but in combination the additive effects canceled each other out. AMF reduced total root biomass by 18%, but decomposers increased it by 25%, leading to no net effect on total root biomass in the combined treatments. Total shoot biomass was reduced by 14% by root herbivores and affected by an interaction between AMF and decomposers where decomposers had a positive impact on shoot growth only in presence of AMF. AMF increased the shoot biomass of forbs, but reduced the shoot biomass of grasses, while root herbivores only reduced the shoot biomass of grasses. Interactive effects of the soil organisms were detected on the shoot biomasses of Lotus corniculatus, Plantago lanceolata, and Agrostis capillaris. The C/N ratio of the plant community was affected by AMF.In soil, AMF promoted abundances of bacterial, actinomycete, saprophytic and AMF fatty acid markers. Decomposers alone decreased bacterial and actinomycete fatty acids abundances but when decomposers were interacting with herbivores those abundances were increased. Our results suggests that at higher resolutions, i.e. on the levels of individual plant species and the microbial community, interactive effects are common but do not affect the overall productivity and nutrient uptake of a grassland plant community, which is mainly affected by additive effects of functionally dissimilar soil organisms.  相似文献   

9.
Arbuscular mycorrhizal fungi (AMF) are integral functioning parts of plant root systems and are widely recognized for enhancing plant growth on severely disturbed sites, including those contaminated with heavy metals. However, the generality of detailed patterns observed for their influence on various metals and oxidative‐stress parameters in multiple plant species is not clarified. The goal of this study was to investigate the patterns of metal‐stress alleviation by AMF in four plant species. For this purpose, clover, sunflower, mustard, and phacelia were inoculated with Glomus intraradices and compared to noninoculated plants grown under heavy metal–stressed conditions. The study focused on the effect of AMF inoculation on plant biomass, assimilating pigments, total protein, superoxide dismutase and peroxidase activity, lipid peroxidation and As, Cd, Co, Cu, Fe, Mn, P, Pb, U, and Zn contents. As a result of inoculation very different patterns of variation were obtained for concentrations of elements and for biochemical parameters in plants. The particular effect of AMF inoculation on plants was species‐ and metal‐specific, although there was a general enhancement of plant growth.  相似文献   

10.
【目的】丛枝菌根真菌(arbuscular mycorrhizal fungi,简称AMF)对农田生态系统中作物的生长起着重要作用。不同宿主植物和作物种植方式对土壤中菌根真菌具有一定的选择性,从而影响菌根真菌对后茬植物生长的反馈效应。间作体系是农业生产中增产增效的一种重要的种植模式,明确AMF在间作体系中对植物生长的反馈作用,对理解间作体系地上-地下相互作用具有重要的意义。【方法】本试验采用三种常见的AMF(Funneliformis mosseae、Rhizophagus intraradices和Claroideoglomus claroideum)混合接种剂,在单作(玉米,蚕豆,稗草)和间作(玉米/蚕豆和玉米/稗草)条件下,通过两个阶段(AMF驯化及反馈)的反馈试验,模拟研究了三种植物在单作和间作中的反馈强度及AMF的调节作用。【结果】在驯化阶段,玉米/稗草间作体系中,与单作相比,间作玉米地上部生物量减少了64.0%,间作稗草地上部生物量增加了47.8%。玉米/蚕豆间作体系中,与单作相比,两者作物地上部生物量增量分别达21.7%和38.3%。反馈阶段中,单作时,与灭菌处理相比接种AMF后玉米、稗草和蚕豆的地上部生物量分别增加602.3%、 80.6%和21.1%; 间作时,与灭菌处理相比接种AMF后玉米地上部生物量平均增加613.1%,稗草增加80.7%, 蚕豆增加21.4%。单作玉米存在负到零反馈作用,与灭菌处理相比,接种AMF后玉米负反馈作用减弱至零反馈作用。从单作到间作,玉米的反馈作用由负变为零到正反馈作用。【结论】玉米和稗草之间是竞争关系,玉米处于竞争弱势稗草处于竞争优势。玉米对AMF的响应最为强烈,其次是稗草,最后是蚕豆。接种AMF或与其它植物间作后均减弱玉米的负反馈作用,表明丛枝菌根真菌可通过减弱单作玉米的负反馈实现间作增产。  相似文献   

11.
丛枝菌根真菌促进植物摄取土壤磷的作用机制   总被引:5,自引:0,他引:5  
磷在土壤中易被固定沉淀,在植物磷利用率低的情况下,过度施肥会造成磷肥浪费,可能通过地表径流、地下水溶解等方式,造成水体富营养化产生面源污染,对人类生产生活造成较大影响。丛枝菌根真菌(arbuscular mycorrhizal fungi,AMF)和植物结合所形成的共生菌根可以显著增强植株对磷的吸收利用。通过AMF可以提高宿主植株对磷的吸收转运的特性,从AMF促进植株对磷元素的摄取机制、AMF促进植物磷摄取分子机理、AMF作用下根系分泌物对植株磷利用的影响与根际微生物对AMF磷元素利用的影响4个方面的研究进展进行分析总结。AMF可以通过改变宿主植株的根系形态和菌丝网络的形成,扩大植株对养分吸收范围;释放有机酸、磷酸酶和质子等根系分泌物改变土壤结构和理化性质,与根际微生物共同作用降解土壤中难溶性磷酸盐;诱导相关磷转运蛋白基因的特异性表达,提高植株对磷的转运能力而促进其吸收。  相似文献   

12.
The mycelial biomass of fungi decomposing plant materials may be estimated by use of a chitin (hexosamine) assay technique. A method is described together with a discussion of its limitations; whatever the sensitivity of the chemical analysis the validity of the biomass estimate rests on the reliability of the conversion from chitin determination to mycelial dry weight. Estimates made on mycelium of Coriolus versicolor during decay of sawdust from Castanea sativa show a constant increase in biomass. The economic coefficient derived is 47 per cent which is similar to that for the utilization of glucose in liquid culture. Estimates of production are not possible due to lack of information concerning rates of hyphal death and autolysis. The estimated extents of mineral nutrient immobilization are 39% for N, 37% for P and 95% for K.  相似文献   

13.
Arbuscular mycorrhizal fungi (AMF) can benefit growth and yield of agriculturally significant crops by increasing mineral nutrient uptake, disease resistance and drought tolerance of plants. We conducted a meta-analysis of 38 published field trials with 333 observations to determine the effects of inoculation and root colonization by inoculated and non-inoculated (resident) AMF on P, N and Zn uptake, growth and grain yield of wheat. Field AMF inoculation increased aboveground biomass, grain yield, harvest index, aboveground biomass P concentration and content, straw P content, aboveground biomass N concentration and content, grain N content and grain Zn concentration. Grain yield was positively correlated with root AMF colonization rate, whereas straw biomass was negatively correlated. The most important drivers of wheat growth response to AMF were organic matter concentration, pH, total N and available P concentration, and texture of soil, as well as climate and the AMF species inoculated. Analysis showed that AMF inoculation of wheat in field conditions can be an effective agronomic practice, although its economic profitability should still be addressed for large-scale applications in sustainable cropping systems.  相似文献   

14.
Arbuscular mycorrhizal (AM) fungi and phosphate solubilizing bacteria (PSB) have a positive effect on plant productivity primarily through increasing phosphate availability. In order to study the interaction between AM fungi and PSB, we used Bacillus megaterium, a PSB isolated from the sterilized surface of AM germinated spores, and two strains of the AM fungus Glomus intraradices with different mycelial architecture. A greenhouse experiment was designed with maize as host plant with the addition of tribasic calcium phosphate. We tested the hypothesis that PSB, intimately linked with AM fungi, could interact differentially with the two AM strains. We concluded that inoculation with the PSB positively affected maize mycorrhization. Insoluble phosphate alone did not influence the AM extraradical mycelium (ERM) length and maize mycorrhization when bacteria were not inoculated. The results provide evidence that the adverse effect on infectivity for some AM strains might be caused by solubilized phosphorus release to the rhizosphere by PSB. Differences related to the mycelium architecture of each AM strain were observed: the density of PSB in rhizosphere soil was significantly higher only with the GA8 strain coinciding with the highest values of maize biomass. The density of bacteria associated with GA8 mycelium could be the result of the transfer of photosynthates through the rhizosphere; this close contact would favor the persistence of the intimate relationship between PSB and AM hyphae. In the bacteria-free treatments, soil adherence was not significantly altered. Although the highest development of ERM occurred with GA5, plants inoculated with GA8 showed the highest values for soil adherence. This may be due to the AM mycelium which modifies bacterial persistence in the rhizosphere and consequently soil adherence. Our results show that for potential applications, some characteristics of the AM strains are key in the selection of the AM fungi–PSB combinations. These include the tolerance to soluble phosphorus, the rate of root colonization, and ERM development that favors the persistence of bacteria in rhizosphere soil.  相似文献   

15.
外源营养物对菌丝体生物质材料的生长研究及其性能表征   总被引:1,自引:1,他引:0  
为优化菌丝体生物质材料配方和成品性能,该研究以菌丝生长速率为评价指标,首先通过单因素试验筛选出较佳外源营养物。再利用Plackett-Burman试验确定了影响平菇菌丝生长的主要因素为葡萄糖、酵母粉和KH2PO4,通过最陡爬坡试验和Box-Behnken响应面分析对添加物进行分析,得到较佳外源营养物组合为:质量分数为4.7%葡萄糖、1%酵母粉和0.3%磷酸二氢钾。最后比较了未添加和添加外源营养物制得的菌丝体材料结构与性能,结果表明:与未添加组相比,添加外源营养物制得的菌丝体材料,其菌丝粗壮且相对致密,菌丝直径增加了460 nm;复合材料压缩强度为114 kPa,较未添加对照组提升了43.7%,说明外源营养物的添加促进了平菇菌丝的生长,提高了菌丝体材料的强度和回弹性。研究结果为菌丝体生物质材料的制备及其性能优化提供参考。  相似文献   

16.
Arbuscular mycorrhizal fungi (AMF) form mutualistic associations with most terrestrial plants, including trees. They can confer many benefits and are known to induce widespread changes in host plant physiology. For many years it was considered that colonisation by AMF did not alter root architecture but significant alteration has now been demonstrated unequivocally for several plants, including trees with AMF colonised plants usually possessing a more highly branched root system. More recently, alteration to root system longevity has also been measured with AMF colonised root systems being shorter lived. Mechanisms by which these changes occur are not understood but effects are not entirely due to altered phosphorus nutrition and are likely to involve AMF interaction with plant cell cycles. Future research should concentrate on defining the extent of AMF alteration to root system development and the importance of AMF interactions with plant cell cycles in determining these changes.  相似文献   

17.
从高磷效率的马尾松广东信宜种源中选择9个优良自由授粉家系,设置低磷和高磷两种养分环境,通过分析不同养分环境下植物生长量、干物质积累量和分配及磷效率(包括磷素吸收效率和利用效率)等指标,并结合5年生子代测定林生长状况的分析,研究马尾松广东家系对低磷胁迫的适应能力。结果表明:与一代种子园优良自由授粉家系相比,广东产地马尾松各家系总体上具有较好的适应低磷胁迫的能力,同时也存在着显著的家系变异。在参试的9个马尾松家系中,185,337,33和67家系表现较好,在苗高、地径和干物质量积累,以及根系参数和主要磷效率指标等方面都明显优于其他家系。在低磷胁迫环境下,337、185、67、336和33等高磷效率家系的根系主要参数也明显高于其他家系,表明整体根系参数的适应性变化是磷效率和生物量形成的决定因素。相关分析发现,这些性状之间具有显著或极显著的相关性,相关系数达到了0.700~0.999之间。通过苗期大田生长回溯相关分析发现,最重要的苗期磷效率指标干物质积累量,与大田条件下的树高性状均呈显著(p0.05)相关,而与材积性状仅达到0.10水平的相关(p0.1)。这一结果表明,通过马尾松家系的苗期磷效率指标,能预测大田生长条件下马尾松的部分生长性状,但尚不能较好地预测全部生长性状。本实验结果揭示,可以通过开展磷效率苗期盆栽试验来鉴定和筛选高磷效率马尾松家系,缩短林木遗传改良的选育周期,提高育种效率。  相似文献   

18.
《Applied soil ecology》2000,14(3):201-211
Culturing in soils from degraded ecosystems significantly influenced the effectiveness of indigenous arbuscular mycorrhizal fungi (AMF) isolated from disturbed and undisturbed soils. The AMF isolates from degraded or artificially created habitats (acid rain polluted site, power station fly ash deposits, spoil banks, pyrite deposit), were not, in most cases, more effective than those from undisturbed soils, when grown in symbiosis with maize in the disturbed soils. Significant effects of soil or substrate on plant growth were found, while the influence of the AMF inoculant was much less pronounced. The development of AMF isolates was reduced in soils with more adverse chemical properties irrespective of the isolate origin. The length of extraradical mycelium of AMF and NADH-diaphorase activity of the mycelium were good indicators of negative effects of stress factors in the soil.  相似文献   

19.
Aims : The aim of this study was to explore interactive effects between quality (types) and quantity (application rates) of biochar as well as of arbuscular mycorrhiza (AM) symbiosis on the growth of potato plants. Methods : A low P sandy loam soil was amended with 0%, 1.5%, or 2.5% (w/w) of either of 4 types of biochar, which were produced from wheat straw pellets (WSP) or miscanthus straw pellets (MSP) pyrolyzed at temperatures of either 550°C or 700°C. Potato plants grown in pots containing the soils or soil biochar mixture were inoculated with or without AM fungus (AMF), Rhizophagus irregularis. The experiment was carried out under fully irrigated semi‐field conditions and plants were harvested 101 days after planting. Results : Application of high temperature biochar decreased growth, biomass and tuber yield of potato plants, while the low temperature biochar had a similar effect on yield as plants grown without biochar amendment. Total biomass of potato plants were decreased with the increasing rate of biochar. Arbuscular mycorrhizal fungus inoculation stimulated the growth of potato plants in all organs, increased tuber biomass significantly in 1.5% MSP700 amended plants, and to a lesser degree for WSP700, MSP550, and WSP550. In addition, plant biomass gain was linearly related to N, P, and K uptake, the ratio of P to N in the leaf of plants indicated that all treatments were mainly P‐limited. A multiple linear regression using P uptake and biochar rate as independent variables explained 91% of the variation in total biomass. The single effect of AMF inoculation, type and rate of biochar affected plant N, P and K uptake similarly. While AMF inoculation significantly increased P uptake in potato plants grown in soil with WSP700 or MSP700 despite of the rate of biochar. In general, application of biochar significantly increased AMF root colonization of potato plants. Conclusions : The application of MSP550 at 1.5% combined with AMF stimulated growth of potato the most. Furthermore, the results indicated that the interactive effect of AMF inoculation, biochar type and application rate on potato growth to a large extent could be explained by effects on plant nutrient uptake.  相似文献   

20.
Interactions between arbuscular mycorrhizal fungi (AMF) and plants are essential components of ecosystem functioning; however, they remain poorly known in dry ecosystems. We examined the relationship between seven shrub species and their associated AMF community in a semi-arid plant community in southern Spain. Soil characteristics and plant physiological status were measured and related to AMF community composition and genetic diversity by multivariate statistics. We found differences in AMF communities in soils under shrubs and in gaps among them, whereas no differences were detected among AMF communities colonizing roots. Soil nutrients content drove most of the spatial variations in the AMF community and genetic diversity. AMF communities were more heterogeneous in fertile islands with low nitrogen-to-phosphorus ratio and vice versa. AMF genetic diversity increased in soils limited by phosphorus and with high soil organic matter content, while AMF genetic diversity increased in roots growing in soil not limited by phosphorus. Overall, we could not find a clear link between plant performance and the associated AMF community. Our findings show that different shrub species generate islands of fertility which differ in nutrient content and, therefore, support different AMF communities, increasing AMF diversity at the landscape level.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号